『壹』 請問如何並行化訓練神經網路模型
各個框架都有自己的方法實現並行計算。
我常用的是pytorch,可通過以下方法實現並行計算(單機多卡):
new_net = nn.DataParallel(net, device_ids=[0, 1])
output = new_net(input)
通過device_ids參數可以指定在哪些GPU上進行優化
『貳』 怎樣可以提高神經網路的收斂速度
摘要 先確定神經網路的訓練演算法和神經元節點數。
『叄』 如何建立bp神經網路預測 模型
建立BP神經網路預測 模型,可按下列步驟進行:
1、提供原始數據
2、訓練數據預測數據提取及歸一化
3、BP網路訓練
4、BP網路預測
5、結果分析
現用一個實際的例子,來預測2015年和2016年某地區的人口數。
已知2009年——2014年某地區人口數分別為3583、4150、5062、4628、5270、5340萬人
執行BP_main程序,得到
[ 2015, 5128.631704710423946380615234375]
[ 2016, 5100.5797325642779469490051269531]
代碼及圖形如下。
『肆』 如何在R語言中進行神經網路模型的建立
不能發鏈接,所以我復制過來了。
#載入程序和數據
library(RSNNS)
data(iris)
#將數據順序打亂
iris <- iris[sample(1:nrow(iris),length(1:nrow(iris))),1:ncol(iris)]
#定義網路輸入
irisValues <- iris[,1:4]
#定義網路輸出,並將數據進行格式轉換
irisTargets <- decodeClassLabels(iris[,5])
#從中劃分出訓練樣本和檢驗樣本
iris <- splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)
#數據標准化
iris <- normTrainingAndTestSet(iris)
#利用mlp命令執行前饋反向傳播神經網路演算法
model <- mlp(iris$inputsTrain, iris$targetsTrain, size=5, learnFunc="Quickprop", learnFuncParams=c(0.1, 2.0, 0.0001, 0.1),maxit=100, inputsTest=iris$inputsTest, targetsTest=iris$targetsTest)
#利用上面建立的模型進行預測
predictions <- predict(model,iris$inputsTest)
#生成混淆矩陣,觀察預測精度
confusionMatrix(iris$targetsTest,predictions)
#結果如下:
# predictions
#targets 1 2 3
# 1 8 0 0
# 2 0 4 0
# 3 0 1 10
『伍』 bp神經網路 Matlab實現總是達不到精度,請問應該要怎麼弄
更改參數,如修改學習率、更換訓練函數如trainlm等。
更改結構:增加隱層節點數、甚至增加隱層數,可以做成雙隱層。
BP(Back Propagation)神經網路是86年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hidden layer)和輸出層(output layer)。
『陸』 2.搭建一個神經網路模型訓練MNIST手寫體數字數據集中遇到的問題及解決方法
批量輸入後,如何使用numpy矩陣計算的方法計算各權值梯度,提高計算速度
def backprop(self, x, y): #x為多維矩陣。每列為一個x值。 y為多維矩陣。每列為一個y值。
batch_num=x.shape[1]
#print(x.shape)
#print(y.shape)
"""創建兩個變數,用來存儲所有b值和所有w值對應的梯度值。初始化為0.nabla_b為一個list,形狀與biases的形狀完全一致。nabla_w 為一個list,形狀與weights的形狀完全一致。
"""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
# feedforward
"""activations,用來所有中間層和輸出層在一次前向計算過程中的最終輸出值,即a值。該值記錄下來,以供後期使用BP演算法求每個b和w的梯度。
"""
activation = x #x為本批多個x為列組成的矩陣。
activations = [x] # list to store all the activations, layer by layer
"""zs,用來所有中間層和輸出層在一次前向計算過程中的線性輸出值,即z值。該值記錄下來,以供後期使用BP演算法求每個b和w的梯度。
"""
zs = [] # list to store all the z vectors, layer by layer ,zs的每個元素為本batch的x對應的z為列構成的矩陣。
"""
通過一次正向計算,將中間層和輸出層所有的z值和a值全部計算出來,並存儲起來。供接下來求梯度使用。
"""
for b, w in zip(self.biases, self.weights):
#print(w.shape)
#print(np.dot(w, activation).shape)
#print(b.shape)
z = np.dot(w, activation)+b #z為本batch的x對應的z為列構成的矩陣。
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
"""
以下部分是採用BP演算法求解每個可訓練參數的計算方法。是權重更新過程中的關鍵。
"""
# backward pass
# 求出輸出層的delta值
delta = ((activations[-1]-y) * sigmoid_prime(zs[-1]))
nabla_b[-1] = delta.mean(axis=1).reshape(-1, 1)
nabla_w[-1] =np.dot(delta,activations[-2].transpose())/batch_num
# Note that the variable l in the loop below is used a little
# differently to the notation in Chapter 2 of the book. Here,
# l = 1 means the last layer of neurons, l = 2 is the
# second-last layer, and so on. It's a renumbering of the
# scheme in the book, used here to take advantage of the fact
# that Python can use negative indices in lists.
for l in range(2, self.num_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = (np.dot(self.weights[-l+1].transpose(), delta) * sp)
nabla_b[-l] = delta.mean(axis=1).reshape(-1, 1)
nabla_w[-l] =np.dot(delta,activations[-l-1].transpose())/batch_num
return (nabla_b, nabla_w)
##梯度計算後,如何更新各權值
def update_mini_batch(self, mini_batch, eta):
"""Update the network's weights and biases by applying
gradient descent using backpropagation to a single mini batch.
The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
is the learning rate."""
""" 初始化變數,去存儲各訓練參數的微分和。
"""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
""" 循環獲取batch中的每個數據,獲取各訓練參數的微分,相加後獲得各訓練參數的微分和。
"""
x_batch=None
y_batch=None
for x, y in mini_batch:
if( x_batch is None):
x_batch=x
else:
x_batch=np.append(x_batch,x,axis=1)
if( y_batch is None):
y_batch=y
else:
y_batch=np.append(y_batch,y,axis=1)
delta_nabla_b, delta_nabla_w = self.backprop(x_batch, y_batch)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
""" 使用各訓練參數的平均微分和與步長的乘積,去更新每個訓練參數
"""
self.weights = [w-eta*nw
for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-eta*nb
for b, nb in zip(self.biases, nabla_b)]
『柒』 神經網路模型 nlp是什麼意思
NLP是神經語言程序學 (Neuro-Linguistic Programming) 的英文縮寫。在香港,也有意譯為身心語法程式學的。N (Neuro) 指的是神經系統,包括大腦和思維過程。L (Linguistic) 是指語言,更准確點說,是指從感覺信號的輸入到構成意思的過程。P (Programming) 是指為產生某種後果而要執行的一套具體指令。即指我們思維上及行為上的習慣,就如同電腦中的程式,可以透過更新軟體而改變。
故此,NLP也可以解釋為研究我們的大腦如何工作的學問。知道大腦如何工作後,我們可以配合和提升它,從而使人生更成功快樂。也因此,把NLP譯為"身心語法程式學"或"神經語言程式學"。
『捌』 BP神經網路模型各個參數的選取問題
樣本變數不需要那麼多,因為神經網路的信息存儲能力有限,過多的樣本會造成一些有用的信息被丟棄。如果樣本數量過多,應增加隱層節點數或隱層數目,才能增強學習能力。
一、隱層數
一般認為,增加隱層數可以降低網路誤差(也有文獻認為不一定能有效降低),提高精度,但也使網路復雜化,從而增加了網路的訓練時間和出現「過擬合」的傾向。一般來講應設計神經網路應優先考慮3層網路(即有1個隱層)。一般地,靠增加隱層節點數來獲得較低的誤差,其訓練效果要比增加隱層數更容易實現。對於沒有隱層的神經網路模型,實際上就是一個線性或非線性(取決於輸出層採用線性或非線性轉換函數型式)回歸模型。因此,一般認為,應將不含隱層的網路模型歸入回歸分析中,技術已很成熟,沒有必要在神經網路理論中再討論之。
二、隱層節點數
在BP 網路中,隱層節點數的選擇非常重要,它不僅對建立的神經網路模型的性能影響很大,而且是訓練時出現「過擬合」的直接原因,但是目前理論上還沒有一種科學的和普遍的確定方法。 目前多數文獻中提出的確定隱層節點數的計算公式都是針對訓練樣本任意多的情況,而且多數是針對最不利的情況,一般工程實踐中很難滿足,不宜採用。事實上,各種計算公式得到的隱層節點數有時相差幾倍甚至上百倍。為盡可能避免訓練時出現「過擬合」現象,保證足夠高的網路性能和泛化能力,確定隱層節點數的最基本原則是:在滿足精度要求的前提下取盡可能緊湊的結構,即取盡可能少的隱層節點數。研究表明,隱層節點數不僅與輸入/輸出層的節點數有關,更與需解決的問題的復雜程度和轉換函數的型式以及樣本數據的特性等因素有關。
『玖』 如何提高BP神經網路模型的預測精度
直接調用歸一化函數就可以啦,不會的話看一下這個帖子吧:遺傳演算法優化BP神經網路的案例(matlab代碼分享)
http://www.ilovematlab.cn/forum. ... &fromuid=679292
希望對你有幫助!