导航:首页 > 网络连接 > 密码学在计算机网络的应用

密码学在计算机网络的应用

发布时间:2022-08-29 00:42:28

密码学的技术应用

Commitment schemes
Secure multiparty computations
电子投票
认证
数位签名
Cryptographic engineering
Crypto systems
1. 数位签章(Digital Signature):
这是以密码学的方法,根据EDI讯息的内容和发信有该把私钥,任何人都无法产生该签名,因此比手写式的签名安全许多。收信人则以发信人的公钥进行数位签章的验证。
2. 数位信封(Digital Envelope):
这是以密码学的方法,用收信人的公钥对某些机密资料进行加密,收信人收到后再用自己的私钥解密而读取机密资料。除了拥有该私钥的人之外, 任何人即使拿到该加密过的讯息都无法解密,就好像那些资料是用一个牢固的信封装好,除了收信人之外,没有人能拆开该信封。
3. 安全回条:
收信人依据讯息内容计算所得到的回覆资料,再以收信人的私钥进行数位签章后送回发信人,一方面确保收信人收到的讯息内容正确无误, 另一方面也使收信人不能否认已经收到原讯息。
4. 安全认证:
每个人在产生自己的公钥之后,向某一公信的安全认证中心申请注册,由认证中心负责签发凭证(Certificate),以保证个人身份与公钥的对应性与正确性。

❷ 密码学在计算机网络安全中的作用和地位是什么

密码学是实现信息安全的数学理论,属于最底层的东西。主要研究安全算法。

❸ 密码学的应用有哪些

密码学是研究信息加密、解密和破密的科学,含密码编码学和密码分析学。密码学是由于保密通信,特别是军事保密通信的需要而发展进来的新兴边缘学科。如今,除军政及国家安全机构之外,密码学的应用已经渗透到各行各业,受到社会各界,特别是商业、金融业及电子工业界的极大关注。在高度发达的信息时代,密码学专业技术人才将是人类社会运转必不可少的重要保证。
本学科主要研究方向有:现代密码的数学理论,流密码的设计与安全,编码理论与应用,密码理论与应用,通信网的安全保密技术,计算机系统安全保密http://ste.xidian.e.cn/graate.htm

❹ 密码技术在电子商务安全中的应用有哪些

我国信息网络安全研究历经了通信保密、数据保护两个阶段,正在进入网络信息安全研究阶段,现已开发研制出防火墙、安全路由器、安全网关、黑客入侵检测、系统脆弱性扫描软件等。但因信息网络安全领域是一个综合、交叉的学科领域它综合了利用数学、物理、生化信息技术和计算机技术的诸多学科的长期积累和最新发展成果,提出系统的、完整的和协同的解决信息网络安全的方案,目前应从安全体系结构、安全协议、现代密码理论、信息分析和监控以及信息安全系统五个方面开展研究,各部分相互协同形成有机整体。

❺ 密码学有何用途

密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。

密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。

密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。

进行明密变换的法则,称为密码的体制。指示这种变换的参数,称为密钥。它们是密码编制的重要组成部分。密码体制的基本类型可以分为四种:错乱——按照规定的图形和线路,改变明文字母或数码等的位置成为密文;代替——用一个或多个代替表将明文字母或数码等代替为密文;密本——用预先编定的字母或数字密码组,代替一定的词组单词等变明文为密文;加乱——用有限元素组成的一串序列作为乱数,按规定的算法,同明文序列相结合变成密文。以上四种密码体制,既可单独使用,也可混合使用 ,以编制出各种复杂度很高的实用密码。

20世纪70年代以来,一些学者提出了公开密钥体制,即运用单向函数的数学原理,以实现加、脱密密钥的分离。加密密钥是公开的,脱密密钥是保密的。这种新的密码体制,引起了密码学界的广泛注意和探讨。

利用文字和密码的规律,在一定条件下,采取各种技术手段,通过对截取密文的分析,以求得明文,还原密码编制,即破译密码。破译不同强度的密码,对条件的要求也不相同,甚至很不相同。

中国古代秘密通信的手段,已有一些近于密码的雏形。宋曾公亮、丁度等编撰《武经总要》“字验”记载,北宋前期,在作战中曾用一首五言律诗的40个汉字,分别代表40种情况或要求,这种方式已具有了密本体制的特点。

1871年,由上海大北水线电报公司选用6899个汉字,代以四码数字,成为中国最初的商用明码本,同时也设计了由明码本改编为密本及进行加乱的方法。在此基础上,逐步发展为各种比较复杂的密码。

在欧洲,公元前405年,斯巴达的将领来山得使用了原始的错乱密码;公元前一世纪,古罗马皇帝凯撒曾使用有序的单表代替密码;之后逐步发展为密本、多表代替及加乱等各种密码体制。

二十世纪初,产生了最初的可以实用的机械式和电动式密码机,同时出现了商业密码机公司和市场。60年代后,电子密码机得到较快的发展和广泛的应用,使密码的发展进入了一个新的阶段。

密码破译是随着密码的使用而逐步产生和发展的。1412年,波斯人卡勒卡尚迪所编的网络全书中载有破译简单代替密码的方法。到16世纪末期,欧洲一些国家设有专职的破译人员,以破译截获的密信。密码破译技术有了相当的发展。1863年普鲁士人卡西斯基所着《密码和破译技术》,以及1883年法国人克尔克霍夫所着《军事密码学》等着作,都对密码学的理论和方法做过一些论述和探讨。1949年美国人香农发表了《秘密体制的通信理论》一文,应用信息论的原理分析了密码学中的一些基本问题。

自19世纪以来,由于电报特别是无线电报的广泛使用,为密码通信和第三者的截收都提供了极为有利的条件。通信保密和侦收破译形成了一条斗争十分激烈的隐蔽战线。

1917年,英国破译了德国外长齐默尔曼的电报,促成了美国对德宣战。1942年,美国从破译日本海军密报中,获悉日军对中途岛地区的作战意图和兵力部署,从而能以劣势兵力击破日本海军的主力,扭转了太平洋地区的战局。在保卫英伦三岛和其他许多着名的历史事件中,密码破译的成功都起到了极其重要的作用,这些事例也从反面说明了密码保密的重要地位和意义。

当今世界各主要国家的政府都十分重视密码工作,有的设立庞大机构,拨出巨额经费,集中数以万计的专家和科技人员,投入大量高速的电子计算机和其他先进设备进行工作。与此同时,各民间企业和学术界也对密码日益重视,不少数学家、计算机学家和其他有关学科的专家也投身于密码学的研究行列,更加速了密码学的发展。

现在密码已经成为单独的学科,从传统意义上来说,密码学是研究如何把信息转换成一种隐蔽的方式并阻止其他人得到它。
密码学是一门跨学科科目,从很多领域衍生而来:它可以被看做是信息理论,却使用了大量的数学领域的工具,众所周知的如数论和有限数学。
原始的信息,也就是需要被密码保护的信息,被称为明文。加密是把原始信息转换成不可读形式,也就是密码的过程。解密是加密的逆过程,从加密过的信息中得到原始信息。cipher是加密和解密时使用的算法。
最早的隐写术只需纸笔,现在称为经典密码学。其两大类别为置换加密法,将字母的顺序重新排列;替换加密法,将一组字母换成其他字母或符号。经典加密法的资讯易受统计的攻破,资料越多,破解就更容易,使用分析频率就是好办法。经典密码学现在仍未消失,经常出现在智力游戏之中。在二十世纪早期,包括转轮机在内的一些机械设备被发明出来用于加密,其中最着名的是用于第二次世界大战的密码机Enigma。这些机器产生的密码相当大地增加了密码分析的难度。比如针对Enigma各种各样的攻击,在付出了相当大的努力后才得以成功。

❻ 简述密码学在实现信息安全目标中所起的作用。

信息安全本身包括的范围很大,大到国家军事政治等机密安全,小范围的当然还包括如防范商业企业机密泄露,防范青少年对不良信息的浏览,个人信息的泄露等。网络环境下的信息安全体系是保证信息安全的关键,包括计算机安全操作系统、各种安全协议、安全机制(数字签名,信息认证,数据加密等),直至安全系统,其中任何一个安全漏洞便可以威胁全局安全。信息安全服务至少应该包括支持信息网络安全服务的基本理论,以及基于新一代信息网络体系结构的网络安全服务体系结构。
信息安全是指信息网络的硬件、软件及其系统中的数据受到保护,不受偶然的或者恶意的原因而遭到破坏、更改、泄露,系统连续可靠正常地运行,信息服务不中断。

信息安全是一门涉及计算机科学、网络技术、通信技术、密码技术、信息安全技术、应用数学、数论、信息论等多种学科的综合性学科。

从广义来说,凡是涉及到网络上信息的保密性、完整性、可用性、真实性和可控性的相关技术和理论都是网络安全的研究领域。

❼ 密码算法的密码学

(1) 发送者和接收者
假设发送者想发送消息给接收者,且想安全地发送信息:她想确信偷听者不能阅读发送的消息。
(2) 消息和加密
消息被称为明文。用某种方法伪装消息以隐藏它的内容的过程称为加密,加了密的消息称为密文,而把密文转变为明文的过程称为解密。
明文用M(消息)或P(明文)表示,它可能是比特流(文本文件、位图、数字化的语音流或数字化的视频图像)。至于涉及到计算机,P是简单的二进制数据。明文可被传送或存储,无论在哪种情况,M指待加密的消息。
密文用C表示,它也是二进制数据,有时和M一样大,有时稍大(通过压缩和加密的结合,C有可能比P小些。然而,单单加密通常达不到这一点)。加密函数E作用于M得到密文C,用数学表示为:
E(M)=C.
相反地,解密函数D作用于C产生M
D(C)=M.
先加密后再解密消息,原始的明文将恢复出来,下面的等式必须成立:
D(E(M))=M
(3) 鉴别、完整性和抗抵赖
除了提供机密性外,密码学通常有其它的作用:.
(a) 鉴别
消息的接收者应该能够确认消息的来源;入侵者不可能伪装成他人。
(b) 完整性检验
消息的接收者应该能够验证在传送过程中消息没有被修改;入侵者不可能用假消息代替合法消息。
(c) 抗抵赖
发送者事后不可能虚假地否认他发送的消息。
(4) 算法和密钥
密码算法也叫密码,是用于加密和解密的数学函数。(通常情况下,有两个相关的函数:一个用作加密,另一个用作解密)
如果算法的保密性是基于保持算法的秘密,这种算法称为受限制的算法。受限制的算法具有历史意义,但按现在的标准,它们的保密性已远远不够。大的或经常变换的用户组织不能使用它们,因为每有一个用户离开这个组织,其它的用户就必须改换另外不同的算法。如果有人无意暴露了这个秘密,所有人都必须改变他们的算法。
但是,受限制的密码算法不可能进行质量控制或标准化。每个用户组织必须有他们自己的唯一算法。这样的组织不可能采用流行的硬件或软件产品。但窃听者却可以买到这些流行产品并学习算法,于是用户不得不自己编写算法并予以实现,如果这个组织中没有好的密码学家,那么他们就无法知道他们是否拥有安全的算法。
尽管有这些主要缺陷,受限制的算法对低密级的应用来说还是很流行的,用户或者没有认识到或者不在乎他们系统中内在的问题。
现代密码学用密钥解决了这个问题,密钥用K表示。K可以是很多数值里的任意值。密钥K的可能值的范围叫做密钥空间。加密和解密运算都使用这个密钥(即运算都依赖于密钥,并用K作为下标表示),这样,加/解密函数现在变成:
EK(M)=C
DK(C)=M.
这些函数具有下面的特性:
DK(EK(M))=M.
有些算法使用不同的加密密钥和解密密钥,也就是说加密密钥K1与相应的解密密钥K2不同,在这种情况下:
EK1(M)=C
DK2(C)=M
DK2 (EK1(M))=M
所有这些算法的安全性都基于密钥的安全性;而不是基于算法的细节的安全性。这就意味着算法可以公开,也可以被分析,可以大量生产使用算法的产品,即使偷听者知道你的算法也没有关系;如果他不知道你使用的具体密钥,他就不可能阅读你的消息。
密码系统由算法、以及所有可能的明文、密文和密钥组成的。
基于密钥的算法通常有两类:对称算法和公开密钥算法。下面将分别介绍: 对称算法有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,反过来也成立。在大多数对称算法中,加/解密密钥是相同的。这些算法也叫秘密密钥算法或单密钥算法,它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加/解密。只要通信需要保密,密钥就必须保密。
对称算法的加密和解密表示为:
EK(M)=C
DK(C)=M
对称算法可分为两类。一次只对明文中的单个比特(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组比特亚行运算,这些比特组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64比特——这个长度大到足以防止分析破译,但又小到足以方便使用(在计算机出现前,算法普遍地每次只对明文的一个字符运算,可认为是序列密码对字符序列的运算)。 公开密钥算法(也叫非对称算法)是这样设计的:用作加密的密钥不同于用作解密的密钥,而且解密密钥不能根据加密密钥计算出来(至少在合理假定的长时间内)。之所以叫做公开密钥算法,是因为加密密钥能够公开,即陌生者能用加密密钥加密信息,但只有用相应的解密密钥才能解密信息。在这些系统中,加密密钥叫做公开密钥(简称公钥),解密密钥叫做私人密钥(简称私钥)。私人密钥有时也叫秘密密钥。为了避免与对称算法混淆,此处不用秘密密钥这个名字。
用公开密钥K加密表示为
EK(M)=C.
虽然公开密钥和私人密钥是不同的,但用相应的私人密钥解密可表示为:
DK(C)=M
有时消息用私人密钥加密而用公开密钥解密,这用于数字签名(后面将详细介绍),尽管可能产生混淆,但这些运算可分别表示为:
EK(M)=C
DK(C)=M
当前的公开密码算法的速度,比起对称密码算法,要慢的多,这使得公开密码算法在大数据量的加密中应用有限。 单向散列函数 H(M) 作用于一个任意长度的消息 M,它返回一个固定长度的散列值 h,其中 h 的长度为 m 。
输入为任意长度且输出为固定长度的函数有很多种,但单向散列函数还有使其单向的其它特性:
(1) 给定 M ,很容易计算 h ;
(2) 给定 h ,根据 H(M) = h 计算 M 很难 ;
(3) 给定 M ,要找到另一个消息 M‘ 并满足 H(M) = H(M’) 很难。
在许多应用中,仅有单向性是不够的,还需要称之为“抗碰撞”的条件:
要找出两个随机的消息 M 和 M‘,使 H(M) = H(M’) 满足很难。
由于散列函数的这些特性,由于公开密码算法的计算速度往往很慢,所以,在一些密码协议中,它可以作为一个消息 M 的摘要,代替原始消息 M,让发送者为 H(M) 签名而不是对 M 签名 。
如 SHA 散列算法用于数字签名协议 DSA中。 提到数字签名就离不开公开密码系统和散列技术。
有几种公钥算法能用作数字签名。在一些算法中,例如RSA,公钥或者私钥都可用作加密。用你的私钥加密文件,你就拥有安全的数字签名。在其它情况下,如DSA,算法便区分开来了??数字签名算法不能用于加密。这种思想首先由Diffie和Hellman提出 。
基本协议是简单的 :
(1) A 用她的私钥对文件加密,从而对文件签名。
(2) A 将签名的文件传给B。
(3) B用A的公钥解密文件,从而验证签名。
这个协议中,只需要证明A的公钥的确是她的。如果B不能完成第(3)步,那么他知道签名是无效的。
这个协议也满足以下特征:
(1) 签名是可信的。当B用A的公钥验证信息时,他知道是由A签名的。
(2) 签名是不可伪造的。只有A知道她的私钥。
(3) 签名是不可重用的。签名是文件的函数,并且不可能转换成另外的文件。
(4) 被签名的文件是不可改变的。如果文件有任何改变,文件就不可能用A的公钥验证。
(5) 签名是不可抵赖的。B不用A的帮助就能验证A的签名。 加密技术是对信息进行编码和解码的技术,编码是把原来可读信息(又称明文)译成代码形式(又称密文),其逆过程就是解码(解密)。加密技术的要点是加密算法,加密算法可以分为对称加密、不对称加密和不可逆加密三类算法。
对称加密算法 对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES和IDEA等。美国国家标准局倡导的AES即将作为新标准取代DES。
不对称加密算法 不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。
不可逆加密算法 的特征是加密过程中不需要使用密钥,输入明文后由系统直接经过加密算法处理成密文,这种加密后的数据是无法被解密的,只有重新输入明文,并再次经过同样不可逆的加密算法处理,得到相同的加密密文并被系统重新识别后,才能真正解密。显然,在这类加密过程中,加密是自己,解密还得是自己,而所谓解密,实际上就是重新加一次密,所应用的“密码”也就是输入的明文。不可逆加密算法不存在密钥保管和分发问题,非常适合在分布式网络系统上使用,但因加密计算复杂,工作量相当繁重,通常只在数据量有限的情形下使用,如广泛应用在计算机系统中的口令加密,利用的就是不可逆加密算法。近年来,随着计算机系统性能的不断提高,不可逆加密的应用领域正在逐渐增大。在计算机网络中应用较多不可逆加密算法的有RSA公司发明的MD5算法和由美国国家标准局建议的不可逆加密标准SHS(Secure Hash Standard:安全杂乱信息标准)等。

❽ 密码学一般应用在什么领域有没有专门的学科

密码学(在西欧语文中之源于希腊语kryptós,“隐藏的”,和gráphein,“书写”)是研究如何隐密地传递资讯的学门。在现代特别指对资讯以及其传输的数学性研究,常被认为是数学和计算机科学的分支,和资讯理论也密切相关。着名的密码学者Ron Rivest解释道:“密码学是关于如何在敌人存在的环境中通讯”,自工程学的角度,这相当于密码学与纯数学的异同。密码学是资讯安全等相关议题,如认证、存取控制的核心。密码学的首要目的是隐藏讯息的涵义,并不是隐藏讯息的存在。密码学也促进了电脑科学,特别是在于电脑与网路安全所使用的技术,如存取控制与资讯的机密性。密码学已被应用在日常生活:包括自动柜员机的晶片卡、电脑使用者存取密码、电子商务等等。

阅读全文

与密码学在计算机网络的应用相关的资料

热点内容
武汉市民网络求助信息有哪些 浏览:374
为什么我的电脑网络会很卡 浏览:545
网络跟电视怎么连接 浏览:928
win7共享网络软件 浏览:525
有哪些奇葩的网络词语 浏览:228
笔记本设置无线临时网络无法设置 浏览:425
网络房屋设计师在哪里找 浏览:139
电脑电脑无法连接网络打印机驱动程序 浏览:424
网络沟通礼仪有什么用 浏览:232
网络硬盘录像机和路由器更换 浏览:633
如何更换房间网络设置 浏览:8
软件无线电在计算机网络 浏览:197
手机优酷视频也有网络咋看不了 浏览:858
网络直播有哪些作用 浏览:968
笔记本无线网络为连接打印机 浏览:554
在哪个网站可做网络夫妻 浏览:416
网络监控线超长怎么连接 浏览:829
电信的网络宽带电话多少 浏览:236
网络打印机取消密码怎么设置 浏览:139
二手房的网络营销 浏览:190

友情链接