『壹』 通常有哪些原因導致感測器網路產生無效能耗
1、感測器本身的時鍾不一致,就好比兩個時鍾一樣,但是由於硬體上面細小的差別,一段時間後也會有時間上面的差異;
2、在對感測器時鍾進行同步時,由於到兩個感測器的時間不一致,最後同步得到的時間也不一樣。比如:北京8點,對天津和河北的兩個時鍾進行同步,可能同步後天津是8點,河北是8點2秒(第二點);一個月後,天津的時鍾變成了8點4秒,河北的時鍾變成了8點2秒;(第一點)
『貳』 感測器中,無線感測器網路的定義,目的,起源是什麼呢
無線感測器網路的定義是:由大量、靜止或移動的感測器節點,以自組織和多跳的方式構成的無線網路,目的是以協作的方式感知、採集、處理和傳輸在網路覆蓋區域內被感知對象的信息,並把這些信息發送給用戶。無線感測器網路起源於美國軍方的研究,它具有自組織、無中心、動態性、多跳網路、硬體資源有限、能量受限、大規模網路、以數據為中心的特點,綜合了感測器技術、嵌入式計算技術、網路與通信技術、分布式信息處理技術等多種技術,體現了多個學科的相互融合。
『叄』 無線感測器網路
無線感測器網路(wirelesssensornetwork,WSN)是綜合了感測器技術、嵌入式計算機技術、分布式信息處理技術和無線通信技術,能夠協作地實時監測、感知和採集網路分布區域內的各種環境或監測對象的信息,並對這些數據進行處理,獲得詳盡而准確的信息。傳送到需要這些信息的用戶。它是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信方式形成一個多跳的自組織的網路系統。感測器、感知對象和觀察者構成了感測器網路的三要素。
無線感測器網路作為當今信息領域新的研究熱點,涉及到許多學科交叉的研究領域,要解決的關鍵技術很多,比如:網路拓撲控制、網路協議、網路安全、時間同步、定位技術、數據融合、數據管理、無線通信技術等方面,同時還要考慮感測器的電源和節能等問題。
所謂部署問題,就是在一定的區域內,通過適當的策略布置感測器節點以滿足某種特定的需求。優化節點數目和節點分布形式,高效利用有限的感測器網路資源,最大程度地降低網路能耗,均是節點部署時應注意的問題。
目前的研究主要集中在網路的覆蓋問題、連通問題和能耗問題3個方面。
基於節點部署方式的覆蓋:1)確定性覆蓋2)自組織覆蓋
基於網格的覆蓋:1)方形網格2)菱形網格
被監測目標狀態的覆蓋:1)靜態目標覆蓋2)動態目標覆蓋
連通問題可描述為在感測器節點能量有限,感知、通信和計算能力受限的情況下,採用一定的策略(通常設計有效的演算法)在目標區域中部署感測器節點,使得網路中的各個活躍節點之間能夠通過一跳或多跳方式進行通信。連通問題涉及到節點通信距離和通信范圍的概念。連通問題分為兩類:純連通與路由連通。
覆蓋中的節能對於覆蓋問題,通常採用節點集輪換機制來調度節點的活躍/休眠時間。連通中的節能針對連通問題,也可採用節點集輪換機制與調整節點通信距離的方法。而文獻中涉及最多的主要是從節約網路能量和平衡節點剩餘能量的角度進行路由協議的研究。
『肆』 感測網的無線起源
英特爾與加利福尼亞州大學伯克利分校正領導著微塵技術的研究工作。他們成功創建了瓶蓋大小的全功能感測器,可以執行計算、檢測與通信等功能。2002年,英特爾研究實驗室研究人員將處方葯瓶大小的32個感測器連進互聯網,以讀出緬因州「大鴨島」上的氣候,評價一種海燕巢的條件。而2003年第二季度,他們換用150個安有D型微型電池的第二代感測器,來評估這些鳥巢的條件。他們的目的是讓世界各國研究人員實現無入侵式及無破壞式的、對敏感野生動物及其棲居地的監測。該公司開發出了用於家庭護理的無線感測器網路系統。根據演示,試制系統通過在鞋、傢具,以及家用電器中嵌入半導體感測器,幫助老年人、阿爾茨海默氏病患者,以及殘障人士的家庭生活。該系統利用無線通信將各感測器聯網,可高效傳遞必要的信息,從而方便病人接受護理,還可以減輕護理人員的負擔。該無線感測器網路系統是英特爾公司在阿爾茨海默氏病患者家庭的合作下,歷時一年研究完成的,2004年下半年開始試用。
日立製作所與YRP泛在網路化研究所2004年11月24日宣布開發出了全球體積最小的感測器網路終端。該終端為安裝電池的有源無線終端,可以搭載溫度、亮度、紅外線、加速度等各種感測器。設想應用於大樓與家庭的無線感測器以及安全管理方面。
三菱電機日前開發成功了一種設想用於感測器網路的小型低耗電無線模塊。能夠使用特定小功率無線構築對等(Ad-hoc)網路。是取代利用專線構築的家用安全網路,計劃2005年~2006年達到實用水平。具體而言,與紅外線感測器配合,檢測是否有人、與加速度感測器配合,檢測窗玻璃和傢具的振動、與磁感測器配合,檢測門的開關,等等。
在舊金山,200個聯網微塵已被部署在金門大橋。這些微塵用於確定大橋從一邊到另一邊的擺動距離—可以精確到在強風中為幾英尺。當微塵檢測出移動距離時,它將把該信息通過微型計算機網路傳遞出去。信息最後到達一台更強大的計算機進行數據分析。任何與當前天氣情況不吻合的異常讀數都可能預示著大橋存在隱患。 無線感測器網路可以看成是由數據獲取網路、數據分布網路和控制管理中心三部分組成的。其主要組成部分是集成有感測器、數據處理單元和通信模塊的節點,各節點通過協議自組成一個分布式網路,再將採集來的數據通過優化後經無線電波傳輸給信息處理中心。
因為節點的數量巨大,而且還處在隨時變化的環境中,這就使它有著不同於普通感測器網路的獨特「個性」。
首先是無中心和自組網特性。在無線感測器網路 中,所有節點的地位都是平等的,沒有預先指定的中心,各節點通過分布式演算法來相互協調,在無人值守的情況下,節點就能自動組織起一個測量網路。而正因為沒有中心,網路便不會因為單個節點的脫離而受到損害。其次是網路拓撲的動態變化性。網路中的節點是處於不斷變化的環境中,它的狀態也在相應地發生變化,加之無線通信信道的不穩定性,網路拓撲因此也在不斷地調整變化,而這種變化方式是無人能准確預測出來的。第三是傳輸能力的有限性。無線感測器網路通過無線電波進行數據傳輸,雖然省去了布線的煩惱,但是相對於有線網路,低帶寬則成為它的天生缺陷。同時,信號之間還存在相互干擾,信號自身也在不斷地衰減,諸如此類。不過因為單個節點傳輸的數據量並不算大,這個缺點還是能忍受的。第四是能量的限制。為了測量真實世界的具體值,各個節點會密集地分布於待測區域內,人工補充能量的方法已經不再適用。每個節點都要儲備可供長期使用的能量,或者自己從外汲取能量(太陽能)。第五是安全性的問題。無線信道、有限的能量,分布式控制都使得無線感測器網路更容易受到攻擊。被動竊聽、主動入侵、拒絕服務則是這些攻擊的常見方式。因此,安全性在網路的設計中至關重要。
『伍』 什麼是無線感測器網路
無線感測器的無線傳輸功能,常見的無線傳輸網路有RFID、ZigBee、紅外、藍牙、GPRS、4G、2G、Wi-Fi、NB-IoT。
與傳統有線網路相比,無線感測器網路技術具有很明顯的優勢特點,主要的要求有: 低能耗、低成本、通用性、網路拓撲、安全、實時性、以數據為中心等。
『陸』 物聯網建築能耗監測系統的無線感測網技術的能耗監測設計
建築節能運行和改造需建立在獲取照明、消防、空調等建築用能信息的基礎之上,在接收到數據進行分析之前,各類用能數據的傳輸是一個關鍵問題。現階段主要採用綜合布線進行傳輸,此方式在建築內布設大量線纜,存在施工復雜、代價高、影響建築內部美觀等缺點,這是有線傳輸方式固有缺陷所決定的,而採用無線傳輸方式則能有效克服。相較於CDMA、GPRS、WLAN等傳統的無線傳輸方式,作為物聯網基礎組成的WSN(wireless sensor network,無線感測網)技術更適合於建築用能信息傳輸的應用 。
WSN技術是一種全新的無線網路通訊技術,也是物聯網的主要技術之一。它由末端節點設備、路由設備和網關設備組成,末端節點設備負責信息採集和自動控制,路由設備負責組網和通訊,網關設備負責與管理中心或外網連接。無線感測網具有自組網、自路由、自恢復的功能和低功耗、低帶寬、低成本的特點,能夠實現多業務平台的雙向數據傳輸,非常適合於自動控制和遠程監控領域。 建築能耗監測平台的組網總體結構圖,在系統的數據採集端採用WSN技術進行組網。整個WSN網路由若干個終端採集器以及一個匯聚採集器構成。通常將WSN的終端採集器稱為採集節點,將匯聚採集器成為匯聚節點。採集節點負責數據的採集和傳送,以及根據匯聚節點的控制命令設置相應的工作模式等;匯聚節點是網路的中心,起到協調器和網關節點的作用,匯聚節點負責整個區域網路的維護與數據的匯集,再將數據通過Internet/GSM/CDMA上傳到上級數據中心或中轉站。系統最大特點就是基於WSN技術進行信息採集,利用WSN節點與電表等與用能設備連接,通過無線自組網方式自動採集分散在各處的電、水、氣、冷熱量等實時數據,使用戶隨時監測現場耗能設備的運行數據,為今後實施節能反饋控制系統的研發提供基礎,以達到優化能源供應、提高能源管理水平、提高能源利用效益、減少能源損耗、節約能源成本的目的。
基於WSN技術的建築能耗監測系統屬於WSN與節能的交叉領域,以WSN和計算機信息處理為技術核心,建設先進、功能強大的信息採集處理平台。該系統適用於各種既有和新建建築,系統組網方便,不佔空間,無需綜合布線施工,項目實施快速方便。
在各種無線感測網技術中,ZigBee的自組網能力以及高容量特性使其非常適合建築能耗監測系統的應用,在節點分散、數量眾多、低速率傳輸的能耗監測採集端建設中,有明顯的優勢,是當前最適合建築能耗監測系統數據傳輸的技術。
除了組網方便、安全、可靠,ZigBee還有低傳輸速率、低功耗、高容量、低成本等特點。ZigBee非常適合有大量終端設備的網路,如能耗監測、樓宇自動化等場合。 1)內網組網靈活,可隨時增加或減少感測節點;
2)無需綜合布線,減少工程量與布線成本、提高安裝速度;
3)與多種通信主幹網融合,方便用戶實現遠程監控;
4)WSN端機體積小、功耗低,價格低;
5)根據WSN協議自動組成通訊內部網路;
6)系統易於維護,任意節點的故障不會影響系統工作;
7)具有本地數據存儲功能,確保數據完整性;
8)減少建立建築能耗及環境監測系統所帶來的施工量以及綜合布線對環境的影響,減少投資和工期,特別適用於既有建築和設施。 如果用戶已有電表、水表等,且帶有485口,則可直接接入採集器,如已有儀表不支持485口,則需要改造和更換設備。每戶的總表最後統一為帶485口的多功能表,外接帶無線感測模塊的採集器,可以每15分鍾上送一次電量、電壓、電流、功率因素等數據。數據採集頻率可根據具體需要靈活設置,數據採集頻率可在15分鍾/次到1小時/次之間調整。
設備改造原則:在一定投資成本和不改動已有配電線路前提下,以最大程度地獲得能耗公示需求數據為目標,在既有配電支路上無拆換、無干擾方式安裝。
『柒』 無線感測器網路的應用中,有哪些用來減少能量消耗的技術
這個問題太泛了,就拿現在已知的,較為知名的應用有環境監測、戰場態勢呈現、電力傳輸、家庭監控方面,實際上在現實生活中的很多地方都有使用。
『捌』 無線感測網多跳路由節點能耗怎麼計算
(1)根據無線感測器網路中因節點有效傳輸半徑對路由選擇的制約,改進基於最小生成樹的分簇多跳路由演算法,改善因路由選擇對網路能耗的影響。該演算法利用Voronoi圖的泊松過程特性優化簇首節點數,並結合最小生成樹動態調整簇內外節點的路由發現實現網路能耗優化。模擬結果表明該演算法在開銷容忍的前提下,網路均衡負載,並與相同模擬條件下的基於LEACH的分層多跳路由演算法相比,更有效地延長了網路壽命,同時降低了計算時間復雜度。
(2)針對無線感測器網路中感測器節點投放分布對投放區域有效通信信號覆蓋的影響,改進了一種基於通信覆蓋的分布式投放概率覆蓋演算法。在保證投放精度的前提下,該演算法根據感測器節點在投放區域中位置的不確定性以及信號衰減特性,建立信號覆蓋模型,並通過信號覆蓋率計算出各節點預定投放位置,由感測器節點的自定位演算法獲取定位信息為前提,獲取節點的投放位置和投放數目。在改善區域通信覆蓋的同時,提高了節點分布效率,達到節省網路資源的目的。通過模擬比較了在不同定位投放方法下的各相關性數據,驗證了該演算法可實現高效投放的優越性能。
(3)在關於無線感測器網路應用方面,提出了在實現投放區域有效通信信號覆蓋的基礎上保證局部能量有效損耗的路由設計要求,由此提出了基於多跳路徑劃分子空間的分簇路由演算法。該路由演算法在獲得相應的節點拓撲分布的前提下實現了能量平均損耗,而節點拓撲的獲取則通過採用高斯分布的定位誤差模型與馬爾可夫鏈性質相結合,改進了以前演算法對於感測器節點拓撲結構的獲取。通過對整個演算法的模擬,得到的相關數據證明了演算法在實現網路硬體資源優化和能量有效損耗方面所具有的較好的性能。
(4)在對運動目標跟蹤定位的研究中,對於無法得知目標的運動狀態方程和觀測雜訊的概率密度分布的情況時,提出基於粒子濾波和曲線准線性優化的目標跟蹤演算法。演算法利用感測器節點的感知圓的幾何特性確定目標的運動區域的邊界限制,借鑒cost
reference粒子濾波演算法,估計出目標的運動軌跡,隨後通過曲線的線性近似簡化了目標運動軌跡的估計,同時也獲取了目標的速率的可控估計,模擬結果證明了所提演算法的高效性。根據實際應用中可能出現部分的感測器節點失效的情況,引入了節點的失效檢測,並以貝葉斯概率分布估計糾正失效節點對原目標狀態做的判斷,提高失效節點所在感知區域的容錯能力,改善了目標跟蹤定位的精度。
『玖』 無線感測器網路一般是採用什麼能量模型和傳輸模型來評做能量消耗的大小
一階無線電模型:發送能耗+接收能耗+傳輸能耗,還要乘以相應的系數
『拾』 無線感測網路的發展
這個問題的范圍有點大。
簡而言之,無線感測器網路(wireless sensor network,wsn)作為物聯網(internet of thing,IOT)的重要組成部分,目前在智能家居、精準農業、林業監測、軍事、智能建築、智能交通等領域都在逐漸展開應用。能被感測器sensor感知的物理參量(溫度、濕度、震動、加速度、二氧化碳濃度...),包括video、image、audio等多媒體數據,通過wsn節點的自組網,遠程採集、傳輸至監控端。
目前制約wsn普及的因素主要有:能耗(通常wsn節點較小,2節電池供電)、傳輸范圍(射頻晶元cc2430,我們做實驗,在150m左右,信號已經很差),還有最重要的,硬體成本。
wsn特別適合:無人監守、不適合人去的地方(如山體滑坡監測等、煤礦瓦斯濃度監測...等)
以上文字原創。只是簡要回答你的問題,因為問題范圍有點大。