① 計算機網路由哪幾部分組成
計算機網路就是由多台計算機(或其它計算機網路設備)通過傳輸介質和軟體物理(或邏輯)連接在一起組成的。總的來說計算機網路的組成基本上包括:計算機、網路操作系統、傳輸介質(可以是有形的,也可以是無形的,如無線網路的傳輸介質就是空間)以及相應的應用軟體四部分。
從整體上來說計算機網路就是把分布在不同地理區域的計算機與專門的外部設備用通信線路互聯成一個規模大、功能強的系統,從而使眾多的計算機可以方便地互相傳遞信息,共享硬體、軟體、數據信息等資源。簡單來說,計算機網路就是由通信線路互相連接的許多自主工作的計算機構成的集合體。
最簡單的計算機網路就只有兩台計算機和連接它們的一條鏈路,即兩個節點和一條鏈路。
(1)伺服器屬於計算機網路哪一層擴展閱讀
20世紀60年代中期之前的第一代計算機網路是以單個計算機為中心的遠程聯機系統,典型應用是由一台計算機和全美范圍內2000多個終端組成的飛機訂票系統,終端是一台計算機的外圍設備,包括顯示器和鍵盤,無CPU和內存。
隨著遠程終端的增多,在主機前增加了前端機(FEP)。當時,人們把計算機網路定義為「以傳輸信息為目的而連接起來,實現遠程信息處理或進一步達到資源共享的系統」,這樣的通信系統已具備網路的雛形。
20世紀60年代中期至70年代的第二代計算機網路是以多個主機通過通信線路互聯起來,為用戶提供服務,興起於60年代後期,典型代表是美國國防部高級研究計劃局協助開發的ARPANET。
主機之間不是直接用線路相連,而是由介面報文處理機(IMP)轉接後互聯的。IMP和它們之間互聯的通信線路一起負責主機間的通信任務,構成了通信子網。
通信子網互聯的主機負責運行程序,提供資源共享,組成資源子網。這個時期,網路概念為「以能夠相互共享資源為目的互聯起來的具有獨立功能的計算機之集合體」,形成了計算機網路的基本概念。
② 計算機系統分為哪4層
第一層:物理層(PhysicalLayer),規定通信設備的機械的、電氣的、功能的和過程的特性,用以建立、維護和拆除物理鏈路連接。具體地講,機械特性規定了網路連接時所需接插件的規格尺寸、引腳數量和排列情況等;電氣特性規定了在物理連接上傳輸bit流時線路上信號電平的大小、阻抗匹配、傳輸速率距離限制等;功能特性是指對各個信號先分配確切的信號含義,即定義了DTE和DCE之間各個線路的功能;規程特性定義了利用信號線進行bit流傳輸的一組操作規程,是指在物理連接的建立、維護、交換信息是,DTE和DCE雙放在各電路上的動作系列。 在這一層,數據的單位稱為比特(bit)。 屬於物理層定義的典型規范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。 第二層:數據鏈路層(DataLinkLayer):在物理層提供比特流服務的基礎上,建立相鄰結點之間的數據鏈路,通過差錯控制提供數據幀(Frame)在信道上無差錯的傳輸,並進行各電路上的動作系列。 數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。 在這一層,數據的單位稱為幀(frame)。 數據鏈路層協議的代表包括:SDLC、HDLC、PPP、STP、幀中繼等。 第三層是網路層(Network layer) 在計算機網路中進行通信的兩個計算機之間可能會經過很多個數據鏈路,也可能還要經過很多通信子網。網路層的任務就是選擇合適的網間路由和交換結點, 確保數據及時傳送。網路層將數據鏈路層提供的幀組成數據包,包中封裝有網路層包頭,其中含有邏輯地址信息- -源站點和目的站點地址的網路地址。 如果你在談論一個IP地址,那麼你是在處理第3層的問題,這是「數據包」問題,而不是第2層的「幀」。IP是第3層問題的一部分,此外還有一些路由協議和地址解析協議(ARP)。有關路由的一切事情都在第3層處理。地址解析和路由是3層的重要目的。網路層還可以實現擁塞控制、網際互連等功能。 在這一層,數據的單位稱為數據包(packet)。 網路層協議的代表包括:IP、IPX、RIP、OSPF等。 第四層是處理信息的傳輸層(Transport layer)。第4層的數據單元也稱作數據包(packets)。但是,當你談論TCP等具體的協議時又有特殊的叫法,TCP的數據單元稱為段(segments)而UDP協議的數據單元稱為「數據報(datagrams)」。這個層負責獲取全部信息,因此,它必須跟蹤數據單元碎片、亂序到達的數據包和其它在傳輸過程中可能發生的危險。第4層為上層提供端到端(最終用戶到最終用戶)的透明的、可靠的數據傳輸服務。所為透明的傳輸是指在通信過程中傳輸層對上層屏蔽了通信傳輸系統的具體細節。 傳輸層協議的代表包括:TCP、UDP、SPX等。 第五層是會話層(Session layer) 這一層也可以稱為會晤層或對話層,在會話層及以上的高層次中,數據傳送的單位不再另外命名,統稱為報文。會話層不參與具體的傳輸,它提供包括訪問驗證和會話管理在內的建立和維護應用之間通信的機制。如伺服器驗證用戶登錄便是由會話層完成的。 第六層是表示層(Presentation layer) 這一層主要解決用戶信息的語法表示問題。它將欲交換的數據從適合於某一用戶的抽象語法,轉換為適合於OSI系統內部使用的傳送語法。即提供格式化的表示和轉換數據服務。數據的壓縮和解壓縮, 加密和解密等工作都由表示層負責。 第七層應用層(Application layer),應用層為操作系統或網路應用程序提供訪問網路服務的介面。 應用層協議的代表包括:Telnet、FTP、HTTP、SNMP等。
③ 計算機網路體系分為哪四層
1.、應用層
應用層對應於OSI參考模型的高層,為用戶提供所需要的各種服務,例如:FTP、Telnet、DNS、SMTP等.
2.、傳輸層
傳輸層對應於OSI參考模型的傳輸層,為應用層實體提供端到端的通信功能,保證了數據包的順序傳送及數據的完整性。該層定義了兩個主要的協議:傳輸控制協議(TCP)和用戶數據報協議(UDP).
TCP協議提供的是一種可靠的、通過「三次握手」來連接的數據傳輸服務;而UDP協議提供的則是不保證可靠的(並不是不可靠)、無連接的數據傳輸服務.
3.、網際互聯層
網際互聯層對應於OSI參考模型的網路層,主要解決主機到主機的通信問題。它所包含的協議設計數據包在整個網路上的邏輯傳輸。注重重新賦予主機一個IP地址來完成對主機的定址,它還負責數據包在多種網路中的路由。
該層有三個主要協議:網際協議(IP)、互聯網組管理協議(IGMP)和互聯網控制報文協議(ICMP)。
IP協議是網際互聯層最重要的協議,它提供的是一個可靠、無連接的數據報傳遞服務。
4.、網路接入層(即主機-網路層)
網路接入層與OSI參考模型中的物理層和數據鏈路層相對應。它負責監視數據在主機和網路之間的交換。事實上,TCP/IP本身並未定義該層的協議,而由參與互連的各網路使用自己的物理層和數據鏈路層協議,然後與TCP/IP的網路接入層進行連接。地址解析協議(ARP)工作在此層,即OSI參考模型的數據鏈路層。
(3)伺服器屬於計算機網路哪一層擴展閱讀:
OSI將計算機網路體系結構(architecture)劃分為以下七層:
物理層: 將數據轉換為可通過物理介質傳送的電子信號相當於郵局中的搬運工人。
數據鏈路層: 決定訪問網路介質的方式。
在此層將數據分幀,並處理流控制。本層指定拓撲結構並提供硬體定址,相當於郵局中的裝拆箱工人。
網路層: 使用權數據路由經過大型網路 相當於郵局中的排序工人。
傳輸層: 提供終端到終端的可靠連接 相當於公司中跑郵局的送信職員。
會話層: 允許用戶使用簡單易記的名稱建立連接 相當於公司中收寄信、寫信封與拆信封的秘書。
表示層: 協商數據交換格式 相當公司中簡報老闆、替老闆寫信的助理。
應用層: 用戶的應用程序和網路之間的介面老闆。
④ 網路分為幾個層
分七層:
1、物 理 層(Physical Layer)
要傳遞信息要利用些物理媒體雙紐線、同軸電纜等具體物理媒體並OSI7層之內有人把物理媒體當作第0層物理層任務上層提供物理連接及們機械、電氣、功能和過程特性 規定使用電纜和接頭 類型傳送信號電壓等層數據還沒有被組織僅作原始位流或電氣電壓處理單位比特。
2、 數 據 鏈 路 層(Data Link Layer)
數據鏈路層負責兩相鄰結點間線路上無差錯傳送幀單位數據每幀包括定數量數據和些必要控制信息和物理層相似數據鏈路層要負責建立、維持和釋放數據鏈路連接傳送數據時接收點檢測所傳數據有差錯要通知發方重發幀 。
3、 網 絡 層(Network Layer)
計算機網路進行通信兩計算機之間能會經過多數據鏈路也能還要經過多通信子網網路層任務選擇合適網間路由和交換結點 確保數據及時傳送網路層數據鏈路層提供幀組成數據包包封裝有網路層包頭其含有邏輯地址信息-,源站點和目站點地址網路地址 。
4、 傳 輸 層(Transport Layer)
該層任務時根據通信子網特性佳利用網路資源並靠和經濟方式兩端系統(也源站和目站)會層之間提供建立、維護和取消傳輸連接功能負責靠地傳輸數據層信息傳送單位報文 。
5、 會 層(Session Layer)
層也稱會晤層或對層會層及上高層次數據傳送單位,再另外命名統稱報文會層,參與具體傳輸提供,包括訪問驗證和會管理內建立和維護應用之間通信機制伺服器,驗證用戶登錄便由會層完成 。
6、 表 示 層(Presentation Layer)
層主要解決擁護信息語法表示問題欲交換數據,從適合於某用戶抽象語法轉換適合於OSI系統內部使用傳送語法,即提供格式化表示和轉換數據服務數據壓縮和解壓縮,加密和解密等工作都由表示層負責 。
7、 應 用 層(Application Layer)
應用層確定進程之間通信性質滿足用戶需要及提供網路與用戶應用軟體之間介面服務。
⑤ web伺服器在b/s中屬於哪一層應用伺服器屬於哪一層謝謝!!!
web伺服器在b/s中屬於s層,也就是服務層,應用伺服器也是在s層。b/s只是最簡單的一種網路服務架構,復雜些的架構會有多層,在多層架構下,web伺服器是最上層,應用伺服器在它的下面。
⑥ 6什麼是計算機網路的體系結構為什麼要採用分層次的結構
計算機網路體系結構是指計算機網路層次結構模型,它是各層的協議以及層次之間的埠的集合。
目前廣泛採用的是國際標准化組織(ISO)1997年提出的開放系統互聯(Open
System Interconnection,OSI)參考模型,習慣上稱為ISO/OSI參考模型。
在OSI七層參考模型的體系結構中,由低層至高層分別稱為物理層、數據鏈路層、網路層、運輸層、會話層、表示層和應用層
原因:為把在一個網路結構下開發的系統與在另一個網路結構下開發的系統互聯起來,以實現更高一級的應用,使異種機之間的通信成為可能,便於網路結構標准化;
並且由於全球經濟的發展使得處在不同網路體系結構的用戶迫切要求能夠互相交換信息;
為此,國際標准化組織ISO成立了專門的機構研究該問題,並於1977年提出了一個試圖使各種計算機在世界范圍內互聯成網的標准框架,即著名的開放系統互連基本參考模型OSI/RM (Open System Interconnection Reference Model)。
(6)伺服器屬於計算機網路哪一層擴展閱讀:
OSI模型體系結構:
物理層(Physical,PH)物理層的任務就是為上層提供一個物理的連接,以及該物理連接表現出來的機械、電氣、功能和過程特性,實現透明的比特流傳輸。
數據鏈路層(Data-link,D)實現的主要功能有:幀的同步、差錯控制、流量控制、定址、幀內定界、透明比特組合傳輸等。
網路層(Network,N)網路層的主要任務是為要傳輸的分組選擇一條合適的路徑,使發送分組能夠正確無誤地按照給定的目的地址找到目的主機,交付給目的主機的傳輸層。
傳輸層(Transport,T)傳輸層向上一層提供一個可靠的端到端的服務,使會話層不知道傳輸層以下的數據通信的細節
會話層(Session,S)提供包括訪問驗證和會話管理在內的建立以及維護應用之間的通信機制。如伺服器驗證用戶登錄便是由會話層完成的。
表示層(Presentation,P)數據的壓縮和解壓縮、加密和解密等工作都由表示層負責。
應用層(Application,A)應用層確定進程之間通信的性質以滿足用戶的需求,以及提供網路與用戶軟體之間的介面服務。
⑦ 我們常見的計算機網路設備工作在OSI參考模型的哪一層
我們常見的計算機網路設備工作在OSI參考模型的第三層。
OSI參考模型的數據傳輸過程分為三層:
1、第一層物理層:包括物理連網媒介 如雙絞線、同軸電纜、電纜連線連接器等,計算機連網的基礎,在這一層,數據還沒有被組織。
(1)、中繼器:它的作用是放大信號,補償信號衰減,支持遠距離的通信。
(2)、集線器:提供信號放大和中轉的功能,有信號廣播。中繼器與集線器的區別在於連接設備的線纜的數量。一個中繼器通常只有兩個埠,而一個集線器通常有4至20個或更多的埠。
2、第二層數據鏈路層:它控制網路層與物理層之間的通信。
(1)、交換機:物理編址、網路拓撲結構、錯誤校驗、幀序列以及流控。
(2)、網卡:有幀的發送與接收、幀的封裝與拆封、介質訪問控制、數據的編碼與解碼以及數據緩存的功能
3、第三層網路層其主要功能是將網路地址翻譯成對應的物理地址。
(1)、路由器(網關):連通不同的網路、選擇信息傳送的線路。
(2)、三層交換機有路由功能,一次路由,多次轉發。
(7)伺服器屬於計算機網路哪一層擴展閱讀:
1、劃分原則
ISO為了更好的使網路應用更為普及,就推出了OSI參考模型,其含義就是推薦所有公司使用這個規范來控制網路,這樣所有公司都有相同的規范,就能互聯了,提供各種網路服務功能的計算機網路系統是非常復雜的。
根據分而治之的原則,ISO將整個通信功能劃分為七個層次,劃分原則是:
(1)、網路中各節點都有相同的層次。
(2)、不同節點的同等層具有相同的功能。
(3)、同一節點內相鄰層之間通過介面通信。
(4)、每一層使用下層提供的服務,並向其上層提供服務。
(5)、不同節點的同等層按照協議實現對等層之間的通信。
(6)、根據功能需要進行分層,每層應當實現定義明確的功能。
(7)、向應用程序提供服務。
2、模型用途:
(1)、OSI模型用途相當廣泛,比如交換機、集線器、路由器等很多網路設備的設計都是參照OSI模型設計的。
(2)、網路設計者在解決網路體系結構時經常使用ISO/OSI(國際標准化組織/開放系統互連)七層模型,該模型每一層代表一定層次的網路功能,最下面是物理層,它代表著進行數據傳輸的物理介質,換句話說,即網路電纜,其上是數據鏈路層,它通過網路介面卡提供服務。
參考資料來源:
網路-OSI參考模型
⑧ 計算機網路(四)網路層
主要任務是把分組從源端傳到目的端,為分組交換網上的不同主機提供通信服務。網路層傳輸單位是數據報。
鏈路層數據幀可封裝數據的上限稱為最大傳送單元MTU
標識:同一數據報的分片使用同一標識。
中間位DF(Don』t Fragment):
最低位MF(More Fragment):
片偏移:指出較長分組分片後,某片在原分組中的相對位置。以8B為單位。除了最後一個分片,每個分片長度一定是8B的整數倍。
IP地址:全世界唯一的32位/4位元組標識符,標識路由器主機的介面。IP地址::={<網路號>,<主機號>}
有一些IP地址是不能用的,有其特殊的作用,如:
網路地址轉換NAT(Network Address Translation):在專用網連接到網際網路的路由器上安裝NAT軟體,安裝了NAT軟體的路由器叫NAT路由器,它至少有一個有效的外部全球IP地址。
此外,為了網路安全,劃分出了部分IP地址和私有IP地址,私有IP地址網段如下:
路由器對目的地址是私有IP地址的數據報一律不進行轉發。
分類的IP地址的弱點:
某單位劃分子網後,對外仍表現為一個網路,即本單位外的網路看不見本單位內子網的劃分。
路由器轉發分組的演算法:
無分類域間路由選擇CIDR:
CIDR記法:IP地址後加上「/」,然後寫上網路前綴(可以任意長度)的位數。e.g. 128.14.32.0/20
CIDR把網路前綴都相同的連續的IP地址組成一個「CIDR地址塊」。
使用CIDR時,查找路由表可能得到幾個匹配結果(跟網路掩碼按位相與),應選擇具有最長網路前綴的路由。前綴越長,地址塊越小,路由越具體。
將多個子網聚合成一個較大的子網,叫做構成超網,或路由聚合。方法:將網路前綴縮短(所有網路地址取交集)。
由於在實際網路的鏈路上傳送數據幀時,最終必須使用MAC地址。
ARP協議:完成主機或路由器IP地址到MAC地址的映射。
ARP協議使用過程:
ARP協議4種典型情況:
動態主機配置協議DHCP是 應用層 協議,使用 客戶/伺服器 方式,客戶端和服務端通過 廣播 方式進行交互,基於 UDP 。
DHCP提供即插即用聯網的機制,主機可以從伺服器動態獲取IP地址、子網掩碼、默認網關、DNS伺服器名稱與IP地址,允許地址重用,支持移動用戶加入網路,支持在用地址續租。
DHCP工作流程如下:
ICMP協議支持主機或路由器:包括差錯(或異常)報告和網路探詢,分部發送特定ICMP報文
ICMP差錯報告報文(5種):
不應發送ICMP差錯報文的情況:
ICMP詢問報文:
ICMP的應用:
32位IPv4地址空間已分配殆盡,這時,可以採用更大地址空間的新版本的IPv6,從根本上解決地址耗盡問題
IPv6數據報格式如下圖
IPv6的主要特點如下:
IPv6地址表示形式:
零壓縮:一連串連續的0可以被一對冒號取代。雙冒號表示法在一個地址中僅可出現一次。
IPv6基本地址類型:
IPv6向IPv4過渡的策略:
R1的路由表/轉發表如下:
最佳路由:「最佳」只能是相對於某一種特定要求下得出的較為合理的選擇而已。
路由演算法可分為
由於網際網路規模很大且許多單位不想讓外界知道自己的路由選擇協議,但還想連入網際網路,可以採用自治系統來解決
自治系統AS:在單一的技術管理下的一組路由器,而這些路由器使用一種AS內部的路由選擇協議和共同的度量以確定分組在該AS內的路由,同時還使用一種AS之間的路由協議以確定在AS之間的路由。
一個AS內的所有網路都屬於一個行政單位來管轄,一個自治系統的所有路由器在本自治系統內都必須連通。
路由選擇協議
RIP是一種分布式的基於距離向量的路由選擇協議,是網際網路的協議標准,最大優點是簡單。
RIP協議要求網路中每一個路由器都維護從它自己到其他每一個目的網路的唯一最佳距離 [1] 記錄(即一組距離)。 RIP協議只適用於小互聯網。
RIP是應用層協議,使用 UDP 傳送數據。一個RIP報文最多可包括25個路由,如超過,必須再用一個RIP報文傳送。
RIP協議的交換
路由器剛開始工作時,只知道直接連接的網路的距離(距離為1),接著每一個路由器也只和數目非常有限的相鄰路由器交換並更新路由信息。
經過若干次更新後,所有路由器最終都會知道到達本自治系統任何一個網路的最短距離和下一跳路由器的地址,即「收斂」。
RIP的特點:當網路出現故障時,要經過比較長的時間(例如數分鍾) 才能將此信息傳送到所有的路由器,「慢收斂」。
對地址為X的相鄰路由器發來的RIP報文,修改此報文中的所有項目:把「下一跳」欄位中的地址改為X,並把所有的「距離」欄位+1。
開放最短路徑優先OSPF協議:「開放」標明OSPF協議不是受某一家廠商控制,而是公開發表的;「最短路徑優先」是因為使用了Dijkstra提出的最短路徑演算法SPF。OSPF最主要的特徵就是使用分布式的鏈路狀態協議。 OSPF直接用IP數據報傳送。
OSPF的特點:
為了使OSPF 能夠用於規模很大的網路,OSPF 將一個自治系統再劃分為若干個更小的范圍,叫做區域。每一個區域都有一個32 位的區域標識符(用點分十進製表示)。區域也不能太大,在一個區域內的路由器最好不超過200 個。
BGP 所交換的網路可達性的信息就是要到達某個網路所要經過的一系列AS。當BGP 發言人互相交換了網路可達性的信息後,各BGP 發言人就根據所採用的策略從收到的路由信息中找出到達各AS 的較好路由。
一個BGP 發言人與其他自治系統中的BGP 發言人要交換路由信息,就要先建立TCP 連接,即通過TCP傳送,然後在此連接上交換BGP 報文以建立BGP 會話(session),利用BGP 會話交換路由信息。 BGP是應用層協議,藉助TCP傳送。
BGP協議特點:
BGP-4的四種報文
組播提高了數據傳送效率。減少了主幹網出現擁塞的可能性。組播組中的主機可以是在同一個物理網路,也可以來自不同的物理網路(如果有組播路由器的支持)。
IP組播地址讓源設備能夠將分組發送給一組設備。屬於多播組的設備將被分配一個組播組IP地址(一群共同需求主機的相同標識)。
組播地址范圍為224.0.0.0~239.255.255.255(D類地址),一個D類地址表示一個組播組。只能用作分組的目標地址。源地址總是為單播地址。
同單播地址一樣,組播IP地址也需要相應的組播MAC地址在本地網路中實際傳送幀。組播MAC地址以十六進制值01-00-5E打頭,餘下的6個十六進制位是根據IP組播組地址的最後23位轉換得到的。
TCP/IP 協議使用的乙太網多播地址的范圍是:從01-00-5E-00-00-00到01-00-5E-7F-FF-FF .
收到多播數據報的主機,還要在IP 層利用軟體進行過濾,把不是本主機要接收的數據報丟棄。
ICMP和IGMP都使用IP數據報傳遞報文。組播路由器知道的成員關系只是所連接的區域網中有無組播組的成員。
IGMP工作的兩個階段:
只要有一個主機對某個組響應,那麼組播路由器就認為這個組是活躍的;如果經過幾次探詢後沒有一個主機響應,組播路由器就認為本網路上的沒有此組播組的主機,因此就不再把這組的成員關系發給其他的組播路由器。
組播路由協議目的是找出以源主機為根節點的組播轉發樹。構造樹可以避免在路由器之間兜圈子。對不同的多播組對應於不同的多播轉發樹;同一個多播組,對不同的源點也會有不同的多播轉發樹。
組播路由選擇協議常使用的三種演算法:
移動IP技術是移動結點(計算機/伺服器等)以 固定的網路IP地址 ,實現跨越不同網段的 漫遊 功能,並保證了基於網路IP的網路許可權在漫遊過程中不發生任何改變。
路由器是一種具有多個輸入埠和多個輸出埠的專用計算機,其任務是轉發分組。
若路由器處理分組的速率趕不上分組進入隊列的速率,則隊列的存儲空間最終必定減少到零,這就使後面再進入隊列的分組由於沒有存儲空間而只能被丟棄。 路由器中的輸入或輸出隊列產生溢出是造成分組丟失的重要原因。
路由器(網路層)可以互聯兩個不同網路層協議的網段。
網橋(鏈路層)可以互聯兩個物理層和鏈路層不同的網段。
集線器(物理層)不能互聯兩個物理層不同的網段。
路由表根據路由選擇演算法得出的,主要用途是路由選擇,總用軟體來實現。
轉發表由路由表得來,可以用軟體實現,也可以用特殊的硬體來實現。轉發表必須包含完成轉發功能所必需的信息,在轉發表的每一行必須包含從要到達的目的網路到輸出埠和某些MAC地址信息的映射。
⑨ 伺服器端編程屬於計算機網路體系結構的哪個層
屬於應用層。
⑩ 計算機網路由幾部分組成各有什麼功能
計算機網路通常由三個部分組成,它們是資源子網、通信子網和通信協議。
所謂通信子網就是計算機網路中負責數據通信的部分;資源子網是計算機網路中面向用戶的部分,負責全網路面向應用的數據處理工作;而通信雙方必須共同遵守的規則和約定就稱為通信協議,它的存在與否是計算機網路與一般計算機互連系統的根本區別。
(10)伺服器屬於計算機網路哪一層擴展閱讀:
一般地說,將分散的多台計算機、終端和外部設備用通信線路互聯起來,彼此間實現互相通信,並且計算機的硬體、軟體和數據資源大家都可以共同使用,實現資源共享的整個系統就叫做計算機網路。
連入網上的每台計算機本身都是一台完整獨立的設備。它自己可以獨立工作。例如 們可以對它進行啟動、運行和停機等操作。 們還可以通過網路去使用網路上的另外一台計算機。
計算機之間可以用雙絞線、電話線、同軸電纜和光纖等有線通信,也可以使用微波、衛星等無線媒體把它們連接起來。
參考資料:計算機網路系統_網路