Ⅰ 現代移動通信技術的發展趨勢
1.1無線數據——生機無限
當前移動數據通信發展迅速,被認為是移動通信發展的一個主要方向。近年來出現的
移動數據通信主要有兩種,一種是電路交換型的移動數據業務,如TACS、AMPS和GSM中的
承載數據業務以及GSM系統的HSCSD,另外一種是分組交換型的移動數據業務,比較著名的
有摩托羅拉的DataTAC、愛立信的Mobitex和GSM系統的GPRS。
目前,無線數據業務只佔GSM網路全部業務量中的很小一部分,但是在未來的兩年中
這種狀況將開始扭轉,並大大改變。1999年以後,隨著HSCSD、GPRS等新的高速數據解決
方案顯露崢嶸,並成為數據應用的新的焦點,無線數據將成為運營商經營計劃中越來越重
要的部分,它預示著未來大量的商業機遇。
應用驅動市場
無線數據業務的主要驅動力在於用戶的應用。話音是單一的、容易理解、應用的市場。
然而無線數據則不同,無線數據最初的應用重點放在象運輸管理這樣的專業市場。近期無
線數據業務的目標市場是銷售人員或現場工程師這樣的用戶群。從這些先發目標的應用中
積累無線數據的經驗,並從中受益。隨著速率的增長,其他更通用的應用將會出現,無線
數據業務將開始影響大眾市場。
在過去的十年裡,傳統的生活方式已經在迅速改變,人們更經常性地移動,職業和個
人生活之間的分界變得模糊,人們需要不分時間、地點訪問很重要的信息。發生在用戶身
上的這種生活方式的改變將成為驅動無線數據業務發展的重要因素。
網際網路的影響
和通信的其他領域一樣,無線數據業務的一個最重要的驅動力來自Internet。根據最
近的研究,未來兩年歐洲的網際網路用戶數量將翻一番。在我國,網際網路用戶的年增長率將
高達300%。顯然用戶在運動中接入網際網路的需求將會增長。
為了滿足接人網際網路的需求,一個全球性的開放協議——無線應用協議(WAP)應運
而生。WAP為將Internet的信息內容以及增值業務傳送到移動終端提供了一種開放的通用
標准,實現了IP與GSM網路的橋接,是一個為廠商提供加速市場增長、避免網路割接、保
護運營商投資的標准,WM確保任何與WAP兼容的GSM手機都能工作。WAP是實現無線數據市
場快速發展的工具。
數據速率的發展
GSM承載業務所提供的GSM數據速率最高只能達到9.6kb/s。國際上1998年引入的高速
電路交換數據(HSCSD)技術將實現57kb/s的數據速率,對要求連續比特率和傳輸時延小
的應用是理想的,如會議電視、電子郵件、遠程接入企業的區域網和無線圖象。1999年商
用化的GPRS是第一個GSM分組數據應用,將實現超過100kb/s的數據速率。對較短的「突發」
類型業務是理想的,如信用卡認證、遠程測量和遠程事務處理。EDGE(增強數據速率GSM改
進模式)使用修改過的GSM調制方式來實現超過300kb/S的數據速率。EDGE會讓GSM運營商
特別受益,他們不但可以贏得第三代移動通信的經營執照,還可以提供有競爭力的寬頻數
據業務。
1.2個人多媒體通信——網路演進的方向
對隨時隨地話音通信的追求使早期移動通信走向成功。移動通信的商業價值和用戶市
場得到了證明,全球移動市場以超凡的速度增長。移動通信演進的下一階段是向無線數據
乃至個人移動多媒體轉移,這一進展已經開始,並將成為未來重要的增長點。
個人移動多媒體通信將根據地點為人們提供無法想像的、完善的個人業務和無線信息,
將對人們工作和生活的各個方面產生影響。在個人多媒體世界裡,話音郵件和電子郵件被
傳送到移動多媒體信箱中;簡訊將成為帶有照片和視頻內容的電子明信片;話直呼叫將與
實時圖象相結合,產生大量的可視行動電話。還將實現移動網際網路和萬維網瀏覽。象無線
會議電視這樣的應用將隨處可見,電子商務將蓬勃開展。對於運動中的用戶還有隨時隨地
的各種信箱和娛樂服務。
2網路技術的寬頻化
在電信業歷史上,移動通信可能是技術和市場發展最快的領域。業務、技術、市場三
者之間是一種互動的關系,伴隨著用戶對數據、多媒體業務需求的增加,網路業務向數據
化、分組化發展,移動網路必然走向寬頻化。
通過使用電話交換技術和蜂窩無線電技術,70年代末誕生了第一代模擬行動電話。AM
PS(北美蜂窩系統)、NMT(北歐行動電話)和TACS(全向通信系統)是三種主要的窄帶模
擬標准。第一代無線網路技術的一大成就就是去掉了將電話連接到網路的用戶線。用戶第
一次能夠在他們所在的任何地方無線接收和撥打電話。
第二代系統引入了數字無線電技術,它提供更高的網路容量,改善了話音質量和保密
性,並為用戶引入了無縫的國際漫遊。今天世界市場的第二代數字無線標准,包括GSM、D
-AMPS、PDC(日本數字蜂窩系統)和IS-95CDMA等,均仍為窄帶系統。
第三代移動系統,即IMT-2000,是一種真正的寬頻多媒體系統,它能夠提供高質量寬
帶綜合業務並實現全球無縫覆蓋。2000年以後,雖然窄帶行動電話業務需求將依然很大,
但隨著Internet等高速數據通信及多媒體通信需求的驅動,寬頻多媒體綜合業務將逐步增
長,而且就未來信息高速公路建設的無縫覆蓋而言,寬頻多媒體綜合業務將逐步增長,而
且就未來信息高速公路建設的無縫覆蓋而言,寬頻移動通信作為整個移動市場份額的子集
將顯得愈來愈重要。第三代系統預計在2002年投入商用。
從第二代到第三代系統的變化並不象從第一代模擬網路到第二代數字網路那樣存在重
大的技術變遷。從目前的技術發展現狀和趨勢來講,第二代系統將逐步平滑過渡到第三代
系統,在此演進過程中,移動網路所能實現的數據速率逐步升級;GSM承載業務所能提供的
數據速率為9.6Kb/s,1998年商用的HSCSD技術實現了57kb/s的數據速率,1999年引人的GP
RS將實現超過100WS的數據速率,將在2000年引入的EDGE技術可實現超過300kb/s的數據速
率。2001年後投入商用的第三代系統將能夠在廣域網上實現384kb/s的數據速率,在辦公
室和家中還可以達到2Mkb/s。
3網路技術的智能化
移動通信需求的不斷增長以及新技術在移動通信中的廣泛應用,促使移動網路得到了
迅速發展。移動網路由單純地傳遞和交換信息,逐步向存儲和處理信息的智能化發展,移
動智能網由此而生。移動智能網是在移動網路中引入智能網功能實體,以完成對移動呼叫
的智能控制的一種網路,是一種開放性的智能平台,它使電信業務經營者能夠方便、快速、
經濟、有效地提供客戶所需的各類電信新業務,使客戶對網路有更強的控制功能,能夠方
便靈活地獲得所需的信息。移動智能網通過把交換與業務分離,建立集中的業務控制點和
資料庫,進而進一步建立集中的業務管理系統和業務生成環境來達到上述目標。通過智能
網,運營公司可以最優地利用其網路,加快新業務的生成;可以根據客戶的需求來設計業
務,向其他業務提供者開放網路,增加效益。
關於移動智能網的研究,早在1995年就已開始,剛開始時並沒有具體的標准協議出現,
各廠商各自製定了自己的標准,並且據此進行了不少的研究工作,如Alcatel、Nortel、
Ericsson等都先後推出了自己的初期產品。這些工作為最終移動智能網標準的形成積累了
經驗。
1997年末,美國蜂窩電信工業協會(CTIA)制定了移動智能網的第一個標准協議——
IS-41D協議。1998年1月,歐洲電信標准研究所(ETSI)在GSM phase2+階段引入了CAMEL
協議(移動通信高級邏輯的客戶化應用程序),當時的版本是phase1。1998年4月,ITU-T
在新推出的智能網能力集一2標准中描述了移動接入的功能實體,稱為CAMELphase2標准。
伴隨著移動網路向第三代系統的演進,網路的智能化程度也在不斷地提升。智能網及
其智能業務是構成未來個人通信的基本條件。
4更高的頻段
從第一代的模擬行動電話,到第二代的數字移動網路,再到將來的第三代移動通信系
統,網路使用的無線頻段遵循一種由低到高的發展趨勢。
1981年誕生的第一個具有國際漫遊功能的模擬系統NMT的使用頻段為450MHz,1986年
NMT變遷到900MHz頻段。我國目前的模擬TACS系統的使用頻段也為900MHz。在第二代網路
中,GSM系統的開始使用頻段為900MHz,IS-95CDMA系統為800MHz。為了從根本上提高GSM
系統的容量,1997年出現了1800MHz系統,GSM900/1800雙頻網路迅速普及。2000年將投入
商用的第三代系統IMT-2000則定在2GMHz頻段。
5更有效利用頻率
無線電頻率是一種寶貴資源。隨著移動通信的飛速發展,頻譜資源有限和移動用戶急
劇增加的矛盾越來越尖銳,出現了「頻率嚴重短缺」的現象。解決頻率擁擠問題的出路是
採用各種頻率有效利用技術和開發新頻段。
模擬制的早期蜂窩移動通信系統採用頻分多址方式,主要通過多信道共用、頻率復用
和波道窄帶化等技術實現頻率的有效利用。隨著業務的發展,模擬系統已遠不能滿足用戶
發展的需求。數字移動通信比模擬移動通信具有更大的容量。同樣的頻分多址技術,數字
系統要求的載干比較小,因而頻率復用距離可以小一些,系統的容量可以大一些。而且,
數字移動通信還可採用時分多址或碼分多址技術,它比模擬的頻分多址制在系統容量上大
4-20倍。
CSM作為最具代表性和最為成熟的數字移動通信系統,其發展歷程就是一部頻率有效利
用技術的演進史。GSM採用時分多址制式,其對頻率的有效利用主要是通過頻率復用技術的
不斷升級實現的。從傳統的4×3方式,到3×3、1×3、MRP、2×6等新的復用技術,頻率復
用的密集度逐步提升,頻譜效率快速提高,GSM系統的容量得到逐步釋放。
1995年開始投入商用的IS-95CDMA(窄帶)系統,以無線技術的先進性和大容量等特
點著稱。它以擴頻技術為基礎,不同用戶的信號靠不同的編碼序列來區分,如果從頻域或
時域來觀察,多個CDMA信號是相互重疊的,故理論上CDMA系統的頻譜利用率比GSM系統更高,
網路容量更大。同時CDMA系統具有一定的過載能力,即系統具備較容量。
作為未來第三代移動通信系統主流無線接入技術的WCDMA(寬頻碼分多址)能夠更高效
地利用無線電頻率。它利用分層小區結構、自適應天線陣和相平解調(雙向)等技術,網
絡容量可得到大幅提高,可以更好地滿足未來移動通信的發展要求。
6網路趨於融合,走向統一
6.1第三代移動通信系統的結構
第三代系統的主要目標是將包括衛星在內的所有網路融合為可以替代眾多網路功能的
統一系統,它能夠提供寬頻業務並實現全球無縫覆蓋。為了保護運營公司在現有網路設施
上的投資,第二代系統向第三代系統的演進遵循平滑過渡的原則,現有的GSM、D-AMPS、
IS-136等第二代系統均將演變成為第三代系統的核心網路,從而形成一個核心網家族,
核心網家族的不同成員之間通過NNI介面聯結起來,成為一個整體,從而實現全球漫遊。在
核心網路家族的外圍,形成一個龐大的無線接入家族,現有的幾乎所有的無線接入技術及
WCDMA等第三代無線接入技術均成為其成員。第三代系統充分顯示了未來電信網路的融合特
征。
6.2未來的網路構架
技術的發展和市場需求的變化、市場競爭的加劇以及市場管理政策的放鬆將使計算機
網、電信網、電視網等加快融合為一體,寬頻IP技術成為三網融合的支撐和結合點。未來
的網路將向寬頻化、智能化、個人化方向發展,形成統一的綜合寬頻通信網,並逐步演進
為由核心骨幹層和接入層組成、業務與網路分離的構架。
Ⅱ WiFi是什麼時候發明的
無線網路是IEEE定義的無線網技術,在1999年IEEE官方定義802.11標準的時候,IEEE選擇並認定了CSIRO發明的無線網技術是世界上最好的無線網技術,因此CSIRO的無線網技術標准,就成為了2010年Wi-Fi的核心技術標准。
Ⅲ 無線網路技術有哪些
無線網路技術還有WiMAX-城域網;Mesh網-網狀網;UWB技術、無線USB技術;
具體參數,就需要再查了。
Ⅳ wifi什麼時候普及的
2010年無線網路的覆蓋范圍在國內越來越廣泛,高級賓館、豪華住宅區、飛機場以及咖啡廳之類的區域都有Wi-Fi介面。
廠商只要在機場、車站、咖啡店、圖書館等人員較密集的地方設置「熱點」,並通過高速線路將網際網路接入上述場所。
這樣,由於「熱點」所發射出的電波可以達到距接入點半徑數十米至100米的地方,用戶只要將支持Wi-Fi的筆記本電腦或PDA或手機或psp或ipodtouch等拿到該區域內,即可高速接入網際網路。
WiFi的技術特點
一、優點
1、無線電波覆蓋范圍廣,WiFi半徑則達100米,適宜單位樓層以及辦公室內部運用。
2、速度不僅快,而且可靠性高802.11b的無線網路規范即是IEEE 802.11網路規范變種。最高帶寬是11Mbps,在信號有干擾或者比較弱的情況之下,帶寬可以調整到1Mbps、5.5Mbps及2Mbps,帶寬自動調整,有效保障網路的可靠性和穩定性。
3、無需布線WiFi的優勢主要在不需要布線,可不受布線條件的限制。所以十分適宜移動辦公用戶需求,具備著廣闊市場前景。
二、不足之處
IP無線網路存在著部分不足之處,例如:切換時間長、覆蓋半徑小、帶寬不高等,使它不能很好支持移動VoIP等要求高的應用。
因為無線網路系統對上層業務開發的不開放原因,使很多適宜IP移動環境的業務難以開發。定位在家庭用戶的WLAN產品,在許多地方不能夠滿足運營商在網路維護、運營上的要求。
Ⅳ 什麼是無線網路技術怎樣實現上網
無線網路技術簡介
您正在看的無線上網知識是:無線網路技術簡介。
無線通信是人們夢寐以求的技術,有了它,我們在進行數據交換時就不必受時間和空間的限制,可以隨時隨地瀏覽Internet,再也不用為網路布線而苦惱……。但是,現在相關的無線網路技術實在是太多了,畢竟有好有壞。下面就對目前流行的技術進行簡單的介紹。
窄帶廣域網
1.HSCSD
HSCSD(高速線路交換數據)是為無線用戶提供38.3kbps速率傳輸的無線數據傳輸方式,它的速度比GSM通信標準的標准數據速率快4倍,可以和使用固定電話數據機的用戶相比。當前,GSM網路單個信道在每個時隙只能支持1個用戶,而HSCSD通過允許1個用戶在同一時間同時訪問多個信道來大幅改進數據訪問速率。但美中不足的是,這會導致用戶成本的增加。假設1個標準的數據傳輸速率是14 400bps,使用具有4個時隙的HSCSD將使數據訪問速率達到57.6Kbps。目前支持HSCSD的手機有NOKIA的6210和6250。
2.GPRS
GPRS(多時隙通用分組無線業務)是一種很容易與IP介面的分組交換業務,其速率可達9.6~14.4kbps,甚至能達到115kbps,並且能夠傳送話音和數據。該技術是當前提高Internet接入速度的熱門技術,而且還有可能被應用在廣域網中。GPRS又被認為是GSM第2階段增強(GSM Phase2+)接入技術。GPRS雖是GSM上的分組數據傳輸標准,但也可和IS-136標准結合使用。隨著Internet的發展和蜂窩移動通信的普及,GSM的發展有目共睹,因而GPRS技術的前景也十分廣闊。
GPRS是GSM一項新的承載業務,提高並簡化了無線數據接入分組網路的方式,分組數據可直接在GSM基站和其他分組網之間傳輸。它具有接入時間短、速率高的特點。由於它是分組方式的,因此可以按位元組數來計費,這些和傳統的撥號接入時間長、按電路持續時間計費明顯不同。同時,GPRS網是GSM上的分組網,它實際上又是Internet的1個子網。在GPRS的支持下,GSM可以提供:E-mail、網頁瀏覽、增強的短消息業務、即時的無線圖像傳送、尋像業務、文本和住處共享、監視、Voice over Internet、廣播業務。由於它採用的是分組技術,與傳統的無線電路業務在實施上有完全不同的特點。
GPRS網路同時支持IPv4和IPv6,是通向第三代移動通信網路的重要一步。它適合於突發性Internet/ Intranet業務,並能提供點到點的承載業務以及完成短消息業務的傳送。預計在將來,它也能提供單點到多點的業務。更重要的是GPRS具有有限的QoS支持,因為它可以由相關參數來指定業務的繼承性、可靠性、延時、流量。
目前市場上還很難買到支持GPRS的手機,並且中國移動通信目前還不支持GPRS。據稱,中國移動通信正在開發「夢網」,可能應用的技術就是GPRS。
3.CDPD
CDPD(蜂窩數字分組數據)採用分組數據方式,是目前公認的最佳無線公共網路數據通信規程。它是建立在TCP/IP基礎上的一種開放系統結構,將開放式介面、高傳輸速度、用戶單元確定、空中鏈路加密、空中數據加密、壓縮數據糾錯及重發和世界標準的IP定址模式無線接入有機地結合在一起,提供同層網路的無縫連接、多協議網路服務。
4.三種標準的比較
GSM標准機構ETSI出版HSCSD規范的時間要比出版GPRS規范的時間早1年多,但目前GPRS的實際應用要更廣泛一些。雖然已有10多家運營商從NOKIA和Ericssion訂購HSCSD的方案,但直到現在為止還沒有商業化的HSCSD服務提供給用戶。
GPRS與CDPD性能比較(見表一):
類比後可以看出,GPRS和CDPD各有千秋,是移動上網的好選擇。
5.其他目前很難見到的技術
(EDGE和UMTS)
EDGE是一種有效提高了GPRS信道編碼效率的高速移動數據標准,它允許高達384Kbps的數據傳輸速率,可以充分滿足未來無線多媒體應用的帶寬需求。EDGE是為無法得到UMTS頻譜的移動網路運營商而設計的,它提供一個從GPRS到UMTS的過渡性方案,從而使現有的網路運營商可以最大限度地利用現有的無線網路設備,在第三代移動網路商業化之前提前為用戶提供個人多媒體通信業務。現在,NOKIA和Ericssion公司的研究和開發部門正在對 EDGE技術進行攻關,有望在2001~2002年將其投入商用。
UMTS(Universal Mobile Telecommunication System)是ITU IMT-2000的重要組成部分。早在1991年,ETSI就開始了這方面的技術研究,1998年初,它為UMTS選擇了一種無線介面UTRA(UMTS Terrestrial Radio Access)作為全球地面無線接入網路的基礎。
UMTS除支持現有的一些固定和移動業務外,還提供全新的互動式多媒體業務。UMTS使用ITU分配的、適用於陸地和衛星無線通信的頻帶。它可通過移動或固定、公用或專用網路接入,與GSM和IP兼容。UMTS可支持高達2Mb/s的數據速率,與IP結合將更好地支持互動式多媒體業務和其他寬頻應用(如可視電話和會議電視等)。實際上,只要有足夠的帶寬,UMTS可支持更高的速率。例如,在UMTS發展的高級階段,採用LAN(微波或紅外)技術,可使系統速率高達155Mb/s。預計到2003年以後,UMTS有望投入使用。
寬頻廣域網
1.LMDS
LMDS(本地多點分配業務)是一種微波的寬頻業務,工作在28GHz附近頻段,在較近的距離雙向傳輸話音、數據和圖像等信息。LMDS採用一種類似蜂窩的服務區結構,將一個需要提供業務的地區劃分為若干服務區,每個服務區內設基站,基站設備經點到多點無線鏈路與服務區內的用戶端通信。每個服務區覆蓋范圍為幾公里至十幾公里,並可相互重疊。LMDS屬於無線固定接入,而它最大的特點在於寬頻特性,可用頻譜往往達1GHz以上,一般通信速度可以達到 2Mbps。
2.SCDMA
無線用戶環路系統是國際上第一套同時應用智能天線(Smart Antenna)技術、採用SWAP空間信令,利用軟體無線電(Software Radio)實現的同步CDMA(Synchronous CDMA)無線通信系統。系統由基站控制器、無線基站、用戶終端(多用戶固定台、少用戶固定台、單用戶固定台及手持機)和網路管理設備等組成。單基站工作在一個給定的載波頻率,佔用0.5MHz帶寬,主要功能是完成與基站控制器或交換機的有線連接以及與用戶終端的無線連接。基站和基站控制器通過E1介面(2Mbps)以R2或V5介面信號接入PSTN網。基站與用戶終端的空中介面使用SWAP信令,以無線方式為用戶提供話音、傳真和低速數據業務。多用戶終端還具有內部交換功能(即同一多用戶固定台的用戶彼此呼叫不佔用空中碼道)。網路管理完成系統的配置管理、故障管理、數據維護及安全管理等功能。
3.WCDMA
WCDMA(寬頻分碼多工存取)全名是Wideband CDMA,它可支持384Kbps到2Mbps不等的數據傳輸速率,在高速移動的狀態,可提供384Kbps的傳輸速率,在低速移動或是室內環境下,則可提供高達2Mbps的傳輸速率。此外,在同一傳輸通道中,它還可以提供電路交換和分包交換的服務,因此,消費者可以同時利用交換方式接聽電話,然後以分包交換方式訪問網際網路。這樣的技術可以提高行動電話的使用效率,使得我們可以超越在同一時間只能做語音或數據傳輸的服務限制。
4.寬頻協議的比較
一般情況下看,LMDS多用於網際網路訪問,SCDMA多用於視頻會議,WCDMA多用於可視行動電話。當然3者都可實現這些功能。不過目前除了LMDS尚可在國內見到,其餘的恐怕要過兩年才能見到。
區域網
1.Bluetooth
藍牙,大家一定聽說過吧。這種系統是使用擴頻(spread spectrum)技術,在攜帶型裝置和區域網路之間提供一個快速而安全的短距離無線電連接。它提供的服務包括網際網路(Internet)、電子郵件、影像和數據傳輸以及語音應用,延伸容納於3個並行傳輸的64kb/s PCM通道中,提供1Mbps的流量。這一觀念已被2000個左右的不同用戶組織所採用,並獲得許多主要半導體製造廠家的支持。
藍牙無線技術既支持點到點連接,又支持點到多點的連接。蘊藏在筆記本電腦、Palm和PDA、Windows CE設備、蜂窩手機、PCS電話及其他外設的轉發設備中,可以使這些設備在各種網路環境中進行通訊。現在的規范允許7個「從屬」設備和一個「主」設備進行通訊。幾個這樣的小網路(piconet)也可以連接在一起,通過靈活的配置彼此進行溝通。
Ⅵ 誰知道ZigBee 技術是什麼
Zigbee是一種新興的短距離、低速率、低功耗無線網路技術,它是一種介於無線標記技術和藍牙之間的技術提案。它此前被稱作「HomeRF Lite」或「FireFly」無線技術,主要用於近距離無線連接。它有自己的無線電標准,在數千個微小的感測器之間相互協調實現通信。這些感測器只需要很低的功耗,以接力的方式通過無線電波將數據從一個感測器傳到另一個感測器,因此它們的通信效率非常高。最後,這些數據就可以進入計算機用於分析或者被另外一種無線技術如WiMax收集。Zigbee的基礎是IEEE802.15.4,這是IEEE無線個人區域網(Personal Area Network,PAN)工作組的一項標准,被稱做IEEE802.15.4(Zigbee)技術標准。Zigbee不僅只是802.15.4的名字。IEEE僅處理低級MAC層和物理層協議,因此Zigbee聯盟對其網路層協議和API進行了標准化(如下圖2所示)。完全協議用於一次可直接連接到一個設備的基本節點的4K位元組或者作為Hub或路由器的協調器的32K位元組。每個協調器可連接多達255個節點,而幾個協調器則可形成一個網路,對路由傳輸的數目則沒有限制。Zigbee聯盟還開發了安全層,以保證這種便攜設備不會意外泄漏其標識,而且這種利用網路的遠距離傳輸不會被其它節點獲得。Zigbee聯盟(http://www.zigbee.org)成立於2001年8月。2002年下半年,英國Invensys公司、日本三菱電氣公司、美國摩托羅拉公司以及荷蘭飛利浦半導體公司四大巨頭共同宣布,它們將加盟「Zigbee聯盟」,以研發名為「Zigbee」的下一代無線通信標准,這一事件成為該項技術發展過程中的里程碑。
到目前為止,除了Invensys、三菱電子、摩托羅拉和飛利浦等國際知名的大公司外,該聯盟大約已有20多家成員企業,並在迅速發展壯大。其中涵蓋了半導體生產商、IP服務提供商、消費類電子廠商及OEM商等,例如Honeywell、Eaton和Invensys Metering Systems等工業控制和家用自動化公司,甚至還有像Mattel之類的玩具公司。所有這些公司都參加了負責開發Zigbee物理和媒體控制層技術標準的IEEE 802.15.4工作組。
根據Zigbee聯盟目前的設想,Zigbee的目標市場主要有PC外設(滑鼠、鍵盤、游戲操控桿)、消費類電子設備(TV、VCR、CD、VCD、DVD等設備上的遙控裝置)、家庭內智能控制(照明、煤氣計量控制及報警等)、玩具(電子寵物)、醫護(監視器和感測器)、工控(監視器、感測器和自動控制設備)等非常廣闊的領域。
政府的計劃給了Zigbee更多的空間,顯示了對其無比的信心。據報道,美國能源部已經決定僱傭Honeywell International Inc.公司,希望通過使用Zigbee感測器能夠在鋼鐵、鋁以及其他六個行業中將這些能源的成本降低15%。通過安裝在Alcoa,Dow Chemical,以及ExxonMobil等公司管道系統中感測器,實時追蹤監測產品生產過程中的氣體使用情況。
Zigbee技術的主要特點包括以下幾個部分:
*數據傳輸速率低:只有10k位元組/秒到250k位元組/秒,專注於低傳輸應用;
*功耗低:在低耗電待機模式下,兩節普通5號干電池可使用6個月到2年,免去了充電或者頻繁更換電池的麻煩。這也是Zigbee的支持者所一直引以為豪的獨特優勢;
*成本低:因為Zigbee數據傳輸速率低,協議簡單,所以大大降低了成本。且Zigbee協議免收專利費。
*時延短:通常時延都在15毫秒至30毫秒之間;
*安全:Zigbee提供了數據完整性檢查和鑒權功能,加密演算法採用AES-128,同時可以靈活確定其安全屬性;
*網路容量大:每個Zigbee網路最多可支持255個設備,也就是說,每個Zigbee設備可以與另外254台設備相連接;
*優良的網路拓撲能力:ZigBee具有星、樹和叢網路結構的能力。ZigBee設備實際上具有無線網路自愈能力,能簡單地覆蓋廣闊圍;
*有效范圍小:有效覆蓋范圍10~75米之間,具體依據實際發射功率的大小和各種不同的應用模式而定,基本上能夠覆蓋普通的家庭或辦公室環境;
* 工作頻段靈活:使用的頻段分別為2.4GHz(全球)、868MHz(歐洲)及915MHz(美國),均為免執照頻段。
更重要的是,預測未來6到7年內,家庭用戶將佔有Zigbee2/3的市場。在可以預期的將來,Zigbee無線感測將切實改變你我的生活。
參考:http://www.gkzhan.com/article/show/1796.html
Ⅶ 關於無線網路的發展歷史有哪些
蜂窩無線移動網路么?目前發展了4代
第一代是模擬技術的,就是手機是大哥大的那一代,目前早已完全退出歷史舞台
第二代是以gsm和cdma為代表的數字蜂窩技術,嚴禁版本加入了gprs,edge,cdma1x等數據業務網路。
第三代是以wcdma,tdscdma,cdma2000位主流的網路技術
第四代是我們所說的4G,或者LTE,也是目前商用了的最先進的技術
第五代還在研究中預計2020前後出商用系統
Ⅷ 無線區域網的歷史(全面的)
說到無線區域網的歷史起源,可能大家都會認為是最近才出現的一項新興技術,但它的出現實際上比想像的還要早。無線區域網的初步應用,可以追朔到五十年前的第二次世界大戰期間,當時美國陸軍就採用了無線電信號做資料的傳輸,他們研發出了一套無線電傳輸技術,並且採用非常高的加密技術。二戰時期,美軍和盟軍都廣泛使用了這項技術,並讓學者從中得到了靈感。1971年,夏威夷大學(University of Hawaii)的研究人員創造了第一個基於封包式技術的無線電通訊網路,被稱為ALOHNET網路,是最早的無線區域網絡。這個WLAN包括了7台計算機,採用雙向星型拓撲(bi-directional star topology)橫跨四座夏威夷的島嶼,中心計算機放置在瓦胡島(Oahu Island)上。從這時開始,無線區域網可以說是正式誕生了。
隨作個人計算機誕生並初步發展,真正現代意義上的無線區域網在上世紀80年代末期才開始出現,當時摩托羅拉公司開發出了第一代商用無線區域網。1990年,IEEE啟動了802.11項目,正式開始了無線區域網的標准化工作;1997年,IEEE改進了802.11協議的國際互通標准;1999年,IEEE批准了802.11b和802.11a兩個無線網路的通信標准;2001年,IEEE對QoS和無線區域網安全性草案作出了明確表述;2002年,已經有超過130家參與公司成為標准投票成員。
Ⅸ 無線通信技術有哪些
1、LoRa技術
LoRa是LPWAN通信技術中的一種,是美國Semtech公司採用和推廣的一種基於擴頻技術的超遠距離無線傳輸方案。
是物理層或無線調制用於建立長距離通信鏈路。許多傳統的無線系統使用頻移鍵控(FSK)調製作為物理層,因為它是一種實現低功耗的非常有效的調制。
2、WiFi/ IEEE 802.11協議
WiFi,全稱Wireless-Fidelity,無線保真,是無線區域網(WLAN)中的一個標准。從1999年推出以來一直是是我們生活中較常用的訪問互聯網的方式之一。
3、ZigBee/802.15.4協議
Zigbee被正式提出來是在2003年,它的出現是為了彌補藍牙通信協議的高復雜,功耗大,距離近,組網規模太小等缺陷。
名稱取自於蜜蜂,蜜蜂 (bee)是靠飛翔和「嗡嗡」(zig)地抖動翅膀的「舞蹈」來與同伴傳遞花粉所在方位信息,依靠這樣的方式構成了群體中的通信網路。
4、Thread /IEEE 802.15.4協議
Thread和ZigBee同屬802.15.4,但是針對802.15.4做了很大的改進。Thread是建立在IPv6的基礎之上的一個協議,無論在傳輸安全,還是系統可靠性上都做了非常棒的優化。它既可以承載高通海爾數十企業組物聯網盟AllSeen,也可以支持蘋果的Homekit智能家居平台。
5、Z-Wave協議
Z-Wave無線組網規格於2004年提出,由丹麥的晶元與軟體開發商Zensys主導,Z-wave聯盟推廣其應用。
Z-Wave工作頻率美國 908.42MHz、歐洲868.42MHz,採用無線網狀網路技術,因此任何節點都能直接或間接地和通信范圍內的其它臨近節點通信。