导航:首页 > 网络连接 > 计算机网络3层结构

计算机网络3层结构

发布时间:2022-05-31 21:49:48

‘壹’ 计算机网络的组成和体系结构

一、计算机网络的基本组成

计算机网络是一个很复杂的系统,它由许多计算机软件、硬件和通信设备组合而成。下面对一个计算机网络所需的主要部分,即服务器、工作站、外围设备、网络软件作简要介绍。

1.服务器(Server)

在计算机网络中,服务器是整个网络系统的核心,一般是指分散在不同地点担负一定数据处理任务和提供资源的计算机,它为网络用户提供服务并管理整个网络,它影响着网络的整体性能。一般在大型网络中采用大型机、中型机和小型机作为网络服务器,可保证网络的可靠性。对于网点不多,网络通信量不大,数据安全性要求不太高的网络,可以选用高档微机作网络服务器。根据服务器在网络中担负的网络功能的不同,又可分为文件服务器、通信服务器和打印服务器等。在小型局域网中,最常用的是文件服务器。一般来说网络越大、用户越多、服务器负荷越大,对服务器性能要求越高。

2.工作站(Workstation)

工作站有时也称为“节点”或“客户机(Client)”,是指通过网络适配器和线缆连接到网络上的计算机,是网络用户进行信息处理的个人计算机。它和服务器不同,服务器是为整个网络提供服务并管理整个网络,而工作站只是一个接入网络的设备,它保持原有计算机的功能,作为独立的计算机为用户服务,同时又可按一定的权限访问服务器,享用网络资源。

工作站通常都是普通的个人计算机,有时为了节约经费,不配软、硬盘,称为“无盘工作站”。

3.网络外围设备

是指连接服务器和工作站的一些连线或连接设备,如同轴电缆、双绞线、光纤等传输介质,网卡(NIC)、中继器(Repeater)、集线器(Hub)、交换机(Switch)、网桥(Bridge)等,又如用于广域网的设备:调制解调器(Modem)、路由器(Router)、网关(Gateway)等,接口设备:T型头、BNC连接器、终端匹配器、RJ45头、ST头、SC头、FC头等。

4.网络软件

前面介绍的都是网络硬件设备。要想网络能很好地运行,还必须有网络软件。

通常网络软件包括网络操作系统(NOS)、网络协议软件和网络通信软件等。其中,网络操作系统是为了使计算机具备正常运行和连接上网的能力,常见的网络操作系统有UNIX、Linux、Novell Netware、Windows NT、Windows 2000 Server、Windows XP等;网络协议软件是为了各台计算能使用统一的协议,可以看成是计算机之间相互会话使用的语言;而运用协议进行实际的通信则是由通信软件完成的。

网络软件功能的强弱直接影响到网络的性能,因为网络中的资源共享、相互通信、访问控制和文件管理等都是通过网络软件实现的。

二、计算机网络的拓扑结构

所谓计算机网络的拓扑结构是指网络中各结点(包括连接到网络中的设备、计算机)的地理分布和互连关系的几何构形,即网络中结点的互连模式。

网络的拓扑结构影响着整个网络的设计、功能、可靠性和通信费用等指标,常见的网络拓扑结构有总线型、星型、环型等,通过使用路由器和交换机等互连设备,可在此基础上构建一个更大网络。

1.总线型

在总线型结构中,将所有的入网计算机接入到一条通信传输线上,为防止信号反射,一般在总线两端连有终端匹配器如图6-1(a)。总线型结构的优点是信道利用率高,可扩充性好,结构简单,价格便宜。当数据在总线上传递时,会不断地“广播”,第一节点均可收到此信息,各节点会对比数据送达的地址与自己的地址是否相同,若相同,则接收该数据,否则不必理会该数据。缺点是同一时刻只能有两个网络结点在相互通信,网络延伸距离有限,网络容纳的节点数有限。在总线上只要有一个结点连接出现问题,会影响整个网络运行,且不易找到故障点。

图6-1 网络拓扑结构

2.星型

在星型结构中,以中央结点为中心,其他结点都与中央结点相连。每台计算机通过单独的通信线路连接到中央结点,由该中央结点向目的结点传送信息,如图6-1(b),因此,中央结点必须有较强的功能和较高的可靠性。

在已实现的网络拓扑结构中,这是最流行的一种。跟总线型拓扑结构相比,它的主要的优势是一旦某一个电缆线段被损坏了,只有连接到那个电缆段的主机才会受到影响,结构简单,建网容易,便于管理。缺点是该拓扑是以点对点方式布线的,故所需线材较多,成本相对较高,此外中央结点易成为系统的“瓶颈”,且一旦发生故障,将导致全网瘫痪。

3.环型

在环型结构中,如图6-1(c)所示,各网络结点连成封闭环路,数据只能是单向传递,每个收到数据包的结点都向它的下一结点转发该数据包,环游一圈后由发送结点回收。当数据包经过目标结点时,目标结点根据数据包中的目标地址判断出是自己接收,并把该数据包拷贝到自己的接收缓冲中。

环型拓扑结构的优点是:结构简单,网络管理比较简单,实时性强。缺点是:成本较高,可靠性差,网络扩充复杂,网络中若有任一结点发生故障都会使整个网络瘫痪。

三、计算机网络的体系结构

要弄清网络的体系结构,需先弄清网络协议是什么

网络协议是两台网络上的计算机进行通信时使用的语言,是通信的规则和约定。为了在网络上传输数据,网络协议定义了数据应该如何被打成包、并且定义了在接收数据时接收计算机如何解包。在同一网络中的两台计算机为了相互通信,必须运行同一协议,就如同两个人交谈时,必须采用对方听得懂的语言和语速。

由于网络结点之间的连接可能是很复杂的,因此,为了减少协议设计的复杂性,在制定协议时,一般把复杂成分分解成一些简单成分,再将它们复合起来,而大多数网络都按层来组织,并且规定:(1)一般是将用户应用程序作为最高层,把物理通信线路作为最低层,将其间再分为若干层,规定每层处理的任务,也规定每层的接口标准;(2)每一层向上一层提供服务,而与再上一层不发生关系;(3)每一层可以调用下一层的服务传输信息,而与再下一层不发生关系。(4)相邻两层有明显的接口。

除最低层可水平通信外,其他层只能垂直通信。

层和协议的集合被称为网络的体系结构。为了帮助大家理解,我们从现实生活中的一个例子来理解网络的层次关系。假如一个只懂得法语的法国文学家和一个只懂得中文的中国文学家要进行学术交流,那么他们可将论文翻译成英语或某一种中间语言,然后交给各自的秘书选一种通信方式发给对方,如图6-2所示。

图6-2 中法文学家学术交流方式

下面介绍两个重要的网络体系结构:OSI参考模型和TCP/IP参考模型。

1.OSI参考模型

由于世界各大型计算机厂商推出各自的网络体系结构,不同计算机厂商的设备相互通信困难。为建立更大范围内的计算机网络,必然要解决异构网络的互连,因而国际标准化组织ISO于1977年提出“开放系统互连参考模型”,即着名的OSI(Open system interconnection/Reference Model)。它将计算机网络规定为物理层、数据链路层、网络层、传输层、会话层、表示层、应用层等七层,受到计算机界和通信界的极大关注。

2.TCP/IP参考模型

TCP/IP(Transmission Control Protocol/Internet protocol)协议是Internet使用的通信协议,由ARPANET研究中心开发。TCP/IP是一组协议集(Internet protocol suite),而TCP、IP是该协议中最重要最普遍使用的两个协议,所以用TCP/IP来泛指该组协议。

TCP/IP协议的体系结构被分为四层:

(1)网络接口层 是该模型的最低层,其作用是负责接收IP数据报,并通过网络发送出去,或者从网络上接收网络帧,分离IP数据报。

(2)网络层 IP协议被定义驻留在这一层中,它负责将信息从一台主机传到指定接收的另一台主机。主要功能是:寻址、打包和路由选择。

(3)传输层 提供了两个协议用于数据传输,即传输控制协议TCP和通用数据协议UDP,负责提供准确可靠和高效的数据传送服务。

(4)应用层 位于TCP/IP最高层,为用户提供一组常用的应用程序协议。例如:简单邮件传输协议SMTP、文件传协议FTP、远程登录协议Telnet、超文本传输协议HTTP(该协议是后来扩充的)等。随着Internet的发展,又开发了许多实用的应用层协议。

图6-3是TCP/IP模型和OSI模型的简单比较:

图6-3 TCP/IP模型和OSI模型的对比

‘贰’ 计算机网络体系分为哪四层

1.、应用层

应用层对应于OSI参考模型的高层,为用户提供所需要的各种服务,例如:FTP、Telnet、DNS、SMTP等.

2.、传输层

传输层对应于OSI参考模型的传输层,为应用层实体提供端到端的通信功能,保证了数据包的顺序传送及数据的完整性。该层定义了两个主要的协议:传输控制协议(TCP)和用户数据报协议(UDP).

TCP协议提供的是一种可靠的、通过“三次握手”来连接的数据传输服务;而UDP协议提供的则是不保证可靠的(并不是不可靠)、无连接的数据传输服务.

3.、网际互联层

网际互联层对应于OSI参考模型的网络层,主要解决主机到主机的通信问题。它所包含的协议设计数据包在整个网络上的逻辑传输。注重重新赋予主机一个IP地址来完成对主机的寻址,它还负责数据包在多种网络中的路由。

该层有三个主要协议:网际协议(IP)、互联网组管理协议(IGMP)和互联网控制报文协议(ICMP)。

IP协议是网际互联层最重要的协议,它提供的是一个可靠、无连接的数据报传递服务。

4.、网络接入层(即主机-网络层)

网络接入层与OSI参考模型中的物理层和数据链路层相对应。它负责监视数据在主机和网络之间的交换。事实上,TCP/IP本身并未定义该层的协议,而由参与互连的各网络使用自己的物理层和数据链路层协议,然后与TCP/IP的网络接入层进行连接。地址解析协议(ARP)工作在此层,即OSI参考模型的数据链路层。

(2)计算机网络3层结构扩展阅读:

OSI将计算机网络体系结构(architecture)划分为以下七层:

物理层: 将数据转换为可通过物理介质传送的电子信号相当于邮局中的搬运工人。

数据链路层: 决定访问网络介质的方式。

在此层将数据分帧,并处理流控制。本层指定拓扑结构并提供硬件寻址,相当于邮局中的装拆箱工人。

网络层: 使用权数据路由经过大型网络 相当于邮局中的排序工人。

传输层: 提供终端到终端的可靠连接 相当于公司中跑邮局的送信职员。

会话层: 允许用户使用简单易记的名称建立连接 相当于公司中收寄信、写信封与拆信封的秘书。

表示层: 协商数据交换格式 相当公司中简报老板、替老板写信的助理。

应用层: 用户的应用程序和网络之间的接口老板。

‘叁’ 计算机网络组成的三要素是什么

计算机网络组成的三要素为:

1、计算机及辅助设备(HUB集线器);

2、通信介质(导线、无线);

3、网络软件(Windows NT、Novell)。

拓展资料:

计算机网络体系结构可以从网络体系结构、网络组织、网络配置三个方面来描述,网络组织是从网络的物理结构和网络的实现两方面来描述计算机网络,网络配置是从网络应用方面来描述计算机网络的布局,硬件、软件和通信线路来描述计算机网络,网络体系结构是从功能上来描述计算机网络结构。

网络协议是计算机网络必不可少的,一个完整的计算机网络需要有一套复杂的协议集合,组织复杂的计算机网络协议的最好方式就是层次模型。而将计算机网络层次模型和各层协议的集合定义为计算机网络体系结构(Network Architecture)。

计算机网络由多个互连的结点组成,结点之间要不断地交换数据和控制信息,要做到有条不紊地交换数据,每个结点就必须遵守一整套合理而严谨的结构化管理体系·计算机网络就是按照高度结构化设计方法采用功能分层原理来实现的,即计算机网络体系结构的内容。

组成结构

一、计算机系统和终端

计算机系统和终端提供网络服务界面。地域集中的多个独立终端可通过一个终端控制器连入网络。

二、通信处理机

通信处理机也叫通信控制器或前端处理机,是计算机网络中完成通信控制的专用计算机,通常由小型机、微机或带有CPU的专用设备充当。在广域网中,采用专门的计算机充当通信处理机:在局域网中,由于通信控制功能比较简单,所以没有专门的通信处理机,而是在计算机中插入一个网络适配器(网卡)来控制通信。

三、通信线路和通信设备

通信线路是连接各计算机系统终端的物理通路。通信设备的采用与线路类型有很大关系:如果是模拟线路,在线中两端使用Modem(调制解调器);如果是有线介质,在计算机和介质之间就必须使用相应的介质连接部件。

四、操作系统

计算机连入网络后,还需要安装操作系统软件才能实现资源共享和管理网络资源。如:Windows 98、Windows 2000、Windows xp等。

五、网络协议

网络协议是规定在网络中进行相互通信时需遵守的规则,只有遵守这些规则才能实现网络通信。常见的协议有:TCP/IP协议、IPX/SPX协议、NetBEUI协议等。

‘肆’ 计算机网络技术:TCP/IP体系结构将网络分为哪几层TCP/IP体系结构与OSI模型的对应关系是

计算机网络技术:TCP/IP体系结构将网络分为应用层,表示层,会话层,传输层,网络层,数据链路层,物理层。

TCP/IP体系结构与OSI模型的对应关系是:osi的上三层对应tcp的应用层,传输层与网络层是一一对应的。

应用层、表示层、会话层三个层次提供的服务相差不是很大,所以在TCP/IP协议中,它们被合并为应用层一个层次。由于运输层和网络层在网络协议中的地位十分重要,所以在TCP/IP协议中它们被作为独立的两个层次。



(4)计算机网络3层结构扩展阅读:

对不同种类的应用程序它们会根据自己的需要来使用应用层的不同协议,邮件传输应用使用了SMTP协议、万维网应用使用了HTTP协议、远程登录服务应用使用了有TELNET协议。

在TCP/IP协议中,网络接口层位于第四层。由于网络接口层兼并了物理层和数据链路层所以,网络接口层既是传输数据的物理媒介,也可以为网络层提供一条准确无误的线路。

‘伍’ 网络结构分层有哪些

OSI是Open System Interconnection 的缩写,意为开放式系统互联参考模型。在OSI出现之前,计算机网络中存在众多的体系结构,其中以IBM公司的SNA(系统网络体系结构)和DEC公司的DNA(Digital Network Architecture)数字网络体系结构最为着名。为了解决不同体系结构的网络的互联问题,国际标准化组织ISO(注意不要与OSI搞混)于1981年制定了开放系统互连参考模型(Open System Interconnection Reference Model,OSI/RM)。这个模型把网络通信的工作分为7层,它们由低到高分别是物理层(Physical Layer),数据链路层(Data Link Layer),网络层(Network Layer),传输层(Transport Layer),会话层(Session Layer),表示层(Presen tation Layer)和应用层(Application Layer)。第一层到第三层属于OSI参考模型的低三层,负责创建网络通信连接的链路;第四层到第七层为OSI参考模型的高四层,具体负责端到端的数据通信。每层完成一定的功能,每层都直接为其上层提供服务,并且所有层次都互相支持,而网络通信则可以自上而下(在发送端)或者自下而上(在接收端)双向进行。当然并不是每一通信都需要经过OSI的全部七层,有的甚至只需要双方对应的某一层即可。物理接口之间的转接,以及中继器与中继器之间的连接就只需在物理层中进行即可;而路由器与路由器之间的连接则只需经过网络层以下的三层即可。总的来说,双方的通信是在对等层次上进行的,不能在不对称层次上进行通信。
OSI 标准制定过程中采用的方法是将整个庞大而复杂的问题划分为若干个容易处理的小问题,这就是分层的体系结构办法。在OSI中,采用了三级抽象,既体系结构,服务定义,协议规格说明。

OSI的七层结构
[编辑本段]

ISO将整个通信功能划分为七个层次,划分层次的原则是:
1、网中各节点都有相同的层次。
2、不同节点的同等层次具有相同的功能。
3、同一节点能相邻层之间通过接口通信。
4、每一层使用下层提供的服务,并向其上层提供服务。
5、不同节点的同等层按照协议实现对等层之间的通信。

第一层:物理层(PhysicalLayer),规定通信设备的机械的、电气的、功能的和规程的特性,用以建立、维护和拆除物理链路连接。具体地讲,机械特性规定了网络连接时所需接插件的规格尺寸、引脚数量和排列情况等;电气特性规定了在物理连接上传输bit流时线路上信号电平的大小、阻抗匹配、传输速率距离限制等;功能特性是指对各个信号先分配确切的信号含义,即定义了DTE和DCE之间各个线路的功能;规程特性定义了利用信号线进行bit流传输的一组操作规程,是指在物理连接的建立、维护、交换信息时,DTE和DCE双方在各电路上的动作系列。
在这一层,数据的单位称为比特(bit)。
属于物理层定义的典型规范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。

第二层:数据链路层(DataLinkLayer):在物理层提供比特流服务的基础上,建立相邻结点之间的数据链路,通过差错控制提供数据帧(Frame)在信道上无差错的传输,并进行各电路上的动作系列。
数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。
在这一层,数据的单位称为帧(frame)。
数据链路层协议的代表包括:SDLC、HDLC、PPP、STP、帧中继等。

第三层是网络层(Network layer)

在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。网络层将数据链路层提供的帧组成数据包,包中封装有网络层包头,其中含有逻辑地址信息- -源站点和目的站点地址的网络地址。

如果你在谈论一个IP地址,那么你是在处理第3层的问题,这是“数据包”问题,而不是第2层的“帧”。IP是第3层问题的一部分,此外还有一些路由协议和地址解析协议(ARP)。有关路由的一切事情都在第3层处理。地址解析和路由是3层的重要目的。网络层还可以实现拥塞控制、网际互连等功能。
在这一层,数据的单位称为数据包(packet)。
网络层协议的代表包括:IP、IPX、RIP、OSPF等。

第四层是处理信息的传输层(Transport layer)。第4层的数据单元也称作数据包(packets)。但是,当你谈论TCP等具体的协议时又有特殊的叫法,TCP的数据单元称为段(segments)而UDP协议的数据单元称为“数据报(datagrams)”。这个层负责获取全部信息,因此,它必须跟踪数据单元碎片、乱序到达的数据包和其它在传输过程中可能发生的危险。第4层为上层提供端到端(最终用户到最终用户)的透明的、可靠的数据传输服务。所谓透明的传输是指在通信过程中传输层对上层屏蔽了通信传输系统的具体细节。
传输层协议的代表包括:TCP、UDP、SPX等。

第五层是会话层(Session layer)

这一层也可以称为会晤层或对话层,在会话层及以上的高层次中,数据传送的单位不再另外命名,统称为报文。会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制。如服务器验证用户登录便是由会话层完成的。

第六层是表示层(Presentation layer)

这一层主要解决用户信息的语法表示问题。它将欲交换的数据从适合于某一用户的抽象语法,转换为适合于OSI系统内部使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩, 加密和解密等工作都由表示层负责。例如图像格式的显示,就是由位于表示层的协议来支持。

第七层应用层(Application layer),应用层为操作系统或网络应用程序提供访问网络服务的接口。
应用层协议的代表包括:Telnet、FTP、HTTP、SNMP等。

通过 OSI 层,信息可以从一台计算机的软件应用程序传输到另一台的应用程序上。例如,计算机 A 上的应用程序要将信息发送到计算机 B 的应用程序,则计算机 A 中的应用程序需要将信息先发送到其应用层(第七层),然后此层将信息发送到表示层(第六层),表示层将数据转送到会话层(第五层),如此继续,直至物理层(第一层)。在物理层,数据被放置在物理网络媒介中并被发送至计算机 B 。计算机 B 的物理层接收来自物理媒介的数据,然后将信息向上发送至数据链路层(第二层),数据链路层再转送给网络层,依次继续直到信息到达计算机 B 的应用层。最后,计算机 B 的应用层再将信息传送给应用程序接收端,从而完成通信过程。下面图示说明了这一过程。
OSI 的七层运用各种各样的控制信息来和其他计算机系统的对应层进行通信。这些控制信息包含特殊的请求和说明,它们在对应的 OSI 层间进行交换。每一层数据的头和尾是两个携带控制信息的基本形式。

对于从上一层传送下来的数据,附加在前面的控制信息称为头,附加在后面的控制信息称为尾。然而,在对来自上一层数据增加协议头和协议尾,对一个 OSI 层来说并不是必需的。

当数据在各层间传送时,每一层都可以在数据上增加头和尾,而这些数据已经包含了上一层增加的头和尾。协议头包含了有关层与层间的通信信息。头、尾以及数据是相关联的概念,它们取决于分析信息单元的协议层。例如,传输层头包含了只有传输层可以看到的信息,传输层下面的其他层只将此头作为数据的一部分传递。对于网络层,一个信息单元由第三层的头和数据组成。对于数据链路层,经网络层向下传递的所有信息即第三层头和数据都被看作是数据。换句话说,在给定的某一 OSI 层,信息单元的数据部分包含来自于所有上层的头和尾以及数据,这称之为封装。
例如,如果计算机 A 要将应用程序中的某数据发送至计算机 B ,数据首先传送至应用层。 计算机 A 的应用层通过在数据上添加协议头来和计算机 B 的应用层通信。所形成的信息单元包含协议头、数据、可能还有协议尾,被发送至表示层,表示层再添加为计算机 B 的表示层所理解的控制信息的协议头。信息单元的大小随着每一层协议头和协议尾的添加而增加,这些协议头和协议尾包含了计算机 B 的对应层要使用的控制信息。在物理层,整个信息单元通过网络介质传输。

计算机 B 中的物理层收到信息单元并将其传送至数据链路层;然后 B 中的数据链路层读取计算机 A 的数据链路层添加的协议头中的控制信息;然后去除协议头和协议尾,剩余部分被传送至网络层。每一层执行相同的动作:从对应层读取协议头和协议尾,并去除,再将剩余信息发送至上一层。应用层执行完这些动作后,数据就被传送至计算机 B 中的应用程序,这些数据和计算机 A 的应用程序所发送的完全相同 。

一个 OSI 层与另一层之间的通信是利用第二层提供的服务完成的。相邻层提供的服务帮助一 OSI 层与另一计算机系统的对应层进行通信。一个 OSI 模型的特定层通常是与另外三个 OSI 层联系:与之直接相邻的上一层和下一层,还有目标联网计算机系统的对应层。例如,计算机 A 的数据链路层应与其网络层,物理层以及计算机 B 的数据链路层进行通信。

‘陆’ 究竟网络有几个层次

为了使不同计算机厂家生产的计算机能够相互通信,以便在更大的范围内建立计算机网络,国际标准化组织(ISO)在1978年提出了“开放系统互联参考模型”,即着名的OSI/RM模型(Open System Interconnection/Reference Model)。它将计算机网络体系结构的通信协议划分为七层,自下而上依次为:物理层(Physics Layer)、数据链路层(Data Link Layer)、网络层(Network Layer)、传输层(Transport Layer)、会话层(Session Layer)、表示层(Presentation Layer)、应用层(Application Layer)。其中第四层完成数据传送服务,上面三层面向用户。

除了标准的OSI七层模型以外,常见的网络层次划分还有TCP/IP四层协议以及TCP/IP五层协议

1)物理层(Physical Layer)

激活、维持、关闭通信端点之间的机械特性、电气特性、功能特性以及过程特性。该层为上层协议提供了一个传输数据的可靠的物理媒体。简单的说,物理层确保原始的数据可在各种物理媒体上传输。物理层记住两个重要的设备名称,中继器(Repeater,也叫放大器)和集线器。

2)数据链路层(Data Link Layer)

数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。为达到这一目的,数据链路必须具备一系列相应的功能,主要有:如何将数据组合成数据块,在数据链路层中称这种数据块为帧(frame),帧是数据链路层的传送单位;如何控制帧在物理信道上的传输,包括如何处理传输差错,如何调节发送速率以使与接收方相匹配;以及在两个网络实体之间提供数据链路通路的建立、维持和释放的管理。数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。

有关数据链路层的重要知识点:

1>数据链路层为网络层提供可靠的数据传输;

2>基本数据单位为帧;

3> 主要的协议:以太网协议;

4> 两个重要设备名称:网桥和交换机。

3)网络层(Network Layer)

网络层的目的是实现两个端系统之间的数据透明传送,具体功能包括寻址和路由选择、连接的建立、保持和终止等。它提供的服务使传输层不需要了解网络中的数据传输和交换技术。如果您想用尽量少的词来记住网络层,那就是“路径选择、路由及逻辑寻址”。

网络层中涉及众多的协议,其中包括最重要的协议,也是TCP/IP的核心协议——IP协议。IP协议非常简单,仅仅提供不可靠、无连接的传送服务。IP协议的主要功能有:无连接数据报传输、数据报路由选择和差错控制。与IP协议配套使用实现其功能的还有地址解析协议ARP、逆地址解析协议RARP、因特网报文协议ICMP、因特网组管理协议IGMP。具体的协议我们会在接下来的部分进行总结,有关网络层的重点为:

1> 网络层负责对子网间的数据包进行路由选择。此外,网络层还可以实现拥塞控制、网际互连等功能;

2> 基本数据单位为IP数据报;

3> 包含的主要协议:

IP协议(Internet Protocol,因特网互联协议);

ICMP协议(Internet Control Message Protocol,因特网控制报文协议);

ARP协议(Address Resolution Protocol,地址解析协议);

RARP协议(Reverse Address Resolution Protocol,逆地址解析协议)。

4> 重要的设备:路由器。

4)传输层(Transport Layer)

第一个端到端,即主机到主机的层次。传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输。此外,传输层还要处理端到端的差错控制和流量控制问题。

传输层的任务是根据通信子网的特性,最佳的利用网络资源,为两个端系统的会话层之间,提供建立、维护和取消传输连接的功能,负责端到端的可靠数据传输。在这一层,信息传送的协议数据单元称为段或报文。

网络层只是根据网络地址将源结点发出的数据包传送到目的结点,而传输层则负责将数据可靠地传送到相应的端口。

有关网络层的重点:

1>传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输以及端到端的差错控制和流量控制问题;

2> 包含的主要协议:TCP协议(Transmission Control Protocol,传输控制协议)、UDP协议(User Datagram Protocol,用户数据报协议);

3> 重要设备:网关。

5)会话层

会话层管理主机之间的会话进程,即负责建立、管理、终止进程之间的会话。会话层还利用在数据中插入校验点来实现数据的同步。

6)表示层

表示层对上层数据或信息进行变换以保证一个主机应用层信息可以被另一个主机的应用程序理解。表示层的数据转换包括数据的加密、压缩、格式转换等。

7)应用层

为操作系统或网络应用程序提供访问网络服务的接口。

会话层、表示层和应用层重点:

1> 数据传输基本单位为报文;

2> 包含的主要协议:FTP(文件传送协议)、Telnet(远程登录协议)、DNS(域名解析协议)、SMTP(邮件传送协议),POP3协议(邮局协议),HTTP协议(Hyper Text Transfer Protocol)。

摘抄

‘柒’ 计算机网络各层次有哪些

1、应用层

与其它计算机进行通讯的一个应用,它是对应应用程序的通信服务的。例如,一个没有通信功能的字处理程序就不能执行通信的代码,从事字处理工作的程序员也不关心OSI的第7层。但是,如果添加了一个传输文件的选项,那么字处理器的程序就需要实现OSI的第7层。示例:TELNET,HTTP,FTP,NFS,SMTP等。

2、表示层

这一层的主要功能是定义数据格式及加密。例如,FTP允许你选择以二进制或ASCII格式传输。如果选择二进制,那么发送方和接收方不改变文件的内容。如果选择ASCII格式,发送方将把文本从发送方的字符集转换成标准的ASCII后发送数据。在接收方将标准的ASCII转换成接收方计算机的字符集。示例:加密,ASCII等。

3、会话层

它定义了如何开始、控制和结束一个会话,包括对多个双向消息的控制和管理,以便在只完成连续消息的一部分时可以通知应用,从而使表示层看到的数据是连续的,在某些情况下,如果表示层收到了所有的数据,则用数据代表表示层。示例:RPC,SQL等。

4、传输层

这层的功能包括是否选择差错恢复协议还是无差错恢复协议,及在同一主机上对不同应用的数据流的输入进行复用,还包括对收到的顺序不对的数据包的重新排序功能。示例:TCP,UDP,SPX。

5、网络层

这层对端到端的包传输进行定义,它定义了能够标识所有结点的逻辑地址,还定义了路由实现的方式和学习的方式。为了适应最大传输单元长度小于包长度的传输介质,网络层还定义了如何将一个包分解成更小的包的分段方法。示例:IP,IPX等。

6、数据链路层

它定义了在单个链路上如何传输数据。这些协议与被讨论的各种介质有关。示例:ATM,FDDI等。

7、物理层

OSI的物理层规范是有关传输介质的特性,这些规范通常也参考了其他组织制定的标准。连接头、帧、帧的使用、电流、编码及光调制等都属于各种物理层规范中的内容。物理层常用多个规范完成对所有细节的定义。示例:Rj45,802.3等。

‘捌’ 计算机网络中,OSI参考模型从低到高第三层是

计算机网络中,OSI参考模型从低到高第3层是:网络层。本层通过寻址来建立两个节点之间的连接,为源端的运输层送来的分组,选择合适的路由和交换节点,正确无误地按照地址传送给目的端的运输层。

它包括通过互连网络来路由和中继数据 ;除了选择路由之外,网络层还负责建立和维护连接,控制网络上的拥塞以及在必要的时候生成计费信息。数据发送时,从第七层传到第一层,接收数据则相反。分层有利于个不同制造厂家的设备互连,也有利于大家学习、理解数据通讯网络。

(8)计算机网络3层结构扩展阅读

提供各种网络服务功能的计算机网络系统是非常复杂的。根据分而治之的原则,ISO将整个通信功能划分为七个层次,划分原则是:

1、网路中各节点都有相同的层次;

2、不同节点的同等层具有相同的功能;

3、同一节点内相邻层之间通过接口通信;

4、每一层使用下层提供的服务,并向其上层提供服务;

5、不同节点的同等层按照协议实现对等层之间的通信;

6、根据功能需要进行分层,每层应当实现定义明确的功能;;

7、向应用程序提供服务。

‘玖’ 简述计算机网络的组成,以及各个组成部分的作用

计算机网络由七层组成:

1、物理层:传递信息需要利用一些物理传输媒体,如双绞线、同轴电缆、光纤等。物理层的任务就是为上层提供一个物理的连接,以及该物理连接表现出来的机械、电气、功能和过程特性,实现透明的比特流传输。

2、数据链路层:数据链路层负责在2个相邻的结点之间的链路上实现无差错的数据帧传输。在接收方接收到数据出错时要通知发送方重发,直到这一帧无差错地到达接收结点,数据链路层就是把一条有可能出错的实际链路变成让网络层看起来像不会出错的数据链路。

3、网络层:网络中通信的2个计算机之间可能要经过许多结点和链路,还可能经过几个通信子网。网络层数据传输的单位是分组。网络层的主要任务是为要传输的分组选择一条合适的路径,使发送分组能够正确无误地按照给定的目的地址找到目的主机,交付给目的主机的传输层。

4、传输层:传输层的主要任务是通过通信子网的特性,最佳地利用网络资源,并以可靠与经济的方式为2个端系统的会话层之间建立一条连接通道,以透明地传输报文。传输层向上一层提供一个可靠的端到端的服务,使会话层不知道传输层以下的数据通信的细节。

5、会话层:在会话层以及以上各层中,数据的传输都以报文为单位,会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立以及维护应用之间的通信机制。如服务器验证用户登录便是由会话层完成的。

6、表示层:这一层主要解决用户信息的语法表示问题。它将要交换的数据从适合某一用户的抽象语法,转换为适合OSI内部表示使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩、加密和解密等工作都由表示层负责。

7、应用层:这是OSI参考模型的最高层。应用层确定进程之间通信的性质以满足用户的需求,以及提供网络与用户软件之间的接口服务。

(9)计算机网络3层结构扩展阅读:

传输层作为整个计算机网络的核心,是惟一负责总体数据传输和控制的一层。因为网络层不一定保证服务的可靠,而用户也不能直接对通信子网加以控制,因此在网络层之上,加一层即传输层以改善传输质量。

传输层利用网络层提供的服务,并通过传输层地址提供给高层用户传输数据的通信端口,使系统间高层资源的共享不必考虑数据通信方面和不可靠的数据传输方面的问题。

‘拾’ TCP/IP协议参考模型共分为了几层,其中3、4层分别是什么

TCP/IP协议参考模型共有4层,从下到上3、4层分别是网络层、网络接口层。

分别介绍TCP/IP协议中的四个层次:

1、应用层:应用层是TCP/IP协议的第一层,是直接为应用进程提供服务的。

2、运输层:作为TCP/IP协议的第二层,运输层在整个TCP/IP协议中起到了中流砥柱的作用。且在运输层中,TCP和UDP也同样起到了中流砥柱的作用。

3、网络层:网络层在TCP/IP协议中的位于第三层。在TCP/IP协议中网络层可以进行网络连接的建立和终止以及IP地址的寻找等功能。

4、网络接口层:在TCP/IP协议中,网络接口层位于第四层。由于网络接口层兼并了物理层和数据链路层所以,网络接口层既是传输数据的物理媒介,也可以为网络层提供一条准确无误的线路。

(10)计算机网络3层结构扩展阅读

OSI模型:

1、第1层是物理层(Physical Layer)(也即OSI模型中的第一层)

2、第2层是数据链路层(Data Link Layer)运行以太网等协议。

3、第3层是网络层(Network Layer)在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。

4、第4层是处理信息的传输层(Transport Layer)。第4层的数据单元也称作数据包(packets)。但是,当你谈论TCP等具体的协议时又有特殊的叫法,TCP的数据单元称为段(segments)而UDP协议的数据单元称为“数据报(datagrams)”。

5、第5层是会话层( Session Layer)这一层也可以称为会晤层或对话层,在会话层及以上的高层次中,数据传送的单位不再另外命名,统称为报文。

6、第6层是表示层(Presentation Layer)这一层主要解决用户信息的语法表示问题。

7、第7层是“一切”。第7层也称作“应用层”(Application Layer),是专门用于应用程序的。

阅读全文

与计算机网络3层结构相关的资料

热点内容
网络卖产品需要多少钱 浏览:505
怎么让家里的网络快速如新 浏览:512
单位网络安全要求会议 浏览:678
全国网络安全军民融合 浏览:523
笔记本网络本地连接好还是无线 浏览:823
网络贷款多少钱利息 浏览:501
沈阳哪里能网络抢票 浏览:975
智慧屏看电视需要连接网络吗 浏览:857
怎么看电脑可不可以连xbox网络 浏览:278
华为家庭网络信号全覆盖 浏览:313
施乐无线网络连接设置 浏览:46
我的移动网络密码 浏览:797
如何提高网络文化出海 浏览:111
新网络词在哪里有 浏览:427
计算机网络重点简答题 浏览:173
开数据但网络连接超时 浏览:326
移动接网络的路由器怎么更换 浏览:1002
上海美猴网络怎么样 浏览:506
3g网络哪个运营商快 浏览:922
在校园如何使用有线网络 浏览:299

友情链接