導航:首頁 > 網路連接 > 工業計算機網路差錯檢測

工業計算機網路差錯檢測

發布時間:2022-10-30 02:36:47

計算機網路中差錯控制方法

一、總的方法折疊:
1、前向糾錯。實時性好,單工通信採用。
2、自動重發請求(ARQ)。強調檢錯能力,不要求有糾錯能力,雙向通道採用。
3、混合糾錯。上述兩種方式的綜合,但傳輸設備相對復雜。

二、分類方法折疊:
1、差錯檢測是差錯控制的基礎。能糾錯的碼首先應具有差錯檢測能力,而只有在能夠判定接收到的信號是否出錯才談得上是否要求對方重發出錯消息。具有差錯檢測能力的碼不一定具有差錯糾正能力。由於差錯檢測並不能提高信道利用率,所以主要應用於傳輸條件較好的信道上做為誤碼統計和質量控制的手段。
2、自動請示重發ARQ和前向糾錯FEC是進行差錯控制的兩種方法。
一在ARQ方式中,接收端檢測出有差錯時,就設法通知發送端重發,直到正確的碼字收到為止。ARQ方式使用檢錯碼,但必須有雙向信道才可能將差錯信息反饋到發送端。同時,發送方要設置數據緩沖區,用以存放已發出的數據以便於重發出錯的數據。
二在FEC方式中,接收端不但能發現差錯,而且能確定二進制碼元發生錯誤的位置,從而加以糾正。FEC方式使用糾錯碼,不需要反向信道來傳遞請示重發的信息,發送端也不需要存放以務重發的數據緩沖區。但編碼效率低,糾錯設備也比較復雜。
3、差錯控制編碼又可分為檢錯碼和糾錯碼。
檢錯碼只能檢查出傳輸中出現的差錯,發送方只有重傳數據才能糾正差錯;而糾錯碼不僅能檢查出差錯而且能自動糾正差錯,避免了重傳。
4、演播的檢錯碼有:奇偶校驗碼、循環冗餘碼。
在實際通信網中,往往在不同的應用場合採用不同的差錯控制技術。前向糾錯主要用於信道質量較差、對傳輸時延要求較嚴格的有線和無線傳輸當中;差錯檢測往往用於傳輸質量較高或進行了前向糾錯後的通路的監測管理之中>自動請求重發則多用於象計算機通信等對時延要求不高但對數據可靠性要求非常高的文件傳輸之中。

② 計算機網路(3)| 數據鏈路層

數據鏈路層屬於計算機網路的低層。數據鏈路層使用的信道主要是兩種類型:
(1)點對點信道 。即信道使用的是一對一點對點通信方式。
(2)廣播信道 。這種信道使用的是一對多的光播通信方式,相對復雜。在廣播信道上連接的主機很多,因此必須使用專用的共享信道協議來協調這些主機的數據發送。

首先我們應該了解一些有關點對點信道的一點基本概念。
(1)數據鏈路 。值得是當我們需要在一條線路上傳送數據時,除了有一條物理線路外(鏈路),還必須有一些必要的通信協議來控制這些數據的傳輸,若把實現這些協議的硬體和軟體加到鏈路上就構成了數據鏈路。
(2)幀 。幀指的是點對點信道的數據鏈路層的協議數據單元,即數據鏈路層把網路層交下來的數據構成幀發送到鏈路上以及把接收到的幀中的數據取出並上交給網路層。

點對點信道的數據鏈路層在進行通信時的主要步驟如下:
(1)結點A的數據鏈路層把網路層交下來的IP數據報添加首部和尾部封裝成幀。
(2)結點A把封裝好的幀發送給結點B的數據鏈路層。
(3)若B接收的幀無差錯,則從接收的幀中提取出IP數據報上交給上面的網路層;否則丟棄這個幀。

接下來是來介紹數據鏈路層的三個基本問題,而這三個問題對於各種數據鏈路層的協議都是通用的。

(1)封裝成幀 。指的是在一段數據的前後分別添加首部和尾部,這樣就構成了一個幀,從而能夠作為數據鏈路層的基本單位進行數據傳輸。在發送幀時,是從幀的首部開始發送的。各種數據鏈路層協議都對幀首部和幀尾部的格式有著明確的規定,且都規定了所能傳送的 幀的數據部分 長度上限—— 最大傳送單元MTU 。首部和尾部的作用是進行幀定界,幀定界可以使用特殊的 幀定界符 ,當數據在傳輸中出現差錯時,通過幀的幀定界符就可以知道收到的數據是一個不完整的幀(即只有首部開始符而沒有結束符)。

(2)透明傳輸 。從上面的介紹中知道幀的開始和結束標記使用了專門的控制字元,因此所傳輸的數據中任何與幀定界符相同的比特編碼是不允許出現的,否則就會出現幀定界錯誤。當傳送的幀是用文本文件組成的幀時,它的數據部分一定不會出現和幀定界符相同的字元,這樣的傳輸就叫做 透明傳輸 。為了解決其他類型文件傳輸時產生的透明傳輸問題,就將幀定界符的前面插入一個 轉義字元ESC ,這種方法稱為 位元組填充 。如果轉義字元也出現在數據中,就在轉義字元前面加上一個轉義字元,當接收端收到兩個轉義字元時,就刪除前面的那一個。

(3)差錯檢測 。在現實中,通信鏈路都不會是完美的,在傳輸比特的過程當中都是會產生差錯的,1變成0或者0變成1都是可能發生的,我們把這樣的錯誤叫做差錯檢測。在數據鏈路層中,為了保證數據傳輸的可靠性,減少差錯出現的數量,就會採用各種差錯檢測措施,目前最常使用的檢錯技術是 循環冗餘校驗 。它的原理簡單來說就是在被傳輸的數據M後面添加供錯檢測用的n為冗餘碼,構成一個幀數據發送出去。關於n位冗餘碼的得出方式與檢驗方式,可以 點擊這里進一步了解 。

對於點對點鏈路,點對點協議PPP是目前使用得最廣泛的數據鏈路層協議。由於網際網路的用戶通常都要連接到某個ISP才能接入到網際網路,PPP協議就是用戶計算機和ISP進行通信所使用的數據鏈路層協議。

在設計PPP協議時必須要考慮以下多方面的需求:
(1)簡單 。簡單的設計可使協議在實現時不容易出錯,這樣使得不同廠商對協議的不同實現的互操作性提高了。
(2)封裝成幀 。PPP協議必須規定特殊的字元作為幀定界符(即標志一個幀的開始和結束的字元),以便使接收端從收到的比特流中能准確的找出幀的開始和結束的位置。
(3)透明性 。PPP協議必須保證數據傳輸的透明性。如果說是數據中碰巧出現和幀定界符一樣的比特組合時,就要採用必要的措施來解決。
(4)多種網路層協議 。PPP協議必須能夠在同一條物理鏈路上同時支持多種網路層協議(IP和IPX等)的運行。
(5)多種類型鏈路 。除了要支持多種網路層的協議外,PPP還必須能夠在多種鏈路上運行(串列與並行鏈路)。
(6)差錯檢測 。PPP協議必須能夠對接收端收到的幀進行檢測,並舍棄有差錯的幀。
(7)檢測連接狀態 。必須具有一種機制能夠及時(不超過幾分鍾)自動檢測出鏈路是否處於正常工作狀態。
(8)最大傳送單元 。協議對每一種類型的點對點鏈路設置最大傳送單元MTU。
(9)網路層地址協商 。協議必須提供一種機制使通信的兩個網路層(如兩個IP層)的實體能夠通過協商知道或能夠配置彼此的網路層地址。
(10)數據壓縮協商 。協議必須能夠提供方法來協商使用數據壓縮演算法。但PPP協議不要求將數據壓縮演算法進行標准化。

PPP協議主要是由三個方面組成的:
(1) 一個將IP數據報封裝到串列鏈路的方法。
(2) 一個用來建立、配置和測試數據鏈路連接的鏈路控制協議LCP(Link Control Protocol)。
(3) 一套網路控制協議NCP(Network Control Protocol),其中的每一個協議支持不同的網路層協議,如IP、OSI的網路層、DECnet,以及AppleTalk等。

最後來介紹PPP協議幀的格式:

首先是各個欄位的意義。首部中的地址欄位A規定為0xFF,控制欄位C規定為0x03,這兩個欄位並沒有攜帶PPP幀的信息。首部的第一個欄位和尾部的第二個欄位都是標識欄位F(Flag)。首部的第四個欄位是2位元組的協議欄位。當協議欄位為0x0021時,PPP幀的信息部分欄位就是IP數據報。若為0xC021,則信息欄位是PPP鏈路控制協議LCP的數據,而 0x8021表示這是網路層的控制數據。尾部中的第一個欄位(2位元組)是使用CRC的幀檢驗序列FCS。

接著是關於PPP協議的差錯檢測的方法,主要分為位元組填充和零比特填充。當是PPP非同步傳輸時,採用的是位元組填充的方法。位元組填充是指當信息欄位中出現和標志欄位一樣的比特(0x7E)組合時,就必須採取一些措施使這種形式上和標志欄位一樣的比特組合不出現在信息欄位中。而當PPP協議使用的是同步傳輸時,就會採用零比特填充方法來實現透明傳輸,即只要發現有5個連續1,則立即填入一個0的方法。

廣播信道可以進行一對多的通信。由於區域網採用的就是廣播通信,因此下面有關廣播通信的討論就是基於區域網來進行的。

首先我們要知道區域網的主要 特點 ,即網路為一個單位所擁有,且地理范圍和站點數目均有限。在區域網才出現時,區域網比廣域網有著較高的數據率、較低的時延和較小的誤碼率。

區域網的 優點 主要有一下幾個方面:
(1) 具有廣播功能,從一個站點可方便地訪問全網。
(2) 便於系統的擴展和逐漸地演變,各設備的位置可靈活地調整和改變。
(3) 提高了系統的可靠性(reliability)、可用性(availibility)、生存性(survivability)。

關於區域網的分類,我們一般是對區域網按照網路拓撲進行分類:
1.星狀網: 由於集線器的出現和雙絞線大量用於區域網中,星形乙太網和多級星形結構的乙太網獲得了非常廣泛的應用。
2.環形網: 顧名思義,就是將各個主機像環一樣串起來的拓撲結構,最典型的就是令牌環形網。
3.匯流排網: 各站直接連在匯流排上。匯流排兩端的匹配電阻吸收在匯流排上傳播的電磁波信號的能量,避免在匯流排上產生有害的電磁波反射。

乙太網主要有兩個標准,即DIX Ethernet V2和IEEE 802.3標准,這兩種標準的差別很小,可以不是很嚴格的區分它們。

但是由於有關廠商的商業上的激烈競爭,導致IEEE 802委員會未能形成一個最佳的區域網標准而制定了幾個不同的區域網標准,所以為了數據鏈路層能夠更好的適應各種不同的標准,委員會就把區域網的數據鏈路層拆成兩個子層: 邏輯鏈路控制LLC子層 媒體接入控制MAC子層

計算機與外界區域網的連接是通過通信適配器(adapter)來進行的。適配器本來是在電腦主機箱內插入的一塊網路介面板(或者是在筆記本電腦中插入一塊PCMCIA卡),這種介面板又稱為網路介面卡NIC(Network Interface Card)或簡稱為網卡。適配器和區域網之間的通信是通過電纜或雙絞線以串列傳輸方式進行的,而適配器和計算機之間的通信則是通過計算機主板上的I/O匯流排以並行傳輸方式進行的,因此適配器的一個重要功能就是要進行數據串列傳輸和並行傳輸的轉換。由於網路上的數據率和計算機匯流排上的數據率並不相同,所以在適配器中必須裝有對數據進行緩存的存儲晶元。若在主板上插入適配器時,還必須把管理該適配器的設備驅動程序安裝在計算機的操作系統中。這個驅動程序以後就會告訴適配器,應當從存儲器的什麼位置上把多長的數據塊發送到區域網,或應當在存儲器的什麼位置上把區域網傳送過來的數據塊存儲下來。適配器還要能夠實現乙太網協議。

要注意的是,適配器在接收和發送各種幀時是不使用計算機的CPU的,所以這時計算機中的CPU可以處理其他的任務。當適配器收到有差錯的幀時,就把這個幀丟棄而不必通知計算機,而當適配器收到正確的幀時,它就使用中斷來通知該計算機並交付給協議棧中的網路層。當計算機要發送IP數據報時,就由協議棧把IP數據報向下交給適配器,組裝成幀後發送到區域網。特別注意: 計算機的硬體地址—MAC地址,就在適配器的ROM中。計算機的軟體地址—IP地址,就在計算機的存儲器中。

CSMA/CD協議主要有以下3個要點:
1.多點接入 :指的是這是匯流排型網路,許多計算機以多點接入的方式連接在一根匯流排上。
2.載波監聽 :就是用電子技術檢測匯流排上有沒有其他的計算機也在發送。載波監聽也稱為檢測信道,也就是說,為了獲得發送權,不管在發送前,還是在發送中,每一個站都必須不停的檢測信道。如果檢測出已經有其他站在發送,則自己就暫時不發送數據,等到信道空閑時才發送數據。而在發送中檢測信道是為了及時發現有沒有其他站的發送和本站發送的碰撞。
3.碰撞檢測 :也就是邊發送邊監聽。適配器一邊發送數據一邊檢測信道上的信號電壓的變化情況,以便判斷自己在發送數據時其他站是否也在發送數據。所謂碰撞就是信號之間產生了沖突,這時匯流排上傳輸的信號嚴重失真,無法從中恢復出有用的信息來。

集線器的一些特點如下:
(1)使用集線器的乙太網在邏輯上仍然是一個匯流排網,各個站點共享邏輯上的匯流排,使用的還是CSMA/CD協議。
(2)一個集線器是有多個介面。一個集線器就像一個多介面的轉發器。
(3)集線器工作在物理層,所以它的每一個介面僅僅是簡單的轉發比特。它不會進行碰撞檢測,所以當兩個介面同時有信號的輸入,那麼所有的介面都將收不到正確的幀。
(4)集線器自身採用了專門的晶元來進行自適應串音回波抵消。這樣可使介面轉發出去的較強的信號不致對該介面收到的較弱信號產生干擾。
(5)集線器一般都有少量的容錯能力和網路管理能力,也就是說如果在乙太網中有一個適配器出現了故障,不停地發送乙太網幀,這是集線器可以檢測到這個問題從而斷開與故障適配器的連線。

在區域網中,硬體地址又稱為物理地址或者MAC地址,這種地址是用在MAC幀中的。由於6位元組的地址欄位可以使全世界所有的區域網適配器具有不同的地址,所以現在的區域網適配器都是使用6位元組MAC地址。

主要負責分配地址欄位的6個位元組中的前3個位元組。世界上凡事要生產局域適配器的廠家都必須向IEEE購買這3個位元組構成的地址號,這個地址號我們通常叫做 公司標識符 ,而地址欄位的後3個位元組則由廠家自行指派,稱為 擴展標識符

IEEE規定地址欄位的第一位元組的最低位為I/G位。當I/G位為0時,地址欄位表示一個單個站地址,而當I/G位為1時表示組地址,用來進行多播。所以IEEE只分配地址欄位前三個位元組中的23位,當I/G位分別為0和1時,一個地址塊可分別生 2^24 個單個站地址和2^24個組地址。IEEE還把地址欄位第1個位元組的最低第二位規定為G/L位。當G/L位為0時是全球管理,來保證在全球沒有相同的地址,廠商向IEEE購買的都屬於全球管理。當地址段G/L位為1時是本地管理,這時用戶可以任意分配網路上的地址,但是乙太網幾乎不會理會這個G/L位的。

適配器對MAC幀是具有的過濾功能的,當適配器從網路上每收到一個MAC幀就先用硬體檢查MAC幀中的目的地址。如果是發往本站的幀則收下,然後再進行其他的處理,否則就將此幀丟棄。這樣做就可以不浪費主機的處理機和內存資源這里發往本站的幀包括以下三種幀:
(1)單播幀:即收到的幀的MAC地址與本站的硬體地址相同。
(2)廣播幀:即發送給本區域網上所有站點的幀。
(3)多播幀:即發送給本區域網上一部分站點的幀。

常用的乙太網MAC幀格式是乙太網V2的MAC幀格式。如下圖:

可以看到乙太網V2的MAC幀比較的簡單,有五個欄位組成。前兩個欄位分別為6位元組長的目的地址和源地址欄位。第三個欄位是2位元組的類型欄位,用來標志上一層使用的是什麼協議,以便把收到的MAC幀的數據上交給上一層的這個協議。下一個欄位是數據欄位,其長度在46到1500位元組之間。最後一個欄位是4位元組的幀檢驗序列FCS(使用CRC檢驗)。

從圖中可以看出,採用乙太網V2的MAC幀並沒有一個結構來存儲一個數據的幀長度。這是由於在曼徹斯特編碼中每一個碼元的正中間一定有一次電壓的轉換,如果當發送方在發送完一個MAC幀後就不再發送了,則發送方適配器的電壓一定是不會在變化的。這樣接收方就可以知道乙太網幀結束的位置,在這個位置減去FCS序列的4個位元組,就可以知道幀的長度了。

當數據欄位的長度小於42位元組時,MAC子層就會在MAC幀後面加入一個整數位元組來填充欄位,來保證乙太網的MAC幀的長度不小於64位元組。當MAC幀傳送給上層協議後,上層協議必須具有能夠識別填充欄位的功能。當上層使用的是IP協議時,其首部就有一個總長度欄位,因此總長度加上填充欄位的長度,就是MAC幀的數據欄位的長度。

從圖中還可以看出,在傳輸MAC幀時傳輸媒體上實際是多發送了8個位元組,這是因為當MAC幀開始接收時,由於適配器的時鍾尚未與比特流達成同步,因此MAC幀的最開始的部分是無法接收的,結果就是會使整個MAC成為無用幀。所以為了接收端能夠迅速的與比特流形成同步,就需要在前面插入這8個位元組。這8個位元組是由兩個部分組成的,第一個部分是由前7個位元組構成的前同步碼,它的主要作用就是就是實現同步。第二個部分是幀開始界定符,它的作用就是告訴接收方MAC幀馬上就要來了。需要注意的是,幀與幀之間的傳輸是需要一定的間隔的,否則接收端在收到了幀開始界定符後就會認為後面的都是MAC幀而會造成錯誤。

乙太網上的主機之間的距離不能太遠,否則主機發送的信號經過銅線的傳輸就會衰減到使CSMA/CD協議無法正常工作,所以在過去常常使用工作在物理層的轉發器來拓展乙太網的地理覆蓋范圍。但是現在隨著雙絞線乙太網成為乙太網的主流類型,拓展乙太網的覆蓋范圍已經很少使用轉發器,而是使用光纖和一對光纖數據機來拓展主機和集線器之間的距離。

光纖解調器的作用是進行電信號與光信號的轉換。由於光纖帶來的時延很小,並且帶寬很寬,所以才用這種方法可以很容易地使主機和幾公里外的集線器相連接。

如果是使用多個集線器,就可以連接成覆蓋更大范圍的多級星形結構的乙太網:

使用多級星形結構的乙太網不僅能夠讓連接在不同的乙太網的計算機能夠進行通信,還可以擴大乙太網的地理覆蓋范圍。但是這樣的多級結構也帶來了一些缺點,首先這樣的結構會增大它們的碰撞域,這樣做會導致圖中的某個系的兩個站在通信時所傳送的數據會通過所有的集線器進行轉發,使得其他系的內部在這時都不能進行通信。其次如果不同的乙太網採用的是不同的技術,那麼就不可能用集線器將它們互相連接起來。

拓展乙太網的更常用的方法是在數據鏈路層中進行的,在開始時人們使用的是網橋。但是現在人們更常用的是 乙太網交換機

乙太網交換機實質上是一個多介面的網橋,通常是有十幾個或者更多的介面,而每一個介面都是直接與一個單台主機或者另一個乙太網交換機相連。同時乙太網交換機還具有並行性,即能同時連通多對介面,使多對主機能同時通信,對於相互通信的主機來說都是獨占傳輸媒體且無碰撞的傳輸數據。

乙太網交換機的介面還有存儲器,能夠在輸出埠繁忙時把到來的幀進行緩存,等到介面不再繁忙時再將緩存的幀發送出去。

乙太網交換機還是一種即插即用的設備,它的內部的地址表是通過自學習演算法自動的建立起來的。乙太網交換機由於使用了專用的交換結構晶元,用硬體轉發,它的轉發速率是要比使用軟體轉發的網橋快很多。

如下圖中帶有4個介面的乙太網交換機,它的4個介面各連接一台計算機,其MAC地址分別為A、B、C、D。在開始時,乙太網交換機裡面的交換表是空的。

首先,A先向B發送一幀,從介面1進入到交換機。交換機收到幀後,先查找交換表,但是沒有查到應從哪個介面轉發這個幀,接著交換機把這個幀的源地址A和介面1寫入交換表中,並向除介面1以外的所有介面廣播這個幀。C和D因為目的地址不對會將這個幀丟棄,只有B才收下這個目的地址正確的幀。從新寫入的交換表(A,1)可以得出,以後不管從哪一個介面收到幀,只要其目的地址是A,就應當把收到的幀從介面1轉發出去。以此類推,只要主機A、B、C也向其他主機發送幀,乙太網交換機中的交換表就會把轉發到A或B或C應當經過的借口號寫入到交換表中,這樣交換表中的項目就齊全了,以後要轉發給任何一台主機的幀,就都能夠很快的在交換表中找到相應的轉發介面。

考慮到有時可能要在交換機的介面更換主機或者主機要更換其網路適配器,這就需要更改交換表中的項目,所以交換表中每個項目都設有一定的有效時間。

但是這樣的自學習有時也會在某個環路中無限制的兜圈子,如下圖:

假設一開始主機A通過介面交換機#1向主機B發送一幀。交換機#1收到這個幀後就向所有其他介面進行廣播發送。其中一個幀的走向:離開#1的3->交換機#2的介面1->介面2->交換機#1的介面4->介面3->交換機#2的介面1......一直循環下去,白白消耗網路資源。所以為了解決這樣的問題,IEEE制定了一個生成樹協議STP,其要點就是不改變網路的實際拓撲,但在邏輯上切斷某些鏈路,從而防止出現環路。

虛擬區域網VLAN是由一些區域網網段構成的與物理位置無關的邏輯組,而這些網段具有某些共同的需求。每一個VLAN的幀都有一個明確的標識符,指明發送這個幀的計算機屬於VLAN。要注意虛擬區域網其實只是區域網給用戶提供的一種服務,而不是一種新型區域網。

現在已經有標準定義了乙太網的幀格式的擴展,以便支持虛擬區域網。虛擬區域網協議允許在乙太網的幀格式中插入一個4位元組的標識符,稱為VLAN標記,它是用來指明發送該幀的計算機屬於哪一個虛擬區域網。VLAN標記欄位的長度是4位元組,插入在乙太網MAC幀的源地址欄位和類型欄位之間。VLAN標記的前兩個位元組總是設置為0x8100,稱為IEEE802.1Q標記類型。當數據鏈路層檢測到MAC幀的源地址欄位後面的兩個位元組的值是0x8100時,就知道現在插入了4位元組的VLAN標記。於是就接著檢查後面兩個位元組的內容,在後面的兩個位元組中,前3位是用戶優先順序欄位,接著的一位是規范格式指示符CFI,最後的12位是該虛擬區域網VLAN標識符VID,它唯一的標志了這個以台網屬於哪一個VLAN。

高速乙太網主要是分為三種,即100BASE-T乙太網、吉比特乙太網和10吉比特乙太網:

③ 計算機網路技術中的差錯控制

差錯控制就是提高數據傳輸的正確率嘛,減少錯誤數據在信道中的傳輸佔用信道帶寬。引發數據出現差錯的原因有很多,以數據鏈路層來說,可能是幀重復,幀失序,幀丟失。每層都引入差錯控制,因為每層的數據都是以不同的形式傳輸的,物理層傳輸比特流,總不能用幀的差錯控制去解決比特流傳輸過程中出現的差錯

④ 計算機網路五層模型在數據鏈路層採用什麼樣的差錯檢測方法

以網路五層模擬器將在數據鏈路走鏈路,採用採用什麼樣的差錯檢測方法?我靠,這個太專業了,你問那個計算機的學者吧,專家

⑤ 什麼是差錯校驗要具體點的

差錯校驗是在數據通信過程中能發現或糾正差錯,把差錯限制在盡可能小的允許范圍內的技術和方法。

1. 信號在物理信道中傳輸時,線路本身電器特性造成的隨機雜訊、信號幅度的衰減、頻率和相位的畸變、電器信號在線路上產生反射造成的迴音效應、相鄰線路間的串擾以及各種外界因素(如大氣中的閃電、開關的跳火、外界強電流磁場的變化、電源的波動等)都會造成信號的失真。在數據通信中,將會使接受端收到的二進制數位和發送端實際發送的二進制數位不一致,從而造成由「0」變成「1」或由「1」變成「0」的差錯
常用的校驗方法有如下:
奇偶校驗碼

奇偶校驗碼是一種通過增加冗餘位使得碼字中「1」的個數為奇數或偶數的編碼方法,它是一種檢錯碼。

1.垂直奇偶校驗的特點及編碼規則

特點:垂直奇偶校驗又稱縱向奇偶校驗,它能檢測出每列中所有奇數個錯,但檢測不出偶數個的錯。因而對差錯的漏檢率接近1/2。

位\數字 0 1 2 3 4 5 6 7 8 9
C1 0 1 0 1 0 1 0 1 0 1
C2 0 0 1 1 0 0 1 1 0 0
C3 0 0 0 0 1 1 1 1 0 0
C4 0 0 0 0 0 0 0 0 1 1
C5 1 1 1 1 1 1 1 1 1 1
C6 1 1 1 1 1 1 1 1 1 1
C7 0 0 0 0 0 0 0 0 0 0
偶 C0 0 1 1 0 1 0 0 1 1 0
奇 1 0 0 1 0 1 1 0 0 1

2.水平奇偶校驗的特點及編碼規則
特點:水平奇偶校驗又稱橫向奇偶校驗,它不但能檢測出各段同一位上的奇數個錯,而且還能檢測出突發長度<=p的所有突發錯誤。其漏檢率要比垂直奇偶校驗方法低,但實現水平奇偶校驗時,一定要使用數據緩沖器。

位\數字 0 1 2 3 4 5 6 7 8 9 偶校驗
C1 0 1 0 1 0 1 0 1 0 1 1
C2 0 0 1 1 0 0 1 1 0 0 0
C3 0 0 0 0 1 1 1 1 0 0 0
C4 0 0 0 0 0 0 0 0 1 1 0
C5 1 1 1 1 1 1 1 1 1 1 1
C6 1 1 1 1 1 1 1 1 1 1 1
C7 0 0 0 0 0 0 0 0 0 0 0

3.水平垂直奇偶校驗的特點及編碼規則
特點:水平垂直奇偶校驗又稱縱橫奇偶校驗。它能檢測出所有3位或3位以下的錯誤、奇數個錯、大部分偶數個錯以及突發長度<=p+1的突發錯。可使誤碼率降至原誤碼率的百分之一到萬分之一。還可以用來糾正部分差錯。有部分偶數個錯不能測出。適用於中、低速傳輸系統和反饋重傳系統。

位\數字 0 1 2 3 4 5 6 7 8 9 校驗碼字

C1 0 1 0 1 0 1 0 1 0 1 1
C2 0 0 1 1 0 0 1 1 0 0 0
C3 0 0 0 0 1 1 1 1 0 0 0
C4 0 0 0 0 0 0 0 0 1 1 0
C5 1 1 1 1 1 1 1 1 1 1 1
C6 1 1 1 1 1 1 1 1 1 1 1
C7 0 0 0 0 0 0 0 0 0 0 0
C8 0 1 1 0 1 0 0 1 1 0 1

2.5.3 循環冗餘碼(CRC)
1.CRC的工作方法
在發送端產生一個循環冗餘碼,附加在信息位後面一起發送到接收端,接收端收到的信息按發送端形成循環冗餘碼同樣的演算法進行校驗,若有錯,需重發。
2.循環冗餘碼的產生與碼字正確性檢驗例子。
例1.已知:信息碼:110011 信息多項式:K(X)=X5+X4+X+1
生成碼:11001 生成多項式:G(X)=X4+X3+1(r=4)
求:循環冗餘碼和碼字。
解:1)(X5+X4+X+1)*X4的積是 X9+X8+X5+X4 對應的碼是1100110000。
2)積/G(X)(按模二演算法)。
由計算結果知冗餘碼是1001,碼字就是1100111001。

1 0 0 0 0 1←Q(X)
G(x)→1 1 0 0 1 )1 1 0 0 1 1 0 0 0 0←F(X)*Xr
1 1 0 0 1 ,
1 0 0 0 0
1 1 0 0 1
1 0 0 1←R(X)(冗餘碼)

例2.已知:接收碼字:1100111001 多項式:T(X)=X9+X8+X5+X4+X3+1
生成碼 : 11001 生成多項式:G(X)=X4+X3+1(r=4)
求:碼字的正確性。若正確,則指出冗餘碼和信息碼。
解:1)用字碼除以生成碼,余數為0,所以碼字正確。

1 0 0 0 0 1←Q(X)
G(x)→1 1 0 0 1 )1 1 0 0 1 1 1 0 0 1←F(X)*Xr+R(x)
1 1 0 0 1 ,
1 1 0 0 1
1 1 0 0 1
0←S(X)(余數)

2)因r=4,所以冗餘碼是:11001,信息碼是:110011

3.循環冗餘碼的工作原理
循環冗餘碼CRC在發送端編碼和接收端校驗時,都可以利用事先約定的生成多項式G(X)來得到,K位要發送的信息位可對應於一個(k-1)次多項式K(X),r位冗餘位則對應於一個(r-1)次多項式R(X),由r位冗餘位組成的n=k+r位碼字則對應於一個(n-1)次多項式T(X)=Xr*K(X)+R(X)。

4.循環冗餘校驗碼的特點
1)可檢測出所有奇數位錯;
2)可檢測出所有雙比特的錯;
3)可檢測出所有小於、等於校驗位長度的突發錯。

2.5.4 海明碼

1.海明碼的概念

海明碼是一種可以糾正一位差錯的編碼。它是利用在信息位為k位,增加r位冗餘位,構成一個n=k+r位的碼字,然後用r個監督關系式產生的r個校正因子來區分無錯和在碼字中的n個不同位置的一位錯。它必需滿足以下關系式:
2r>=n+1 或 2r>=k+r+1
海明碼的編碼效率為:
R=k/(k+r)
式中 k為信息位位數
r為增加冗餘位位數

2.海明碼的生成與接收

方法一:

1)海明碼的生成。

例1.已知:信息碼為:"0010"。海明碼的監督關系式為:
S2=a2+a4+a5+a6
S1=a1+a3+a5+a6
S0=a0+a3+a4+a6

求:海明碼碼字。

解:1)由監督關系式知冗餘碼為a2a1a0。
2)冗餘碼與信息碼合成的海明碼是:"0010a2a1a0"。
設S2=S1=S0=0,由監督關系式得:
a2=a4+a5+a6=1
a1=a3+a5+a6=0
a0=a3+a4+a6=1
因此,海明碼碼字為:"0010101"

2)海明碼的接收。

例2.已知:海明碼的監督關系式為:
S2=a2+a4+a5+a6
S1=a1+a3+a5+a6
S0=a0+a3+a4+a6
接收碼字為:"0011101"(n=7)

求:發送端的信息碼。

解:1)由海明碼的監督關系式計算得S2S1S0=011。
2)由監督關系式可構造出下面錯碼位置關系表:

S2S1S0 000 001 010 100 011 101 110 111
錯碼位置 無錯 a0 a1 a2 a3 a4 a5 a6

3)由S2S1S0=011查表得知錯碼位置是a3。
4)糾錯--對碼字的a3位取反得正確碼字:"0 0 1 0 1 0 1"
5)把冗餘碼a2a1a0刪除得發送端的信息碼:"0010"

方法二:(不用查表,方便編程)---推薦!!!

1)海明碼的生成(順序生成法)。

例3.已知:信息碼為:" 1 1 0 0 1 1 0 0 " (k=8)
求:海明碼碼字。
解:1)把冗餘碼A、B、C、…,順序插入信息碼中,得海明碼
碼字:" A B 1 C 1 0 0 D 1 1 0 0 "
碼位: 1 2 3 4 5 6 7 8 9 10 11 12
其中A,B,C,D分別插於2k位(k=0,1,2,3)。碼位分別為1,2,4,8。
2)冗餘碼A,B,C,D的線性碼位是:(相當於監督關系式)
A->1,3,5,7,9,11;
B->2,3,6,7,10,11;
C->4,5,6,7,12;(注 5=4+1;6=4+2;7=4+2+1;12=8+4)
D->8,9,10,11,12。
3)把線性碼位的值的偶校驗作為冗餘碼的值(設冗餘碼初值為0):
A=∑(0,1,1,0,1,0)=1
B=∑(0,1,0,0,1,0)=0
C=∑(0,1,0,0,0) =1
D=∑(0,1,1,0,0) =0
4)海明碼為:"1 0 1 1 1 0 0 0 1 1 0 0"

2)海明碼的接收。

例4.已知:接收的碼字為:"1 0 0 1 1 0 0 0 1 1 0 0"(k=8)
求:發送端的信息碼。
解:1)設錯誤累加器(err)初值=0
2)求出冗餘碼的偶校驗和,並按碼位累加到err中:
A=∑(1,0,1,0,1,0)=1 err=err+20=1
B=∑(0,0,0,0,1,0)=1 err=err+21=3
C=∑(1,1,0,0,0) =0 err=err+0 =3
D=∑(0,1,1,0,0) =0 err=err+0 =3
由err≠0可知接收碼字有錯,
3)碼字的錯誤位置就是錯誤累加器(err)的值3。
4)糾錯--對碼字的第3位值取反得正確碼字:
"1 0 1 1 1 0 0 0 1 1 0 0"
5)把位於2k位的冗餘碼刪除得信息碼:"1 1 0 0 1 1 0 0"

⑥ TCP通過哪些東西進行差錯檢測

前面講了INTERNET是一個計算機網路的網路或網際網,INTERNET是用
一種稱為路由器的專用計算機將網路互連組成的。當然, 單是將硬體互連
並不能形成INTERNET,互連的計算機需要軟體才能通信。下面我們講一講
使互連的硬體成為一個單一的、龐大的網路所需的基本軟體。
● 協議:通信的約定
除非兩個人講同一種語言,否則這兩人是不可能進行交流的。 這一道
理對於計算機同樣適用——兩台計算機除非使用一種公用的語言, 否則不
可能進行通信。通信協議是兩台計算機用來交換信息所使用的一種公用語
言的規范的約定。"協議"這一術語是從外交詞令中來的,在外交詞令中,協
議是指對外交流所遵循的規則。
計算機通信協議精確地定義了通信的約定。例如, 協議規定了每台計
算機所發送的每個信息的精確的格式和意義。協議也規定每台計算機在哪
些情況下應該發送特定的信息,以及當一個信息到來時,一台計算機應該做
出怎樣的響應。
● 網際協議
INTERNET中使用的一個關鍵協議是網際協議(INTERNET Protocol),通
常縮寫為IP,IP 非常詳細地定義了計算機通信應該遵循的規則的具體細節。
IP精確地定義了分組必須怎樣組成, 以及路由器必須怎樣將每一個分組
遞交到其目的地。
連接到INTERNET上的每台計算機都必須遵守網際協議的約定。每台計
算機產生的分組都必須使用IP定義的格式。計算機接收到的分組仍然是
IP格式的源發送分組的一個拷貝,進一步而言,INTERNET中的每個路由器
在將分組從一個網路向另一個網路遞交時,都希望這些分組遵循IP格式。
● 每台機器上都必須裝有IP軟體
計算機硬體不懂IP,因而將一台計算機連到INTERNET 上並不意味著
這台計算機可以使用 INTERNET 的服務。 計算機需要有IP軟體才能在
INTERNET上通信。實際上,使用INTERNET的每一台計算機都必須運行IP
軟體。
IP是最基本的軟體:所有INTERNET服務使用IP來發送或接收分組。
正因為IP是最基本的, 所以通常每台計算機上都有一套供所有應用共享
的IP軟體的單一拷貝。在高級的計算機上, 操作系統任何時候都在內存
中保留IP軟體的一個拷貝,時刻准備發送或接收分組。總而言之:
由於所有的INTERNET服務者要使用網際協議IP,因而要使用INTERNET的
每台計算機首先必須有IP軟體。
● Internet分組稱為數據報
為了區分INTERNET的分組和其他網路的分組, 我們將遵從IP規范的
分組稱為IP數據報。之所以用這一術語是為了直觀地說明INTERNET分組
遞交服務是如何處理分組的。如該術語字面的意義,INTERNET 以與電報
局處理電報基本相同的方式處理數據報, 一旦發送方生成一個數據報並且
將其發送到INTERNET上後,該發送者就可以進行其他處理,正像發報人將電
報發出去以後就可以處理其他任務一樣。數據報在INTERNET中的傳輸與發
送方無關,正像電報到達目的地與發報人無關一樣。總之:
在INTERNET中傳輸的每個分組必須符合網際協議定義的格式, INTERNET
中的這些分組稱為IP數據報。
● 錯覺:以為Internet是一個龐大的網路
盡管定義了有關通信的許多具體細節, 但網際協議有其重要的目的。
一旦INTERNET上的每台計算機都安裝了IP軟體, 任何計算機都能夠生成
IP數據報並將其發送給其他計算機。從本質上來說, IP將許多網路和
路由器組成的集合變成了一個無縫的通信系統,使INTERNET像一個單一的、
巨大的網路一樣工作。
計算機學家使用「虛擬」這一術語來描述這種比硬體所能提供的規模
更大、 功能更強的計算機制的錯覺。 INTERNET 是一個虛擬網路 , 因為
INTERNET給我們一種錯覺,它是一個單一的、龐大的網路。盡管 INTERNET
是一個網際網或計算機網路的網路,但IP軟體處理了所有的細節,而讓我
們感覺到INTERNET是一個單一的網路。用戶感覺不到組成INTERNET的網路
和路由器,就像電話用戶感覺不到組成電話系統的導線和交換機一樣。
關鍵是:INTERNET 就像一個連接好幾百萬台計算機的單一的網路一樣
運行。IP軟體允許任何計算機向其他計算機發送IP數據報。

可靠傳輸軟體TCP---INTERNET工作原理之三

前面講了網際協議IP, 說明了計算機和路由器上的IP軟體如何在
INTERNET上將一個IP數據報從一台計算機向另一台計算機發送。下面繼
續討論INTERNET的基本通信軟體,論述另一個主要的通信協議TCP。
● 分組交換系統可能會超出其流量限制
前面討論了分組交換, 分組交換是現代絕大多數計算機網路使用的基
本技術。回想一下,分組交換允許多台計算機沒有延遲地進行通信,因為分
組交換要求計算機將數據劃分成小的分組。但類似INTERNET使用的分組交
換系統,需要另外的通信軟體來保證數據的可靠傳輸。
為了說明這一問題,將每個網路都假想成一條道路,將每個路由器假想
成連接兩條道路的交叉路口,並且所有的道路都具有相同的速度限制。 假
想路a和路b都塞滿了以極限速度行駛的汽車。來自路a和路b的所
有汽車都試圖進入路d,那就會發生交通堵塞。
來自兩條道路的汽車匯聚到第三條道路上的情形與來自兩個網路的分
組匯聚到第三條道路上的情形與來自兩個網路的分組匯聚到第三個網路的
情形類似。
在公路上,發生交通堵塞時,汽車會停下來 ,但在互連網路的例子中,
數據報卻不會停下來。每一秒鍾,在一個網路上會有5000個分組,在另一個
網路上,也會有5000個數據報,但只有5000個數據報能被送往其目的地。那
么,每秒鍾在網路d上擠不下的那5000個數據報哪裡去了呢? 路由器將它
們丟棄了!當然,每個路由器都有一定的內存空間,可以在臨時擁塞時在內
存中存放其中的一些數據報。
然而,路由器僅有有限的內存空間存放少量的數據報,數據報到達
的速度一直比離開的速度快,那麼,路由器不得不將到達的數據報丟棄直到
擁塞解除為止。
● TCP幫助IP實現可靠遞交
由於INTERNET使用可能會由於數據報而超載的分組交換硬體,因而,設
計人員早就知道需要另外的通信軟體。為了解決這一問題, 他們發明了傳
輸控制協議TCP(Transmission Control Protocol),TCP使INTERNET可靠。
連接到INTERNET上的所有計算機都運行IP軟體, 並且其中的絕大多數還
運行TCP軟體。事實上, 由於TCP和IP的重要地位以及兩者一起工
作得很好,因此人們把INTERNET使用的整個通信協議組稱為TCP/IP協議組。
TCP解決了可能在分組交換系統中出現的幾個問題。
路由器由於過多的數據報而超載,則必須將一些數據報丟棄,結果,
一個數據報在INTERNET上傳輸時可能丟失。TCP自動檢測丟失的數據報
並且解決這一問題。INTERNET結構復雜, 一個數據報可以有多條路徑到達
目的地。當路由器開始沿另外一條新的路徑傳送數據報, 就好像高速公路
上的汽車在前方出現問題時會繞道而行一樣。結果由於路徑的變化, 一些
數據報會以一種它們發送時不同的順序到達目的地, TCP自動檢測到來
的數據報並且將它們按原來的順序調整過來。最後, 網路硬體故障有時會
導致重復的數據報,結果,一個數據報的多個副本可能會到達目的地。TC
P自動檢測重復的數據報只接受最先到達的數據報。
總而言之:盡管IP軟體使計算機能夠發送和接收數據報,但IP並未
解決所有可能出現的問題。使用INTERNET的計算機還需要TCP軟體來提
供可靠的無差錯的通信服務。
● TCP提供計算機程序之間的連接
從概念上來說, TCP就像人通過電話交互一樣提供計算機程序之間
的交互, 一台計算機上的程序指定一個遠程程序並發出連接呼叫(等於撥
電話碼呼叫對方),被呼叫的程序必須接受呼叫(等於對方答話),一旦連
接建立,兩個程序就能夠相互發送數據(等於通過電話進行交談)。最後,
當程序結束運行時,雙方終止會話(等於掛斷電話)。當然,由於計算機以
比人高得多的速度運行,因而,兩個程序能夠在千分之幾秒內建立連接, 交
換少量數據,終止連接。總之:
TCP軟體使兩台計算機上的程序通過INTERNET以類似於人打電話的
方式進行通信成為可能。一旦兩個程序建立了連接, 那麼它們可以在交換
任意大小的數據後再結束通信。
● 恢復丟失分組的神奇
檢測和丟棄重復的數據報是一個相對容易的任務。因為TCP在每個
數據報中都有一個數據的標識, 接收方可以用已收到的數據的標識與到來
的數據報的標識進行比較,發現是重復的數據到來,接收方不予理睬。
而恢復丟失的數據報要困難一些。為了說明原因, 考慮互連網路中的數據
可能在互連網路中的一個路由器丟失, 而這種情況最初的源計算機和最終
的目的計算機都沒出問題。TCP使用時鍾和確認機制來解決這一問題。
無論何時,當數據到達最終目的地時,接收端上的TCP軟體就向源計算機
發送回一個確認。確認是聲明哪些數據到達的一個簡訊息。發送方使用確
認來保證所有數據都到達目的地。無論何時,當TCP軟體發送數據時,就
啟動一個使用計算機內部時鍾的計時器時鍾。計時器時鍾像鬧鍾一樣工作
---一旦計時器時鍾超時,它就通知TCP。確認在計時器超時之前到
達,TCP就取消這一計時器。計時器在確認到來之前超時,TCP就
認為數據報丟失而重傳一次。
● TCP自動進行重傳
許多計算機通信協議使用同樣的機制:啟動時鍾,在時鍾超時之前
確認沒有到達,則重傳數據。但由於TCP是在INTERNET上運行,因而其機
制與其他協議所用的機制有些區別。目的計算機位於離源計算機比較
近的地方(例如,在同一個大樓中),那麼, TCP在重傳數據報之前只等
待一很短的時間,目的計算機位於離源計算機很遠的地方(例如,在另
外一個國家),則TCP在重傳之前要等待較長的時間。進一步而言,超時
機制是完全自動的——TCP計算INTERNET的當前延遲並自動調整超時值。
有許多計算機開始發送數據報而INTERNET的速度下降, TCP則增大
在重傳之前的等待時間。情況變化了,數據報在INTERNET 上的傳輸速
度開始加快,TCP自動減小超時值。經驗表明,在龐大的INTERNET中, 通
信協議必須自動修改超時值以便使數據傳輸的效率更高。
TCP自動調整超時值的能力為INTERNET的成功做了很大貢獻。事實
上,INTERNET 的大多數應用程序離開自動適應情況變化的TCP軟體就無
法運行。進一步而言,詳細的測試和經驗已經證明,TCP軟體能夠極好地
適應INTERNET的變化——盡管許多計算機學家試圖設計比TCP更好的機
制,但迄今為止還沒有人提出一個更好的協議。
● TCP和IP協同工作
TCP和IP很好地協同工作並不是一個巧合。盡管這兩個協議可以
分開來使用,但他們是在同一時間作為一個整體系統的部分來設計的,並且
在實現上也是互相配合互相補充的。因此, TCP解決IP沒有解決的問
題,而不去重復IP的工作。用一句話來說,就是:連接到INTERNET 上的計
算機既需要TCP軟體又需要IP軟體。IP提供了一種將分組從源傳送
到目的地的方法,但沒有解決諸如數據報丟失或亂序遞交的問題; TCP
解決IP沒有解決的問題。兩者結合在一起,提供了一種在INTERNET 上可
靠傳輸數據的方法。
通常,計算機廠商銷售其中包括TCP,IP 以及與兩者有關的幾個通信協
議的單個軟體包。這些軟體總稱為TCP/IP軟體。
小結:盡管IP軟體提供了基本的INTERNET通信, 但它沒有解決出現的
所有問題。像任何一個分組交換系統一樣, 有很多計算機在同一時刻
同時發送數據,INTERNET可能會超出其流量限制。 當計算機發送的數據報
比INTERNET所能處理的數據報多時,路由器不得不丟棄到來的某些數據報。
IP軟體不檢測數據報丟失。為了處理這些通信問題, 計算機必須使
用TCP軟體。TCP去掉重復的數據, 保證精確地按原發送順序重新組
裝數據,並且在數據丟失時重發數據。
解決數據丟失的問題特別困難,因為數據丟失可能在INTERNET 的中間
部分發生,即使這時靠近源和目的計算機的網路和路由器都沒有出現問題。
TCP使用確認和超時機制處理數據丟失的問題。除非確認在時鍾超時之
前到達,否則發送方將重傳數據。TCP的超時機制在INTERNET 上工作得
很好,因為TCP自動根據目的計算機離源計算機的遠近來修改超時值。

Internet為什麼工作得很好

前面講了包括TCP/IP軟體在內的INTERNET的基本技術。下面分析一下
INTERNET成功的原因以及應該吸取的教訓。
INTERNET是人類技術的奇觀。TCP/IP軟體技術滿足了INTERNET最初的
設計者無法想像的增長和變化。一方面,連到INTERNET 上的計算機數量成
指數地增長,而TCP/IP技術完全適應這一發展變化。另一方面,在過去的十
年裡,INTERNET上的網路流量也在成指數級地增長,而TCP/IP技術能夠處理
這些越來越多的網路分組。盡管現在的計算機要比TCP/IP剛開始運行時快
200倍,但這些新的計算機通過INTERNET不僅能夠相互通信, 能夠與老
的計算機通信。除中央互連廣域網的速度增加了800%以外,TCP/IP 協議並
未發生變化,原有的設計能夠繼續在更高的速度下運行。
為什麼TCP/IP技術如此成功? 從一項科研項目中誕生的技術是如何成
為世界上最大的計算機網路系統的基石的?我們從INTERNET 項目中學習到
什麼東西?顯而易見,類似INTERNET這樣的一個復雜系統的絕對成功不是單
憑一個技術決策所能蹴就的。但一個壞的決策能夠破壞一個同樣無可挑剔
的計劃。下面我們一起看一看 TCP/IP 的某些優秀的設計思想以及應該從
INTERNET項目中學習哪些東西。當然,步痕旅遊網想法:樓上的同志還挺能寫文章的哈,,,,,,,

不被別人獲得那是不可能的,,
首先你要了解全球網路是怎麼連接的:
是全部通過美國的伺服器轉的,,,
也就是說從美國那邊的伺服器到:比如到我們中國 之間是有加密處理,
但是…………自己想吧

⑦ 計算機網路,關於數據鏈路層差錯檢測的【循環冗餘演算法】

P應是由循環冗餘演算法規則算出來的,太久了,具體細節你再翻翻書。

⑧ 計算機網路五層模型在網路層採用什麼樣的差錯檢測方法

答:所謂五層協議的網路體系結構是為便於學習計算機網路原理而採用的綜合了OSI七層模型和TCP/IP的四層模型而得到的五層模型。各層的主要功能:(1)應用層 應用層確定進程之間通信的性質以滿足用戶的需要。應用層不僅要提供應用進程所需要的信息交換和遠地操作,而且還要作為互相作用的應用進程的用戶代理(user agent),來完成一些為進行語義上有意義的信息交換所必須的功能。(2)運輸層任務是負責主機中兩個進程間的通信。網際網路的運輸層可使用兩種不同的協議。即面向連接的傳輸控制協議TCP和無連接的用戶數據報協議UDP。面向連接的服務能夠提供可靠的交付。無連接服務則不能提供可靠的交付。只是best-effort delivery.(3)網路層網路層負責為分組選擇合適的路由,使源主機運輸層所傳下來的分組能夠交付到目的主機。(4)數據鏈路層數據鏈路層的任務是將在網路層交下來的數據報組裝成幀(frame),在兩個相鄰結點間的鏈路上實現幀的無差錯傳輸。(5)物理層物理層的任務就是透明地傳輸比特流。「透明地傳送比特流」指實際電路傳送後比特流沒有發生變化。物理層要考慮用多大的電壓代表「1」或「0」,以及當發送端發出比特「1」時,接收端如何識別出這是「1」而不是「0」。物理層還要確定連接電纜的插頭應當有多少根腳以及各個腳如何連接。

⑨ 計算機網路技術

第一章 計算機網路概述
1.1 計算機網路的定義和發展歷史
1.1.1 計算機網路的定義
計算機網路是現代通信技術與計算機技術相結合的產物,是在地理上分散的通過通信線路連接起來的計算機集合,這些計算機遵守共同的協議,依據協議的規定進行相互通信,實現網路各種資源的共享。
網路資源:所謂的網路資源包括硬體資源(如大容量磁碟、列印機等)、軟體資源(如工具軟體、應用軟體等)和數據資源(如資料庫文件和資料庫等)。
計算機網路也可以簡單地定義為一個互連的、自主的計算機集合。所謂互連是指相互連接在一起,所謂自主是指網路中的每台計算機都是相對獨立的,可以獨立工作。
1.1.2 計算機網路的發展歷史
課後小結:
1. 計算機網路的定義.
2. 網路資源的分類.
課後作業:預習P2-P8.

第二講
教學類型:理論課
教學課題:1.2~1.3
教學目標:1.了解計算機網路的功能和應用;2. 了解計算機網路的系統組成
教學重點、難點:計算機網路的功能和應用;網路的系統組成
教學方法:教師講解、演示、提問;
教學工具:多媒體幻燈片演示

1.2 計算機網路的功能和應用
1. 計算機網路的功能
(1)實現計算機系統的資源共享
(2)實現數據信息的快速傳遞
(3)提高可靠性
(4)提供負載均衡與分布式處理能力
(5)集中管理
(6)綜合信息服務
2.計算機網路的應用
計算機網路由於其強大的功能,已成為現代信息業的重要支柱,被廣泛地應用於現代生活的各個領域,主要有:
(1)辦公自動化
(2)管理信息系統
(3)過程式控制制
(4)互聯網應用(如電子郵件、信息發布、電子商務、遠程音頻與視頻應用)
1.3計算機網路的系統組成
1.3.1 網路節點和通信鏈路
從拓撲結構看,計算機網路就是由若干網路節點和連接這些網路節點的通信鏈路構成的。計算機網路中的節點又稱網路單元,一般可分為三類:訪問節點、轉接節點和混合節點。
通信鏈路是指兩個網路節點之間承載信息和數據的線路。鏈路可用各種傳輸介質實現,如雙絞線、同軸電纜、光纜、衛星、微波等。
通信鏈路又分為物理鏈路和邏輯鏈路。
1.3.2 資源子網和通信子網
從邏輯功能上可把計算機網路分為兩個子網:用戶資源子網和通信子網。
資源子網包括各種計算機和相關的硬體、軟體;
通信子網是連接這些計算機資源並提供通信服務的連接線路。正是在通信子網的支持下,用戶才能利用網路上的各種資源,進行相互間的通信,實現計算機網路的功能。
通信子網有兩種類型:
(1)公用型(如公用計算機互聯網CHINANET)
(2)專用型(如各類銀行網、證券網等)
1.3.3 網路硬體系統和網路軟體系統
計算機網路系統是由計算機網路硬體系統和網路軟體系統組成的。
網路硬體系統是指構成計算機網路的硬設備,包括各種計算機系統、終端及通信設備。
常見的網路硬體有:
(1)主機系統; (2)終端; (3)傳輸介質; (4)網卡;(5)集線器; (6)交換機; (7)路由器
網路軟體主要包括網路通信協議、網路操作系統和各類網路應用系統。
(1)伺服器操作系統
常見的有:Novell公司的NetWare、微軟公司的 Windows NT Server及 Unix系列。
(2)工作站操作系統
常見的有: Windows 95、Windows 98及Windows 2000等。
(3)網路通信協議
(4)設備驅動程序
(5)網路管理系統軟體
(6)網路安全軟體
(7)網路應用軟體
課後小結:
1. 計算機網路的功能和應用
2. 網路的系統組成
課後作業:預習P8-P10

第三講
教學類型:理論課
教學課題:1.4計算機網路的分類
教學目標:1.掌握計算機網路的分類;2. 了解計算機網路的定義和發展;3. 了解計算機網路的功能和應用;4. 了解計算機網路的系統組成
教學重點、難點:掌握計算機網路的分類
教學方法:教師講解、演示、提問;
教學工具:多媒體幻燈片演示
1.4 計算機網路的分類
1.4.1 按計算機網路覆蓋范圍分類
由於網路覆蓋范圍和計算機之間互連距離不同,所採用的網路結構和傳輸技術也不同,因而形成不同的計算機網路。
一般可以分為區域網(LAN)、城域網(MAN)、廣域網(WAN)三類。
1.4.2按計算機網路拓撲結構分類
網路拓撲是指連接的形狀,或者是網路在物理上的連通性。如果不考慮網路的的地理位置,而把連接在網路上的設備看作是一個節點,把連接計算機之間的通信線路看作一條鏈路,這樣就可以抽象出網路的拓撲結構。
按計算機網路的拓撲結構可將網路分為:星型網、環型網、匯流排型網、樹型網、網型網。
1.4.3 按網路的所有權劃分
1.公用網
由電信部門組建,由政府和電信部門管理和控制的網路。
2.專用網
也稱私用網,一般為某一單位或某一系統組建,該網一般不允許系統外的用戶使用。
1.4.4 按照網路中計算機所處的地位劃分
(1)對等區域網
(2)基於伺服器的網路(也稱為客戶機/伺服器網路)。
課後小結:
1. 計算機網路的定義;2. 計算機網路的功能和應用;3. 計算機網路的分類
課後作業:(P10)1 、4、5、6

第四講
教學類型:理論課
教學課題:1.1計算機網路的定義和發展
教學目標:1. 了解數據通信的基本概念;2. 了解數據傳輸方式
教學重點、難點:數據傳輸方式
教學方法:教師講解、演示、提問;
教學工具:多媒體幻燈片演示
教學內容與過程
導入:由現在的網路通訊中的一些普通關鍵詞引入新課
講授新課:(多媒體幻燈片演示或板書)
第二章 數據通信基礎
2.1 數據通信的基本概念
2.1.1 信息和數據
1.信息
信息是對客觀事物的反映,可以是對物質的形態、大小、結構、性能等全部或部分特性的描述,也可表示物質與外部的聯系。信息有各種存在形式。
2.數據
信息可以用數字的形式來表示,數字化的信息稱為數據。數據可以分成兩類:模擬數據和數字數據。
2.1.2 信道和信道容量
1.信道
信道是傳送信號的一條通道,可以分為物理信道和邏輯信道。
物理信道是指用來傳送信號或數據的物理通路,由傳輸及其附屬設備組成。
邏輯信道也是指傳輸信息的一條通路,但在信號的收、發節點之間並不一定存在與之對應的物理傳輸介質,而是在物理信道基礎上,由節點設備內部的連接來實現。
2.信道的分類
信道按使用許可權可分為專業信道和共用信道。
信道按傳輸介質可分為有線信道、無線信道和衛星信道。
信道按傳輸信號的種類可分為模擬信道和數字信道。
3.信道容量
信道容量是指信道傳輸信息的最大能力,通常用數據傳輸率來表示。即單位時間內傳送的比特數越大,則信息的傳輸能力也就越大,表示信道容量大。
2.1.3 碼元和碼字
在數字傳輸中,有時把一個數字脈沖稱為一個碼元,是構成信息編碼的最小單位。
計算機網路傳送中的每一位二進制數字稱為「碼元」或「碼位」,例如二進制數字10000001是由7個碼元組成的序列,通常稱為「碼字」。
2.1.4 數據通信系統主要技術指標
1.比特率:比特率是一種數字信號的傳輸速率,它表示單位時間內所傳送的二進制代碼的有效位(bit)數,單位用比特每秒(bps)或千比特每秒(Kbps)表示。
2.波特率:波特率是一種調制速率,也稱波形速率。在數據傳輸過程中,線路上每秒鍾傳送的波形個數就是波特率,其單位為波特(baud)。
3.誤碼率:誤碼率指信息傳輸的錯誤率,也稱誤碼率,是數據通信系統在正常工作情況下,衡量傳輸可靠性的指標。
4.吞吐量:吞吐量是單位時間內整個網路能夠處理的信息總量,單位是位元組/秒或位/秒。在單信道匯流排型網路中,吞吐量=信道容量×傳輸效率。
5.通道的傳播延遲:信號在信道中傳播,從信源端到達信宿端需要一定的時間,這個時間叫做傳播延遲(或時延)。
2.1.5 帶寬與數據傳輸率
1.信道帶寬
信道帶寬是指信道所能傳送的信號頻率寬度,它的值為信道上可傳送信號的最高頻率減去最低頻率之差。
帶寬越大,所能達到的傳輸速率就越大,所以通道的帶寬是衡量傳輸系統的一個重要指標。
2.數據傳輸率
數據傳輸率是指單位時間信道內傳輸的信息量,即比特率,單位為比特/秒。
一般來說,數據傳輸率的高低由傳輸每一位數據所佔時間決定,如果每一位所佔時間越小,則速率越高。
2.2 數據傳輸方式
2.2.1 數據通信系統模型
2.2.2 數據線路的通信方式
根據數據信息在傳輸線上的傳送方向,數據通信方式有:
單工通信
半雙工通信
雙工通信
2.2.3 數據傳輸方式
數據傳輸方式依其數據在傳輸線原樣不變地傳輸還是調制變樣後再傳輸,可分為基帶傳輸、頻帶傳輸和寬頻傳輸等方式。
1.基帶傳輸
2.頻帶傳輸
3.寬頻傳輸
課後小結:
1. 什麼是信息、數據?
2. 什麼是信道?常用的信道分類有幾種?
3. 什麼是比特率?什麼是波特率?
4. 什麼是帶寬、數據傳輸率與信道容量?
課後作業:(P20)二1、2、3、4、5、6

第五講
教學類型:理論課
教學課題:2.2~2.4
教學目標:1.理解數據交換技術;2. 理解差錯檢驗與校正技術
教學重點、難點:數據交換技術、差錯檢驗與校正技術
教學方法:教師講解、演示、提問;
教學工具:多媒體幻燈片演示
教學內容與過程:
導入:由現在的網路通訊中的一些普通關鍵詞引入新課
講授新課:(多媒體幻燈片演示或板書)
2.3 數據交換技術
通常使用四種交換技術:
電路交換
報文交換
分組交換
信元交換。
2.3.1 電路交換
電路交換(也稱線路交換)
在電路交換方式中,通過網路節點(交換設備)在工作站之間建立專用的通信通道,即在兩個工作站之間建立實際的物理連接。一旦通信線路建立,這對端點就獨占該條物理通道,直至通信線路被取消。
電路交換的主要優點是實時性好,由於信道專用,通信速率較高;缺點是線路利用率低,不能連接不同類型的線路組成鏈路,通信的雙方必須同時工作。
電路交換必定是面向連接的,電話系統就是這種方式。
電路交換的三個階段:
電路建立階段
數據傳輸階段
拆除電路階段
2.3.2 報文交換
報文是一個帶有目的端信息和控制信息的數據包。報文交換採取的是「存儲—轉發」(Store-and-Forward)方式,不需要在通信的兩個節點之間建立專用的物理線路。
報文交換的主要缺點是網路的延時較長且變化比較大,因而不宜用於實時通信或互動式的應用場合。
在 20 世紀 40 年代,電報通信也採用了基於存儲轉發原理的報文交換(message switching)。
報文交換的時延較長,從幾分鍾到幾小時不等。現在,報文交換已經很少有人使用了。
2.3.3 分組交換
分組交換也稱包交換,它是報文交換的一種改進,也屬於存儲-轉發交換方式,但它不是以報文為單位,而是以長度受到限制的報文分組(Packet)為單位進行傳輸交換的。分組也叫做信息包,分組交換有時也稱為包交換。
分組在網路中傳輸,還可以分為兩種不同的方式:數據報和虛電路。
分組交換的優點
高效 動態分配傳輸帶寬,對通信鏈路是逐段佔用。
靈活 以分組為傳送單位和查找路由。
迅速 必先建立連接就能向其他主機發送分組;充分使用鏈路的帶寬
可靠 完善的網路協議;自適應的路由選擇協議使網路有很好的生存性
2.3.4 信元交換技術
(ATM,Asynchronous Transfer Mode,非同步傳輸模式)
ATM是一種面向連接的交換技術,它採用小的固定長度的信息交換單元(一個53Byte的信元),話音、視頻和數據都可由信元的信息域傳輸。
它綜合吸取了分組交換高效率和電路交換高速率的優點,針對分組交換速率低的弱點,利用電路交換完全與協議處理幾乎無關的特點,通過高性能的硬體設備來提高處理速度,以實現高速化。
ATM是一種廣域網主幹線的較好選擇。
2.4 差錯檢驗與校正
數據傳輸中出現差錯有多種原因,一般分成內部因素和外部因素。
內部因素有噪音脈沖、脈動噪音、衰減、延遲失真等。
外部因素有電磁干擾、太陽噪音、工業噪音等。
為了確保無差錯地傳輸,必須具有檢錯和糾錯的功能。常用的校驗方式有奇偶校驗和循環冗餘碼校驗。
2.4.1 奇偶校驗
採用奇偶校驗時,若其中兩位同時發生錯誤,則會發生沒有檢測出錯誤的情況。
2.4.2 循環冗餘碼校驗。
這種編碼對隨機差錯和突發差錯均能以較低的冗餘充進行嚴格的檢查。
課後小結:
1. 數據通信的的一些基本知識
2. 三種交換方式的基本工作原理
3. 兩種差錯校驗方法:奇偶校驗和循環冗餘校驗
課後作業:(P20)二7、8、9

第六講
教學類型:復習課
教學課題:第一章與第二章
教學目標:通過復習掌握第一、二章的重點
教學重點、難點:第一、二章的重點
教學方法:教師講解、演示、提問;
教學工具:多媒體幻燈片演示
教學內容:第一、二章的內容

第七講
教學類型:測驗一

第八講
教學類型:理論課
教學課題:第三章 計算機網路技術基礎
教學目標:1. 掌握幾種常見網路拓撲結構的原理及其特點;2. 掌握ISO/OSI網路參考模型及各層的主要功能
教學重點、難點:1. 掌握幾種常見網路拓撲結構的原理及其特點;2. 掌握ISO/OSI網路參考模型及各層的主要功能
教學方法:教師講解、演示、學生認真學習並思考、記憶;教師講授與學生理解協調並重的教學法
教學工具:多媒體幻燈片演示
教學內容與過程
導入:提問學生對OSI的七層模型和TCP/IP四層模型的理解。
引導學生總結重要原理並認真加以研究。
教師總結歸納本章重要原理的應用,進入教學課題。
講授新課:(多媒體幻燈片演示或板書)
第三章 計算機網路技術基礎
3.1 計算機網路的拓撲結構
3.1.1 什麼是計算機網路的拓撲結構
網路拓撲是指網路連接的形狀,或者是網路在物理上的連通性。
網路拓撲結構能夠反映各類結構的基本特徵,即不考慮網路節點的具體組成,也不管它們之間通信線路的具體類型,把網路節點畫作「點」,把它們之間的通信線路畫作「線」,這樣畫出的圖形就是網路的拓撲結構圖。
不同的拓撲結構其信道訪問技術、網路性能、設備開銷等各不相同,分別適應於不同場合。它影響著整個網路的設計、功能、可靠性和通信費用等方面,是研究計算機網路的主要環節之一。
計算機網路的拓撲結構主要是指通信子網的拓撲結構,常見的一般分為以下幾種:
1.匯流排型;2.星型;3.環型;4.樹型;5.網狀型
3.1.2 匯流排型拓撲結構
匯流排結構中,各節點通過一個或多個通信線路與公共匯流排連接。匯流排型結構簡單、擴展容易。網路中任何節點的故障都不會造成全網的故障,可靠性較高。
匯流排型結構是從多機系統的匯流排互聯結構演變而來的,又可分為單匯流排結構和多匯流排結構,常用CSMA/CD和令牌匯流排訪問控制方式。
匯流排型結構的缺點:
(1)故障診斷困難;(2)故障隔離困難;(3)中繼器等配置;(4)實時性不強
3.1.3 星型拓撲結構
星型的中心節點是主節點,它接收各分散節點的信息再轉發給相應節點,具有中繼交換和數據處理功能。星型網的結構簡單,建網容易,但可靠性差,中心節點是網路的瓶頸,一旦出現故障則全網癱瘓。
星型拓撲結構的訪問採用集中式控制策略,採用星型拓撲的交換方式有電路交換和報文交換。
星型拓撲結構的優點:
(1)方便服務;(2)每個連接只接一個設備;(3)集中控制和便於故障診斷;(4)簡單的訪問協議
星型拓撲結構的缺點:
(1)電纜長度和安裝;(2)擴展困難;(3)依賴於中央節點
3.1.4 環型拓撲結構
網路中節點計算機連成環型就成為環型網路。環路上,信息單向從一個節點傳送到另一個節點,傳送路徑固定,沒有路徑選擇問題。環型網路實現簡單,適應傳輸信息量不大的場合。任何節點的故障均導致環路不能正常工作,可靠性較差。
環型網路常使用令牌環來決定哪個節點可以訪問通信系統。
環型拓撲結構的優點:
(1)電纜長度短;(2)適用於光纖;(3)網路的實時性好
環型拓撲結構的缺點:
(1)網路擴展配置困難;(2)節點故障引起全網故障;(3)故障診斷困難;(4)拓撲結構影響訪問協議
3.1.5 其他類型拓撲結構
1.樹型拓撲結構
樹型網路是分層結構,適用於分級管理和控制系統。網路中,除葉節點及其聯機外,任一節點或聯機的故障均隻影響其所在支路網路的正常工作。
2.星型環型拓撲結構
3.1.6 拓撲結構的選擇原則
拓撲結構的選擇往往和傳輸介質的選擇和介質訪問控制方法的確定緊密相關。選擇拓撲結構時,應該考慮的主要因素有以下幾點:
(1)服務可靠性; (2)網路可擴充性; (3)組網費用高低(或性能價格比)。
3.2 ISO/OSI網路參考模型
建立分層結構的原因和意義:
建立計算機網路的根本目的是實現數據通信和資源共享,而通信則是實現所有網路功能的基礎和關鍵。對於網路的廣泛實施,國際標准化組織ISO(International Standard Organization),經過多年研究,在1983年提出了開放系統互聯參考模型OSI/RM(Reference Model of Open System Interconnection),這是一個定義連接異種計算機的標准主體結構,給網路設計者提供了一個參考規范。
OSI參考模型的層次
OSI參考模型共有七層,由低到高分別是:物理層、數據鏈路層、網路層、傳輸層、會話層、表示層和應用層。
1.OSI參考模型的特性
(1)是一種將異構系統互聯的分層結構;
(2)提供了控制互聯系統交互規則的標准骨架;
(3)定義了一種抽象結構,而並非具體實現的描述;
(4)不同系統上的相同層的實體稱為同等層實體;
(5)同等層實體之間的通信由該層的協議管理;
(6)相鄰層間的介面定義了原語操作和低層向上層提供的服務;
(7)所提供的公共服務是面向連接的或無連接的數據服務;
(8)直接的數據傳送僅在最低層實現;
(9)每層完成所定義的功能,修改本層的功能並不影響其它層。
2.有關OSI參考模型的技術術語
在OSI參考模型中,每一層的真正功能是為其上一層提供服務。在對這些功能或服務過程以及協議的描述中,經常使用如下一些技術術語:
(1)數據單元
服務數據單元SDU(Service Data Unit)
協議數據單元PDU(Protocol Data Unit)
介面數據單元IDU(Interface Data Unit)
服務訪問點SAP(Service Access Point)
服務原語(Primitive)
(2)面向連接和無連接的服務
下層能夠向上層提供的服務有兩種基本形式:面向連接和無連接的服務。
面向連接的服務是在數據傳輸之前先建立連接,主要過程是:建立連接、進行數據傳送,拆除鏈路。面向連接的服務,又稱為虛電路服務。
無連接服務沒有建立和拆除鏈路的過程,一般也不採用可靠方式傳送。不可靠(無確認)的無連接服務又稱為數據報服務。
3.2.1 物理層
物理層是OSI模型的最低層,其任務是實現物理上互連系統間的信息傳輸。
1.物理層必須具備以下功能
(1)物理連接的建立、維持與釋放;2)物理層服務數據單元傳輸;(3)物理層管理。
2.媒體和互聯設備
物理層的媒體包括架空明線、平衡電纜、光纖、無線信道等;
通信用的互聯設備如各種插頭、插座等;區域網中的各種粗、細同軸電纜,T型接/插頭,接收器,發送器,中繼器等都屬物理層的媒體和連接器。
3.2.2 數據鏈路層
數據鏈路可以粗略地理解為數據信道。數據鏈路層的任務是以物理層為基礎,為網路層提供透明的、正確的和有效的傳輸線路,通過數據鏈路協議,實施對二進制數據正確、可靠的傳輸。
數據鏈路的建立、拆除、對數據的檢錯、糾錯是數據鏈路層的基本任務。
1.鏈路層的主要功能
(1)鏈路管理;(2)幀的裝配與分解;(3)幀的同步;(4)流量控制與順序控制;(5)差錯控制;(6)使接收端能區分數據和控制信息;(7)透明傳輸;(8)定址
2.數據鏈路層的主要協議
(1)ISO1745-1975;(2)ISO3309-1984;(3)ISO7776
3.鏈路層產品
獨立的鏈路產品中最常見的是網卡,網橋也是鏈路產品。
數據鏈路層將本質上不可靠的傳輸媒介變成可靠的傳輸通路提供給網路層。在IEEE802.3情況下,數據鏈路層分成兩個子層:一個是邏輯鏈路控制,另一個是媒體訪問控制。
3.2.3 網路層
網路層是通信子網與資源子網之間的介面,也是高、低層協議之間的介面層。網路層的主要功能是路由選擇、流量控制、傳輸確認、中斷、差錯及故障的恢復等。當本地端與目的端不處於同一網路中,網路層將處理這些差異。
1.網路層的主要功能
(1)建立和拆除網路連接;
(2)分段和組塊;
(3)有序傳輸和流量控制;
(4)網路連接多路復用;
(5)路由選擇和中繼;
(6)差錯的檢測和恢復;
(7)服務選擇
2.網路層提供的服務
OSI/RM中規定,網路層中提供無連接和面向連接兩種類型的服務,也稱為數據報服務和虛電路服務。
3.路由選擇
3.2.4 傳輸層
傳輸層是資源子網與通信子網的介面和橋梁。傳輸層下面三層(屬於通信子網)面向數據通信,上面三層(屬於資源子網)面向數據處理。因此,傳輸層位於高層和低層中間,起承上啟下的作用。它屏蔽了通信子網中的細節,實現通信子網中端到端的透明傳輸,完成資源子網中兩節點間的邏輯通信。它是負責數據傳輸的最高一層,也是整個七層協議中最重要和最復雜的一層。
1.傳輸層的特性
(1)連接與傳輸;(2)傳輸層服務
2.傳輸層的主要功能
3.傳輸層協議
3.2.5 會話層
會話層、表示層和應用層一起構成OSI/RM的高層,會話層位於OSI模型面向信息處理的高三層中的最下層,它利用傳輸層提供的端到端數據傳輸服務,具體實施服務請求者與服務提供者之間的通信,屬於進程間通信的范疇。
會話層還對會話活動提供組織和同步所必須的手段,對數據傳輸提供控制和管理。
1.會話層的主要功能;
(1)提供遠程會話地址;
(2)會話建立後的管理;
(3)提供把報文分組重新組成報文的功能
2.會話層提供的服務
(1)會話連接的建立和拆除;
(2)與會話管理有關的服務;
(3)隔離;
(4)出錯和恢復控制
3.2.6 表示層
表示層為應用層服務,該服務層處理的是通信雙方之間的數據表示問題。為使通信的雙方能互相理解所傳送信息的含義,表示層就需要把發送方具有的內部格式編碼為適於傳輸的比特流,接收方再將其解碼為所需要的表示形式。
數據傳送包括語義和語法兩個方面的問題。OSI模型中,有關語義的處理由應用層負責,表示層僅完成語法的處理。
1.表示層的主要功能
(1)語法轉換;(2)傳送語法的選擇;(3)常規功能
2.表示層提供的服務
(1)數據轉換和格式轉換;
(2)語法選擇;
(3)數據加密與解密;
(4)文本壓縮
3.2.7 應用層
OSI的7層協議從功能劃分來看,下面6層主要解決支持網路服務功能所需要的通信和表示問題,應用層則提供完成特定網路功能服務所需要的各種應用協議。
應用層是OSI的最高層,直接面向用戶,是計算機網路與最終用戶的介面。負責兩個應用進程(應用程序或操作員)之間的通信,為網路用戶之間的通信提供專用程序。
課後小結:
1.計算機網路的拓撲結構的分類
2.OSI參考模型的層次
課後作業:預習P37~P39

第九講
教學類型:理論課
教學課題:3.3~3.4
教學目標:
1. 掌握共享介質方式的CSMA/CD和令牌傳遞兩種數據傳輸控制方式的基本原理
2. 了解幾種常見的網路類型
教學重點、難點:理解數據傳輸控制方式
教學方法:教師講解、演示、提問;
教學工具:多媒體幻燈片演示
教學內容與過程
導入:提問學生對OSI的七層模型和TCP/IP四層模型的理解。
引導學生總結重要原理並認真加以研究。
教師總結歸納本章重要原理的應用,進入教學課題。
講授新課:(多媒體幻燈片演示或板書
3.3 數據傳輸控制方式
數據和信息在網路中是通過信道進行傳輸的,由於各計算機共享網路公共信道,因此如何進行信道分配,避免或解決通道爭用就成為重要的問題,就要求網路必須具備網路的訪問控制功能。介質訪問控制(MAC)方法是在區域網中對數據傳輸介質進行訪問管理的方法。
3.3.1 具有沖突檢測的載波偵聽多路訪問
沖突檢測/載波偵聽(CSMA/CD法)
CSMA/CD是基於IEEE802.3標準的乙太網中採用的MAC方法,也稱為「先聽後發、邊發邊聽」。它的工作方式是要傳輸數據的節點先對通道進行偵聽,以確定通道中是否有別的站在傳輸數據,若信道空閑,該節點就可以佔用通道進行傳輸,反之,該節點將按一定演算法等待一段時間後再試,並且在發送過程中進行沖突檢測,一旦有沖突立即停止發送。通常採用的演算法有三種:非堅持CSMA、1-堅持CSMA、P-堅持CSMA。
目前,常見的區域網,一般都是採用CSMA/CD訪問控制方法的邏輯匯流排型網路。用戶只要使用Ethernet網卡,就具備此種功能。

⑩ 如何測試網路是否有問題

第 1 步:檢驗電纜
首先,檢查計算機與網路插口之間的電纜。對於 10/100 網路環境,只需一種能檢查開路、短路和布線的工具即可工作。而對於千兆乙太網,則還需檢查電纜中是否存在串擾和阻抗故障。我們推薦使用電纜鑒定測試器,它可在實時網路中測試串路和阻抗故障。

第 2 步:確認連接到交換機
將攜帶型網路工具(而不是問題計算機)連接到辦公室線路,檢查是否可以建立鏈路。如果埠被管理員關閉,則工具將無法連接。接著,檢查埠配置以確保埠可用且已按正確的 VLAN 進行配置。為獲得最佳結果,應使用可支持 10/100/Gig 連接的工具。不過,通常 10/100 連接的工具即可工作。

第 3 步:申請 DHCP 地址
一旦建立鏈路之後,即可使用工具從伺服器申請 DHCP 地址。應確保分配的地址與相應的子網相符;檢驗子網掩碼;確認默認網關和 DNS 伺服器地址。如果工具未能從伺服器獲得響應,它應該可以通過分析廣播流量檢測出相應的子網。通過從交換機獲得的 Cisco 發現協議 (CDP) 報告,檢查工具所連接的交換機埠,並確認子網配置。

第 4 步:Ping 網路上的設備
一旦獲取 DHCP 地址之後,即可使用工具 ping 一台區域網外的設備。這可確認 DHCP 伺服器的指定配置是否正確以及網路流量是否被正確地路由發送。這時,網路連接已經過測試,因此計算機可重新連接到網路。對於持續性網路連接問題,最好在計算機和網路之間在線連接工具以進行附加的診斷。

第 5 步:檢驗速度/雙工模式設置
某些鏈路性能故障如雙工模式不匹配、速度不匹配以及靜態配置 IP 地址等都只能進行在線檢測。因此,我們強烈推薦使用具有在線檢測功能的工具。在計算機和網路之間以在線方式連接工具。確認所連接交換機埠的速度設置和雙工模式設置與相應計算機的設置相符。如果檢測到雙工模式不匹配,則確認計算機和交換機埠是否均已被設成自動協議。

第 6 步:網路流量監控
通過在線工具檢查計算機是否成功地向 DHCP 伺服器申請並接收到地址。這種工具應能同網路建立獨立的連接,然後再與計算機建立連接。接著,使用計算機連接到電子郵件伺服器或應用伺服器,並通過工具監控網路流量。查找過多的廣播、沖突或錯誤。一旦檢驗完所有這些參數之後,計算機與網路之間的鏈路即可取消。如果故障仍然存在,則可能需要使用更加精密的網路診斷工具。

閱讀全文

與工業計算機網路差錯檢測相關的資料

熱點內容
為啥手機網路突然變特別差 瀏覽:301
電信手機卡網路不好怎麼提升網速 瀏覽:624
隔壁wifi影響網路嗎 瀏覽:918
無線網改服務網路快嗎 瀏覽:338
選擇適合的網路營銷渠道 瀏覽:835
耿美網路劇哪裡可以看 瀏覽:914
吉林網路營銷大數據獲客銷售方法 瀏覽:322
滿格沒網路信號 瀏覽:154
電腦連不上如家的網路 瀏覽:159
刪除東西致使無線網路消失 瀏覽:481
北京昌平網路DNS多少 瀏覽:454
路由器連通網路後過會自動斷網 瀏覽:755
怎麼看小米手機連的網路頻段 瀏覽:950
蘋果手機信號差網路慢怎麼設置 瀏覽:755
網路人數活躍量一般占總比是多少 瀏覽:379
2021年網路安全宣傳周合拍 瀏覽:279
網路視頻侵權是什麼意思 瀏覽:494
無線路由器連接無網路 瀏覽:393
何謂計算機網路 瀏覽:477
普通大學生網路安全專業 瀏覽:452

友情鏈接