A. 按照網路的拓撲結構,計算機網路可以劃分為哪幾種
按照網路的拓撲結構,計算機網路可以劃分為匯流排型拓撲、星型拓撲、環型拓撲、樹型拓撲、網狀拓撲和混合型拓撲。
1、星型拓撲
星型拓撲結構的優點
(1)結構簡單,連接方便,管理和維護都相對容易,而且擴展性強。
(2)網路延遲時間較小,傳輸誤差低。
(3)在同一網段內支持多種傳輸介質,除非中央節點故障,否則網路不會輕易癱瘓。
(4)每個節點直接連到中央節點,故障容易檢測和隔離,可以很方便地排除有故障的節點。
2、匯流排拓撲
匯流排拓撲結構的優點
(1)匯流排結構所需要的電纜數量少,線纜長度短,易於布線和維護。
(2)匯流排結構簡單,又是元源工作,有較高的可靠性。傳輸速率高,可達1~100Mbps。
(3)易於擴充,增加或減少用戶比較方便,結構簡單,組網容易,網路擴展方便
(4)多個節點共用一條傳輸信道,信道利用率高。
3、環型拓撲
環型拓撲的優點
(1)電纜長度短。
(2)增加或減少工作站時,僅需簡單的連接操作。
(3)可使用光纖。
4、樹型拓撲
樹型拓撲的優點
(1)易於擴展。
(2)故障隔離較容易。
5、混合型拓撲
混合型拓撲的優點
(1)故障診斷和隔離較為方便。
(2)易於擴展。
(3)安裝方便。
6、網型拓撲
網型拓撲的優點
(1)節點間路徑多,碰撞和阻塞減少。
(2)局部故障不影響整個網路,可靠性高。
7、開關電源拓撲
樹型拓撲的缺點:
各個節點對根的依賴性太大。
(1)計算機網路拓補方案擴展閱讀
發展歷程
1、誕生階段
20世紀60年代中期之前的第一代計算機網路是以單個計算機為中心的遠程聯機系統,典型應用是由一台計算機和全美范圍內2000多個終端組成的飛機訂票系統,終端是一台計算機的外圍設備,包括顯示器和鍵盤,無CPU和內存
2、形成階段
20世紀60年代中期至70年代的第二代計算機網路是以多個主機通過通信線路互聯起來,為用戶提供服務,興起於60年代後期,典型代表是美國國防部高級研究計劃局協助開發的ARPANET。
3、互聯互通階段
20世紀70年代末至90年代的第三代計算機網路是具有統一的網路體系結構並遵守國際標準的開放式和標准化的網路。ARPANET興起後,計算機網路發展迅猛,各大計算機公司相繼推出自己的網路體系結構及實現這些結構的軟硬體產品。
4、高速網路技術階段
20世紀90年代至今的第四代計算機網路,由於區域網技術發展成熟,出現光纖及高速網路技術,整個網路就像一個對用戶透明的大的計算機系統,發展為以網際網路( Internet)為代表的互聯網。
B. 計算機網路按照拓撲結構可分為哪幾種
計算機網路的拓撲結構主要分為以下幾種類型:
1. 匯流排型網路拓撲:在這種結構中,所有計算機和設備都連接到一條中心傳輸線上,信息沿著這條匯流排進行傳輸。此種拓撲結構簡單,成本較低,但中心傳輸線的故障可能會導致整個網路的癱瘓。
2. 星型網路拓撲:所有計算機和設備都通過獨立的連接線與中心節點(如集線器或交換機)相連。信息傳輸通過中心節點進行。這種結構的管理相對簡單,但中心節點的故障可能會影響到整個網路。
3. 環型網路拓撲:在這種結構中,計算機和設備通過環路連接,信息沿著環路單向傳輸。環型拓撲適用於實時通信系統,但環路中任一節點的故障都可能導致通信中斷。
4. 網狀網路拓撲:在這種結構中,計算機和設備之間通過網狀線路連接,這提高了信息傳遞的可靠性。網狀拓撲適用於大型網路,但管理和維護較為復雜。
以上是計算機網路的四種基本拓撲結構,它們在網路設計、功能、可靠性和通信費用等方面都有各自的特點和應用場景。
C. 計算機網路有哪幾種拓撲結構它們各有何特點
計算機網路的拓撲結構主要有匯流排型拓撲、星型拓撲、環型拓撲、網狀拓撲和混合型拓撲等五種。
1. 匯流排型拓撲:匯流排型拓撲是最簡單的網路拓撲形式之一。所有節點都連接到一個共享傳輸介質上,如同軸電纜或乙太網電纜。這種結構適用於小型網路,易於安裝和配置。但缺點是任何節點的故障都可能影響到整個網路,且不易於擴展。
2.星型拓撲:星型拓撲以中央節點為中心,所有其他節點都直接連接到中央節點上。這種結構易於管理和維護,因為每個節點之間的通信都通過中央節點進行。如果中央節點發生故障,整個網路將癱瘓。星型拓撲適用於大型網路,可以通過添加更多節點來擴展網路容量。
3.環型拓撲:環型拓撲中的所有節點都相互連接,形成一個閉合的環。每個節點都有固定的發送和接收方向,數據傳輸效率較高。然而,如果其中一個節點出現故障,可能會導致整個網路的癱瘓。這種結構通常用於具有環形布局的區域網中。
4.網狀拓撲:網狀拓撲是一種復雜的網路結構,其每個節點都以多個分支的形式連接到網路中,從而確保在節點間有多個可能的通信路徑。這種結構具有高度的冗餘性,可以在某個節點發生故障時仍保持網路的連通性。但它需要復雜的配置和管理,並且可能會產生大量的網路通信流量。
5.混合型拓撲:混合型拓撲結合了上述幾種基本結構的特性。通常在網路中有幾個中心節點和一個集中的控制中心或多個網路骨乾的連接。在某些特殊場景下需要特殊的結構設計以滿足特定需求,而這類場景使用混合型拓撲是最常見的解決方案。其特點是兼容多種網路的優點,但同時也可能帶來管理和配置的復雜性。
這些拓撲結構各有其特點和應用場景,選擇哪種結構取決於網路規模、性能和需求等多種因素的綜合考量。對於實際構建和部署網路系統而言,應根據實際需求進行選擇和使用。