① 路由器由哪幾部分組成,簡要說明一下各部分的作用
路由器的組成大致可以分成兩部分:內部構件和外部構件
內部構件:
1、RAM(隨機存儲器)
功能:存放路由表;存放ARP告訴緩存;存放快速交換緩存;存放分組交換緩沖;存放解壓後的IOS;路由器加電後,存放running配置文件;
2、NVRAM(非易失性RAM)
功能:存儲路由器的startup配置文件;存儲路由器的備份。
3、FLASH(快速快閃記憶體)
功能:存放IOS和微代碼。
4、ROM(只讀存儲器)
功能:存放POST診斷所需的指令;存放mini-ios;存放ROM監控模式的代碼。
5、CPU(中央處理器)
衡量路由器性能的重要指標,負責路由計算,路由選擇等。
6、背板:
背板能力是一個重要參數,尤其在交換機中。
外部構件就是各種接線的介面。
(1)按網路構成方式路由器擴展閱讀:
路由器作用及功能
第一,網路互連:路由器支持各種區域網和廣域網介面,主要用於互連區域網和廣域網,實現不同網路互相通信;
第二,數據處理:提供包括分組過濾、分組轉發、優先順序、復用、加密、壓縮和防火牆等功能;
第三,網路管理:路由器提供包括路由器配置管理、性能管理、容錯管理和流量控制等功能。
從過濾網路流量的角度來看,路由器的作用與交換機和網橋非常相似。但是與工作在網路數據鏈路層,從物理上劃分網段的交換機不同,路由器使用專門的軟體協議從邏輯上對整個網路進行劃分,有的路由器僅支持單一協議,但大部分路由器可以支持多種協議的傳輸。
② 路由器結構
輸入埠是物理鏈路和輸入包的進口處。埠通常由線卡提供,一塊線卡一般支持4、8或16個埠,一個輸入埠具有許多功能。第一個功能是進行數據鏈路層的封裝和解封裝。第二個功能是在轉發表中查找輸入包目的地址從而決定目的埠(稱為路由查找),路由查找可以使用一般的硬體來實現,或者通過在每塊線卡上嵌入一個微處理器來完成。第三,為了提供QoS(服務質量),埠要對收到的數據包進行業務分類,分成幾個預定義的服務級別。第四,埠可能需要運行諸如SLIP(串列線網際協議)和PPP(點對點協議)這樣的數據鏈路級協議或者諸如PPTP(點對點隧道協議)這樣的網路級協議。一旦路由查找完成,必須用交換開關將包送到其輸出埠。如果路由器是輸入端加隊列的,則有幾個輸入端共享同一個交換開關。這樣輸入埠的最後一項功能是參加對公共資源(如交換開關)的仲裁協議。普通路由器中該部分的功能完全由路由器的中央處理器來執行,制約了數據包的轉發速率(每秒幾千到幾萬個數據包)。高端路由器中普遍實現了分布式硬體處理,介面部分有強大的CPU處理器和大容量的高速緩存,使介面數據速率達到10Gbps,滿足了高速骨幹網路的傳輸要求。
路由器的轉發機制對路由器的性能影響很大,常見的轉發方式有:進程轉發、快速轉發、優化轉發、分布式快速轉發。進程轉發將數據包從介面緩存拷貝到處理器的緩存中進行處理,先查看路由表再查看ARP表,重新封裝數據包後將數據包拷貝到介面緩存中准備傳送出去,兩次查表和拷貝數據極大的佔用CPU的處理時間,所以這是最慢的交換方式,只在低檔路由器中使用。快速交換將兩次查表的結果作了緩存,無需拷貝數據,所以CPU處理數據包的時間縮短了。優化交換在快速交換的基礎上略作改進,將緩存表的數據結構作了改變,用深度為4的256叉樹代替了深度為32的2叉樹或哈希表(hash),CPU的查找時間進一步縮短。這兩種轉發方式在中高檔路由器中普遍加以應用。在骨幹路由器中由於路由表條目的成倍增加,路由表或ARP表的任何變化都會引起大部分路由緩沖失效,以前的交換方式都不再適用,最新的交換方式是分布式快速交換,它在每個介面處理板上構建一個鏡像(mirror)路由表和MAC地址表相結合的轉發表,該表是深度為4的256叉樹,但每個節點的數據部分是指向另一個稱為鄰接表的指針,鄰接表中含有路由器成幀所需要的全部信息。這種結構使得轉發表完全由路由表和ARP表來同步更新,本身不再需要額外的老化進程,克服了其它交換方式需要不斷對緩存表進行老化的缺陷。
交換結構最常見的有匯流排型、共享內存型、Cross-bar空分結構型。匯流排型結構最簡單,所有輸入和輸出介面掛在一個匯流排上,同一時間只有兩個介面通過匯流排交換數據。其缺點是其交換容量受限於匯流排的容量以及為共享匯流排仲裁所帶來的額外開銷。在調度共享數據傳輸通道上必須花費一定的開銷,而且匯流排帶寬的擴展受到限制,制約了交換容量的擴張,一般在中檔路由器中使用這種結構。共享內存型結構中,進來的包被存貯在共享存貯器中,所交換的僅是包的指針,這提高了交換容量,但它受限於內存的訪問速度和存儲器的管理效率,盡管存貯器容量每18個月能夠翻一番,但存貯器的存取時間每年僅降低5%,這是共享存貯器交換開關的一個固有限制。共享內存型結構在早期的中低檔路由器中普遍應用。Cross-bar空分結構相當於多條並行工作的匯流排,具有N×N個交叉點的交叉開關可以被認為具有2N條匯流排。如果一個交叉是閉合,輸入匯流排上的數據在輸出匯流排上可用,否則不可用。對流經它的數據不斷進行開關切換,可見開關速度決定了交換容量,隨著各種高速器件的不斷涌現,這種結構的交換容量普遍達到幾十Gbps以上,成為目前高端路由器和交換機的首選交換結構。
路由計算或處理部分主要是運行動態路由協議。接收和發送路由信息,計算出路由表,為數據包的轉發提供依據。各種檔次的路由器的路由表條目的大小存在很大差異,從幾千條到幾百萬條不等,因此高端路由器的路由表的構造對路由查找速度影響很大,其路由表的數據結構常採用二叉樹的形式,查找與更新的速度都比較快。
輸出埠在包被發送到輸出鏈路之前對包存貯,可以實現復雜的調度演算法以支持優先等級要求。與輸入埠一樣,輸出埠同樣要能支持數據鏈路層的封裝和解封裝,以及許多較高級協議。
一般而言,路由器對一個數據包的交換要經過一系列的復雜處理,主要有以下幾個方面:
1)壓縮和解壓縮
2)加密和解密
3)用輸入/輸出訪問列表進行報文過濾
4)輸入速率限制
5)進行網路地址翻譯(NAT)
6)處理影響本報文的任何策略路由
7)應用防火牆特性對包進行檢查
8)處理Web頁緩沖的重定向
9)物理廣播處理,如幫助性地址(ip help address)
10)利用啟用的QoS機制對數據包排隊
11)TTL值的處理
12)處理IP頭部中的任選項
13)檢查數據包的完整性
③ 網路的組網方式是什麼
常見的三種:寬頻路由器組網方式、無線寬頻路由器組網方式、雙網卡互聯組網方式。
光介面板的傳輸距離特性:在OptiX 155/622H(Metro1000)設備中,即便是同一種光板,對於不同的傳輸距離,也都有其對應的型號。因此在組網中,應根據實際需要傳輸的距離選擇其對應型號的單板,以防止接收光功率低於接收靈敏度或光功率過載的現象發生。
網路結構:
基本網路結構有環形網和鏈形網。由於環形網具有良好的自愈能力,因此只要路由分布允許,應盡可能組建環形網。鐵路、公路沿線網,由於路由分布的關系主要採用鏈形網。這種組網方式比較簡單,使用的光纖數少,但對業務通常不能實現保護。
不過在條件允許的情況下,我們可以通過把鏈形網改造成環形網來實現對業務的保護。鏈形網中只要各站之間的距離不太長(一般三個站之間的最大距離≤80km),而線路光纜又足夠(四條光纖)時,我們也建議將其建成環形網,將鏈形網建成環形網。
以上內容參考:網路-組網技術與配置
④ 路由器的工作原理是什麼
路由器的工作原理:路由器是連接網際網路中各區域網、廣域網的設備,它會根據信道的情況自動選擇和設定路由,以最佳路徑,按前後順序發送信號。
路由器用於連接多個邏輯上分開的網路,所謂邏輯網路是代表一個單獨的網路或者一個子網。當數據從一個子網傳輸到另一個子網時,可通過路由器的路由功能來完成。
路由器通常位於網路層
因而路由技術也是與網路層相關的一門技術, 路由器與早期的網橋相比有很多的變化和不同。 通常而言,網橋的局限性比較大,它只能夠連通數據鏈路層相同或者類似的網路,不能夠連接數據鏈路層之間有著較大差異的網路。
但是路由器卻不同,它打破了這個局限,能夠連接任意的兩種不同的網路,但是這兩種不同的網路之間要遵守一個原則,就是使用相同的網路層協議,這樣才能夠被路由器連接。
以上內容參考:網路-路由器
⑤ 路由器的組成有哪幾部分各部分的作用是什麼
路由器的組成有:
1、電源介面(POWER):介面連接電源。
2、復位鍵(RESET):此按鍵可以還原路由器的出廠設置。
3、貓(MODEM)或者是交換機與路由器連介面(WAN):此介面用一條網線與家用寬頻數據機(或者與交換機)進行連接。
4、電腦與路由器連介面(LAN1~4):此介面用一條網線把電腦與路由器進行連接。
作用功能:
路由器最主要的功能可以理解為實現信息的轉送。因此,我們把這個過程稱之為定址過程。因為在路由器處在不同網路之間,但並不一定是信息的最終接收地址。
在路由器中, 通常存在著一張路由表。根據傳送網站傳送的信息的最終地址,尋找下一轉發地址,應該是哪個網路。其實深入簡出的說,就如同快遞公司來發送郵件。
郵件並不是瞬間到達最終目的地,而是通過不同分站的分揀,不斷的接近最終地址,從而實現郵件的投遞過程的。路由器定址過程也是類似原理。通過最終地址,在路由表中進行匹配。
⑥ 5、路由器獲知網路的三種基本方式分別是什麼
動態iP,靜態ip,撥號上網。
靜態IP上網,又叫做固定IP地址上網。這種上網方式,寬頻運營商會提供一根一個IP地址、子網掩碼、網關和DNS伺服器地址給用戶。在未使用路由器的情況下,只需要把這根入戶網線連接到電腦上,並且手動設置電腦上的IP地址,這樣電腦才能上網。
(6)按網路構成方式路由器擴展閱讀:
基本的靜態路由舉例如圖所示,由兩個路由器R1和R2組成(介面號和IP地址在圖中給出),它們分別連接了各自的網路:R1連接了子網192.168.0.0/24,R2連接了子網192.168.2.0/24。
在沒有配置靜態路由的情況下,這兩個子網中的計算機A、B之間是不能通信的。從計算機A發往計算機B的IP包,在到達R1後,R1不知道如何到達計算機B所在的網段192.168.2.0/24(即R1上沒有去往192.168.2.0/24的路由表),同樣R2也不知道如何到達計算機A所在的網段192.168.0.0/24,因此通信失敗。
⑦ 網路中的路由器是什麼呀
路由器是什麼
路由器是一種連接多個網路或網段的網路設備,它能將不同網路或網段之間的數據信息進行「翻譯」,以使它們能夠相互「讀」懂對方的數據,從而構成一個更大的網路。
路由器有兩大典型功能,即數據通道功能和控制功能。數據通道功能包括轉發決定、背板轉發以及輸出鏈路調度等,一般由特定的硬體來完成;控制功能一般用軟體來實現,包括與相鄰路由器之間的信息交換、系統配置、系統管理等。
多少年來,路由器的發展有起有伏。90年代中期,傳統路由器成為制約網際網路發展的瓶頸。ATM交換機取而代之,成為IP骨幹網的核心,路由器變成了配角。進入90年代末期,Internet規模進一步擴大,流量每半年翻一番,ATM網又成為瓶頸,路由器東山再起,Gbps路由交換機在1997年面世後,人們又開始以Gbps路由交換機取代ATM交換機,架構以路由器為核心的骨幹網。
附:路由器原理及路由協議
近十年來,隨著計算機網路規模的不斷擴大,大型互聯網路(如Internet)的迅猛發展,路由技術在網路技術中已逐漸成為關鍵部分,路由器也隨之成為最重要的網路設備。用戶的需求推動著路由技術的發展和路由器的普及,人們已經不滿足於僅在本地網路上共享信息,而希望最大限度地利用全球各個地區、各種類型的網路資源。而在目前的情況下,任何一個有一定規模的計算機網路(如企業網、校園網、智能大廈等),無論採用的是快速以大網技術、FDDI技術,還是ATM技術,都離不開路由器,否則就無法正常運作和管理。
1 網路互連
把自己的網路同其它的網路互連起來,從網路中獲取更多的信息和向網路發布自己的消息,是網路互連的最主要的動力。網路的互連有多種方式,其中使用最多的是網橋互連和路由器互連。
1.1 網橋互連的網路
網橋工作在OSI模型中的第二層,即鏈路層。完成數據幀(frame)的轉發,主要目的是在連接的網路間提供透明的通信。網橋的轉發是依據數據幀中的源地址和目的地址來判斷一個幀是否應轉發和轉發到哪個埠。幀中的地址稱為「MAC」地址或「硬體」地址,一般就是網卡所帶的地址。
網橋的作用是把兩個或多個網路互連起來,提供透明的通信。網路上的設備看不到網橋的存在,設備之間的通信就如同在一個網上一樣方便。由於網橋是在數據幀上進行轉發的,因此只能連接相同或相似的網路(相同或相似結構的數據幀),如乙太網之間、乙太網與令牌環(token ring)之間的互連,對於不同類型的網路(數據幀結構不同),如乙太網與X.25之間,網橋就無能為力了。
網橋擴大了網路的規模,提高了網路的性能,給網路應用帶來了方便,在以前的網路中,網橋的應用較為廣泛。但網橋互連也帶來了不少問題:一個是廣播風暴,網橋不阻擋網路中廣播消息,當網路的規模較大時(幾個網橋,多個乙太網段),有可能引起廣播風暴(broadcasting storm),導致整個網路全被廣播信息充滿,直至完全癱瘓。第二個問題是,當與外部網路互連時,網橋會把內部和外部網路合二為一,成為一個網,雙方都自動向對方完全開放自己的網路資源。這種互連方式在與外部網路互連時顯然是難以接受的。問題的主要根源是網橋只是最大限度地把網路溝通,而不管傳送的信息是什麼。
1.2 路由器互連網路
路由器互連與網路的協議有關,我們討論限於TCP/IP網路的情況。
路由器工作在OSI模型中的第三層,即網路層。路由器利用網路層定義的「邏輯」上的網路地址(即IP地址)來區別不同的網路,實現網路的互連和隔離,保持各個網路的獨立性。路由器不轉發廣播消息,而把廣播消息限制在各自的網路內部。發送到其他網路的數據茵先被送到路由器,再由路由器轉發出去。
IP路由器只轉發IP分組,把其餘的部分擋在網內(包括廣播),從而保持各個網路具有相對的獨立性,這樣可以組成具有許多網路(子網)互連的大型的網路。由於是在網路層的互連,路由器可方便地連接不同類型的網路,只要網路層運行的是IP協議,通過路由器就可互連起來。
網路中的設備用它們的網路地址(TCP/IP網路中為IP地址)互相通信。IP地址是與硬體地址無關的「邏輯」地址。路由器只根據IP地址來轉發數據。IP地址的結構有兩部分,一部分定義網路號,另一部分定義網路內的主機號。目前,在Internet網路中採用子網掩碼來確定IP地址中網路地址和主機地址。子網掩碼與IP地址一樣也是32bit,並且兩者是一一對應的,並規定,子網掩碼中數字為「1」所對應的IP地址中的部分為網路號,為「0」所對應的則為主機號。網路號和主機號合起來,才構成一個完整的IP地址。同一個網路中的主機IP地址,其網路號必須是相同的,這個網路稱為IP子網。
通信只能在具有相同網路號的IP地址之間進行,要與其它IP子網的主機進行通信,則必須經過同一網路上的某個路由器或網關(gateway)出去。不同網路號的IP地址不能直接通信,即使它們接在一起,也不能通信。
路由器有多個埠,用於連接多個IP子網。每個埠的IP地址的網路號要求與所連接的IP子網的網路號相同。不同的埠為不同的網路號,對應不同的IP子網,這樣才能使各子網中的主機通過自己子網的IP地址把要求出去的IP分組送到路由器上
2 路由原理
當IP子網中的一台主機發送IP分組給同一IP子網的另一台主機時,它將直接把IP分組送到網路上,對方就能收到。而要送給不同IP於網上的主機時,它要選擇一個能到達目的子網上的路由器,把IP分組送給該路由器,由路由器負責把IP分組送到目的地。如果沒有找到這樣的路由器,主機就把IP分組送給一個稱為「預設網關(default gateway)」的路由器上。「預設網關」是每台主機上的一個配置參數,它是接在同一個網路上的某個路由器埠的IP地址。
路由器轉發IP分組時,只根據IP分組目的IP地址的網路號部分,選擇合適的埠,把IP分組送出去。同主機一樣,路由器也要判定埠所接的是否是目的子網,如果是,就直接把分組通過埠送到網路上,否則,也要選擇下一個路由器來傳送分組。路由器也有它的預設網關,用來傳送不知道往哪兒送的IP分組。這樣,通過路由器把知道如何傳送的IP分組正確轉發出去,不知道的IP分組送給「預設網關」路由器,這樣一級級地傳送,IP分組最終將送到目的地,送不到目的地的IP分組則被網路丟棄了。
目前TCP/IP網路,全部是通過路由器互連起來的,Internet就是成千上萬個IP子網通過路由器互連起來的國際性網路。這種網路稱為以路由器為基礎的網路(router based network),形成了以路由器為節點的「網間網」。在「網間網」中,路由器不僅負責對IP分組的轉發,還要負責與別的路由器進行聯絡,共同確定「網間網」的路由選擇和維護路由表。
路由動作包括兩項基本內容:尋徑和轉發。尋徑即判定到達目的地的最佳路徑,由路由選擇演算法來實現。由於涉及到不同的路由選擇協議和路由選擇演算法,要相對復雜一些。為了判定最佳路徑,路由選擇演算法必須啟動並維護包含路由信息的路由表,其中路由信息依賴於所用的路由選擇演算法而不盡相同。路由選擇演算法將收集到的不同信息填入路由表中,根據路由表可將目的網路與下一站(nexthop)的關系告訴路由器。路由器間互通信息進行路由更新,更新維護路由表使之正確反映網路的拓撲變化,並由路由器根據量度來決定最佳路徑。這就是路由選擇協議(routing protocol),例如路由信息協議(RIP)、開放式最短路徑優先協議(OSPF)和邊界網關協議(BGP)等。
轉發即沿尋徑好的最佳路徑傳送信息分組。路由器首先在路由表中查找,判明是否知道如何將分組發送到下一個站點(路由器或主機),如果路由器不知道如何發送分組,通常將該分組丟棄;否則就根據路由表的相應表項將分組發送到下一個站點,如果目的網路直接與路由器相連,路由器就把分組直接送到相應的埠上。這就是路由轉發協議(routed protocol)。
路由轉發協議和路由選擇協議是相互配合又相互獨立的概念,前者使用後者維護的路由表,同時後者要利用前者提供的功能來發布路由協議數據分組。下文中提到的路由協議,除非特別說明,都是指路由選擇協議,這也是普遍的習慣。
3 路由協議
典型的路由選擇方式有兩種:靜態路由和動態路由。
靜態路由是在路由器中設置的固定的路由表。除非網路管理員干預,否則靜態路由不會發生變化。由於靜態路由不能對網路的改變作出反映,一般用於網路規模不大、拓撲結構固定的網路中。靜態路由的優點是簡單、高效、可靠。在所有的路由中,靜態路由優先順序最高。當動態路由與靜態路由發生沖突時,以靜態路由為准。
動態路由是網路中的路由器之間相互通信,傳遞路由信息,利用收到的路由信息更新路由器表的過程。它能實時地適應網路結構的變化。如果路由更新信息表明發生了網路變化,路由選擇軟體就會重新計算路由,並發出新的路由更新信息。這些信息通過各個網路,引起各路由器重新啟動其路由演算法,並更新各自的路由表以動態地反映網路拓撲變化。動態路由適用於網路規模大、網路拓撲復雜的網路。當然,各種動態路由協議會不同程度地佔用網路帶寬和CPU資源。
靜態路由和動態路由有各自的特點和適用范圍,因此在網路中動態路由通常作為靜態路由的補充。當一個分組在路由器中進行尋徑時,路由器首先查找靜態路由,如果查到則根據相應的靜態路由轉發分組;否則再查找動態路由。
根據是否在一個自治域內部使用,動態路由協議分為內部網關協議(IGP)和外部網關協議(EGP)。這里的自治域指一個具有統一管理機構、統一路由策略的網路。自治域內部採用的路由選擇協議稱為內部網關協議,常用的有RIP、OSPF;外部網關協議主要用於多個自治域之間的路由選擇,常用的是BGP和BGP-4。下面分別進行簡要介紹。
3.1 RIP路由協議
RIP協議最初是為Xerox網路系統的Xerox parc通用協議而設計的,是Internet中常用的路由協議。RIP採用距離向量演算法,即路由器根據距離選擇路由,所以也稱為距離向量協議。路由器收集所有可到達目的地的不同路徑,並且保存有關到達每個目的地的最少站點數的路徑信息,除到達目的地的最佳路徑外,任何其它信息均予以丟棄。同時路由器也把所收集的路由信息用RIP協議通知相鄰的其它路由器。這樣,正確的路由信息逐漸擴散到了全網。
RIP使用非常廣泛,它簡單、可靠,便於配置。但是RIP只適用於小型的同構網路,因為它允許的最大站點數為15,任何超過15個站點的目的地均被標記為不可達。而且RIP每隔30s一次的路由信息廣播也是造成網路的廣播風暴的重要原因之一。
3.2 OSPF路由協議
80年代中期,RIP已不能適應大規模異構網路的互連,0SPF隨之產生。它是網間工程任務組織(1ETF)的內部網關協議工作組為IP網路而開發的一種路由協議。
0SPF是一種基於鏈路狀態的路由協議,需要每個路由器向其同一管理域的所有其它路由器發送鏈路狀態廣播信息。在OSPF的鏈路狀態廣播中包括所有介面信息、所有的量度和其它一些變數。利用0SPF的路由器首先必須收集有關的鏈路狀態信息,並根據一定的演算法計算出到每個節點的最短路徑。而基於距離向量的路由協議僅向其鄰接路由器發送有關路由更新信息。
與RIP不同,OSPF將一個自治域再劃分為區,相應地即有兩種類型的路由選擇方式:當源和目的地在同一區時,採用區內路由選擇;當源和目的地在不同區時,則採用區間路由選擇。這就大大減少了網路開銷,並增加了網路的穩定性。當一個區內的路由器出了故障時並不影響自治域內其它區路由器的正常工作,這也給網路的管理、維護帶來方便。
3.3 BGP和BGP-4路由協議
BGP是為TCP/IP互聯網設計的外部網關協議,用於多個自治域之間。它既不是基於純粹的鏈路狀態演算法,也不是基於純粹的距離向量演算法。它的主要功能是與其它自治域的BGP交換網路可達信息。各個自治域可以運行不同的內部網關協議。BGP更新信息包括網路號/自治域路徑的成對信息。自治域路徑包括到達某個特定網路須經過的自治域串,這些更新信息通過TCP傳送出去,以保證傳輸的可靠性。
為了滿足Internet日益擴大的需要,BGP還在不斷地發展。在最新的BGp4中,還可以將相似路由合並為一條路由。
3.4 路由表項的優先問題
在一個路由器中,可同時配置靜態路由和一種或多種動態路由。它們各自維護的路由表都提供給轉發程序,但這些路由表的表項間可能會發生沖突。這種沖突可通過配置各路由表的優先順序來解決。通常靜態路由具有默認的最高優先順序,當其它路由表表項與它矛盾時,均按靜態路由轉發。
4 路由演算法
路由演算法在路由協議中起著至關重要的作用,採用何種演算法往往決定了最終的尋徑結果,因此選擇路由演算法一定要仔細。通常需要綜合考慮以下幾個設計目標:
——(1)最優化:指路由演算法選擇最佳路徑的能力。
——(2)簡潔性:演算法設計簡潔,利用最少的軟體和開銷,提供最有效的功能。
——(3)堅固性:路由演算法處於非正常或不可預料的環境時,如硬體故障、負載過高或操作失誤時,都能正確運行。由於路由器分布在網路聯接點上,所以在它們出故障時會產生嚴重後果。最好的路由器演算法通常能經受時間的考驗,並在各種網路環境下被證實是可靠的。
——(4)快速收斂:收斂是在最佳路徑的判斷上所有路由器達到一致的過程。當某個網路事件引起路由可用或不可用時,路由器就發出更新信息。路由更新信息遍及整個網路,引發重新計算最佳路徑,最終達到所有路由器一致公認的最佳路徑。收斂慢的路由演算法會造成路徑循環或網路中斷。
——(5)靈活性:路由演算法可以快速、准確地適應各種網路環境。例如,某個網段發生故障,路由演算法要能很快發現故障,並為使用該網段的所有路由選擇另一條最佳路徑。
路由演算法按照種類可分為以下幾種:靜態和動態、單路和多路、平等和分級、源路由和透明路由、域內和域間、鏈路狀態和距離向量。前面幾種的特點與字面意思基本一致,下面著重介紹鏈路狀態和距離向量演算法。
鏈路狀態演算法(也稱最短路徑演算法)發送路由信息到互聯網上所有的結點,然而對於每個路由器,僅發送它的路由表中描述了其自身鏈路狀態的那一部分。距離向量演算法(也稱為Bellman-Ford演算法)則要求每個路由器發送其路由表全部或部分信息,但僅發送到鄰近結點上。從本質上來說,鏈路狀態演算法將少量更新信息發送至網路各處,而距離向量演算法發送大量更新信息至鄰接路由器。
由於鏈路狀態演算法收斂更快,因此它在一定程度上比距離向量演算法更不易產生路由循環。但另一方面,鏈路狀態演算法要求比距離向量演算法有更強的CPU能力和更多的內存空間,因此鏈路狀態演算法將會在實現時顯得更昂貴一些。除了這些區別,兩種演算法在大多數環境下都能很好地運行。
最後需要指出的是,路由演算法使用了許多種不同的度量標准去決定最佳路徑。復雜的路由演算法可能採用多種度量來選擇路由,通過一定的加權運算,將它們合並為單個的復合度量、再填入路由表中,作為尋徑的標准。通常所使用的度量有:路徑長度、可靠性、時延、帶寬、負載、通信成本等
5 新一代路由器
由於多媒體等應用在網路中的發展,以及ATM、快速乙太網等新技術的不斷採用,網路的帶寬與速率飛速提高,傳統的路由器已不能滿足人們對路由器的性能要求。因為傳統路由器的分組轉發的設計與實現均基於軟體,在轉發過程中對分組的處理要經過許多環節,轉發過程復雜,使得分組轉發的速率較慢。另外,由於路由器是網路互連的關鍵設備,是網路與其它網路進行通信的一個「關口」,對其安全性有很高的要求,因此路由器中各種附加的安全措施增加了CPU的負擔,這樣就使得路由器成為整個互聯網上的「瓶頸」。
傳統的路由器在轉發每一個分組時,都要進行一系列的復雜操作,包括路由查找、訪問控製表匹配、地址解析、優先順序管理以及其它的附加操作。這一系列的操作大大影響了路由器的性能與效率,降低了分組轉發速率和轉發的吞吐量,增加了CPU的負擔。而經過路由器的前後分組間的相關性很大,具有相同目的地址和源地址的分組往往連續到達,這為分組的快速轉發提供了實現的可能與依據。新一代路由器,如IP Switch、Tag Switch等,就是採用這一設計思想用硬體來實現快速轉發,大大提高了路由器的性能與效率。
新一代路由器使用轉發緩存來簡化分組的轉發操作。在快速轉發過程中,只需對一組具有相同目的地址和源地址的分組的前幾個分組進行傳統的路由轉發處理,並把成功轉發的分組的目的地址、源地址和下一網關地址(下一路由器地址)放人轉發緩存中。當其後的分組要進行轉發時,茵先查看轉發緩存,如果該分組的目的地址和源地址與轉發緩存中的匹配,則直接根據轉發緩存中的下一網關地址進行轉發,而無須經過傳統的復雜操作,大大減輕了路由器的負擔,達到了提高路由器吞吐量的目標。