① zigbee無線感測器網路是基於什麼
基於網路,漁網。
無線感測器的組成模塊封裝在一個外殼內,在工作時它將由電池或振動發電機提供電源,構成無線感測器網路節點。它可以採集設備的數字信號通過無線感測器網路傳輸到監控中心的無線網關,直接送入計算機,進行分析處理。如果需要,無線感測器也可以實時傳輸採集的整個時間歷程信號。
② 無線感測器網路的無線感測器網路研究趨勢
經過十幾年的發展,無線感測器網路積累了大量的研究成果,在這十幾年研究中,主要以學術界為主,大多是私有的針對特定場景的協議,難以進行大規模應用推廣。這幾年無線感測器網路或者物聯網受到產業界的高度重視,為實現不同企業產品的互聯互通,標准化被提上日程。目前許多標准化組織參與到物聯網、無線感測器網路標準的制定,如Zigbee、Z-WAVE、6Lowpan、ISA100.11a、IEEE802.15.4等,並且日益成熟,相關產品日益豐富,物聯網產業雛形基本成形。
基於標准化的協議進行研發成為不可阻擋的技術趨勢,已經成為行業共識。目前IETF制定的6Lowpan標准體系,是符合IPv6技術的專門為物聯網定製的無線自組網體系,包括802.15.4物理層和MAC層、6Lowpan適配層、IPv6、Roll RPL組網路由協議、CoAP應用層協議,該技術標准具有開放、免費、與互聯網無縫集成、海量地址空間等優勢,最可能成為物聯網、無線感測器網路技術的事實標准,是該領域的發展趨勢。
《無線感測器網路》作為國內最早的研究書籍,對該領域的各個方面進行綜述和介紹,是很好的入門資料。然而近幾年,該領域技術的快速發展,出現了一些新的技術與相關書籍,形成新的研究趨勢,值得關注和進一步研究,相關研究如下:
IPSO 6Lowpan技術白皮書
類似相關書籍《6LoWPAN: The Wireless Embedded Internet 》
類似相關書籍《Interconnecting Smart Objects with IP》
③ 基於zigbee無線感測器網路氣體感測器報警系統有哪些應用
你好,樓主。ZigBee無線方式適合不方便布線,監測點相對分散的場景。氣體感測器又分為可燃性氣體和有毒有害氣體,按照應用可以用於家庭燃氣泄漏、綜合管廊氣體泄漏、隧道有害氣體監測、石化企業氣體泄漏監測、化工廠區氣體監測等
謝謝,望採納!
④ 無線感測器網路研究什麼,和ZigBee什麼關系關於無線感測器網路,有研究路由算發,研究拓樸控制的
無線網路,一是無線傳輸的硬體,有400M、900M、2.4G等頻段,以及不同的功率等級;二是通訊協議,各無線設備之間的數據傳輸協議。
zigbee是無線網路的一種形式,包含協議層;cc2530隻是一種晶元,無線通訊的硬體晶元。
⑤ 無線感測器網路通信協議的目錄
第1章 無線感測器網路概述
1.1 引言
1.2 無線感測器網路介紹
1.2.1 無線感測器網路體系結構
1.2.2 無線感測器網路的特點和關鍵技術
1.2.3 無線感測器網路的應用
1.3 無線感測器網路路由演算法
1.3.1 無線感測器網路路由演算法研究的主要思路
1.3.2 無線感測器網路路由演算法的分類
1.3.3 無線感測器網路QoS路由演算法研究的基本思想
1.3.4 無線感測器網路QoS路由演算法研究的分類
1.3.5 平面路由的主流演算法
1.3.6 分簇路由的主流演算法
1.4 ZigBee技術
1.4.1 ZigBee技術的特點
1.4.2 ZigBee協議框架
1.4.3 ZigBee的網路拓撲結構
1.5 無線感測器安全研究
1.5.1 無線感測器網路的安全需求
1.5.2 無線感測器網路安全的研究進展
1.5.3 無線感測器網路安全的研究方向
1.6 水下感測器網路
1.7 無線感測器網路定位
1.7.1 存在的問題
1.7.2 性能評價
1.7.3 基於測距的定位方法
1.7.4 非測距定位演算法
1.7.5 移動節點定位
第2章 無線感測器網路的分布式能量有效非均勻成簇演算法
2.1 引言
2.2 相關研究工作
2.2.1 單跳成簇演算法
2.2.2 多跳成簇演算法
2.3 DEEUC成簇路由演算法
2.3.1 網路模型
2.3.2 DEEUC成簇演算法
2.3.3 候選簇頭的產生
2.3.4 估計平均能量
2.3.5 最終簇頭的產生
2.3.6 平衡簇頭區節點能量
2.3.7 演算法分析
2.4 模擬和分析
2.5 結論及下一步工作
參考文獻
第3章 無線感測器網路分簇多跳能量均衡路由演算法
3.1 無線傳輸能量模型
3.2 無線感測器網路路由策略研究
3.2.1 平面路由
3.2.2 單跳分簇路由演算法研究
3.2.3 多跳層次路由演算法研究
3.3 LEACH-L演算法
3.3.1 LEACH-L的改進思路
3.3.2 LEACH-L演算法模型
3.3.3 LEACH-L描述
3.4 LEACH-L的分析
3.5 實驗模擬
3.5.1 評價參數
3.5.2 模擬環境
3.5.3 模擬結果
3.6 總結及未來的工作
3.6.1 總結
3.6.2 未來的工作
參考文獻
第4章 基於生成樹的無線感測器網路分簇通信協議
4.1 引言
4.2 無線傳輸能量模型
4.3 基於時間延遲機制的分簇演算法(CHTD)
4.3.1 CHTD的改進思路
4.3.2 CHTD簇頭的產生
4.3.3 CHTD簇頭數目的確定
4.3.4 CHTD最優簇半徑
4.3.5 CHTD描述
4.3.6 CHTD的特性
4.4 CHTD簇數據傳輸研究
4.4.1 引言
4.4.2 改進的CHTD演算法(CHTD-M)
4.4.3 CHTD-M的分析
4.5 模擬分析
4.5.1 生命周期
4.5.2 接收數據包量
4.5.3 能量消耗
4.5.4 負載均衡
4.6 總結及未來的工作
4.6.1 總結
4.6.2 未來的工作
參考文獻
第5章 基於自適應蟻群系統的感測器網路QoS路由演算法
5.1 引言
5.2 蟻群演算法
5.3 APAS演算法的信息素自適應機制
5.4 APAS演算法的揮發系數自適應機制
5.5 APAS演算法的QoS改進參數
5.6 APAS演算法的信息素分發機制
5.7 APAS演算法的定向廣播機制
5.8 模擬實驗及結果分析
5.8.1 模擬環境
5.8.2 模擬結果及分析
5.9 總結及未來的工作
5.9.1 總結
5.9.2 未來的工作
參考文獻
第6章 無線感測器網路簇頭選擇演算法
6.1 引言
6.2 LEACH NEW演算法
6.2.1 網路模型
6.2.2 LEACH NEW簇頭選擇機制
6.2.3 簇的生成
6.2.4 簇頭間多跳路徑的建立
6.3 模擬實現
6.4 結論及未來的工作
參考文獻
第7章 水下無線感測網路中基於向量的低延遲轉發協議
7.1 引言
7.2 相關工作
7.3 網路模型
7.3.1 問題的數學描述
7.3.2 網路模型
7.4 基於向量的低延遲轉發協議
7.4.1 基於向量轉發協議的分析
7.4.2 基於向量的低延遲轉發演算法
7.5 模擬實驗
7.5.1 模擬環境
7.5.2 模擬分析
7.6 總結
參考文獻
第8章 無線感測器網路數據融合演算法研究
8.1 引言
8.2 節能路由演算法
8.2.1 平面式路由演算法
8.2.2 層狀式路由演算法
8.3 數據融合模型
8.3.1 數據融合系統
8.3.2 LEACH簇頭選擇演算法
8.3.3 簇內融合路徑
8.3.4 環境設定和能耗公式
8.4 數據融合模擬
8.4.1 模擬分析
8.4.2 模擬結果分析
8.5 結論
參考文獻
第9章 無線感測器網路相關技術
9.1 超寬頻技術
9.1.1 系統結構的實現比較簡單
9.1.2 空間傳輸容量大
9.1.3 多徑分辨能力強
9.1.4 安全性高
9.1.5 定位精確
9.2 物聯網技術
9.2.1 物聯網原理
9.2.2 物聯網的背景與前景
9.3 雲計算技術
9.3.1 SaaS軟體即服務
9.3.2 公用/效用計算
9.3.3 雲計算領域的Web服務
9.4 認知無線電技術
9.4.1 傳統的Ad-hoc方式中無線感測器網路的不足
9.4.2 在ZigBee無線感測器網路中的應用
參考文獻
第10章 無線感測器網路應用
10.1 軍事應用
10.2 農業應用
10.3 環保監測
10.4 建築應用
10.5 醫療監護
10.6 工業應用
10.6.1 工業安全
10.6.2 先進製造
10.6.3 交通控制管理
10.6.4 倉儲物流管理
10.7 空間、海洋探索
10.8 智能家居應用
⑥ 簡述zigbee無線感測器網路與物聯網的關系
物聯網技術的重要基礎和核心仍舊是互聯網,通過各種有線和無線網路與互聯網融合,將物體的信息實時准確地傳遞出去。
⑦ ZigBee無線感測器網路 有啥優點
ZigBee是一種近距離、低功耗、低速率、低成本的無線網路技術,主要用於近距離網狀網連接。Zigbee有如下優點:
1.低功耗。在低耗電待機模式下,2節5號干電池可支持1個節點工作6~24個月,甚至更長。這是ZigBee的突出優勢。相比之下藍牙可以工作數周、WiFi可以工作數小時。
2.低成本。通過大幅簡化協議(不到藍牙的1/10),降低了對通信控制器的要求,以8051的8位微控制器測算,全功能的主節點需要32KB代碼,子功能節點少至4KB代碼,而且ZigBee免協議專利費。每塊晶元的價格大約為2美元。
3.低速率。ZigBee工作在20~250kbps的速率,分別提供250 kbps(2.4GHz)、40kbps(915 MHz)和20kbps(868 MHz)的原始數據吞吐率,滿足低速率傳輸數據的應用需求。
4.近距離。傳輸范圍一般介於10~100m之間,在增加發射功率後,亦可增加到1~3km。這指的是相鄰節點間的距離。如果通過路由和節點間通信的接力,傳輸距離將可以更遠。
5.短時延。ZigBee的響應速度較快,一般從睡眠轉入工作狀態只需15ms,節點連接進入網路只需30ms,進一步節省了電能。相比較,藍牙需要3~10s、WiFi 需要3 s。
6.高容量。ZigBee可採用星狀、片狀和網狀網路結構,由一個主節點管理若乾子節點,最多一個主節點可管理254個子節點;同時主節點還可由上一層網路節點管理,最多可組成65000 個節點的大網。
7.高安全。ZigBee提供了三級安全模式,包括無安全設定、使用訪問控制清單(Access Control List, ACL) 防止非法獲取數據以及採用高級加密標准(AES 128)的對稱密碼,以靈活確定其安全屬性。
8.免執照頻段。使用工業科學醫療(ISM)頻段,915MHz(美國), 868MHz(歐洲), 2. 4GHz(全球) 。這三個頻帶的擴頻和調制方式亦有區別。
總的來講,Zigbee最大的優點是:低功耗(但是只針對終端節點來講)、組網靈活(網路中設備較多時有優勢)、低成本(相對藍牙和WiFi來將的)
⑧ 關於無線感測器網路和zigbee之間的關系
無線網路距離受限,還有就是無線感測無法實現上位機的數據採集,故需要ZIGB來協調並轉換成長距離,同時也可以與數據採集卡之間的連接
⑨ 基於zigbee的無線感測器網路的組成結構是怎樣的
無線感測器網路(WSN,WirelessSensorNetwork)採用微小型的感測器節點獲取信息,節點之間具有自動組網和協同工作能力,網路內部採用無線通信方式,採集和處理網路中的信息,發送給觀察者。目前WSN使用的無線通訊技術過於復雜,非常耗電,成本很高。而ZigBee是一種短距離、低成本、低功耗、低復雜度的無線網路技術,在無線感測器網路應用領域極具發展潛力。
⑩ 什麼是zigbee無線感測網路
ZigBee是一種技術,無線感測網路(WSN)是一個系統架構,這個架構可以基於ZigBee這項技術來實現的。無線感測網路當然也可以以其他無線通信的方式實現,比如wifi、藍牙等。