㈠ (计算机网络技术)简述使用静态路由的目的
摘要 使网络安全保密性高
㈡ 计算机网络 路由选择
路由算法分为:静态路由算法跟动态路由算法(又称为 自适应路由选择算法)
静态算法分为:泛射路由算法(扩散法) 固定路由算法
动态路由算法分为: 距离矢量路由算法 链路状态路由算法
动态路由算法,能够比较好的适应网络流量,拓扑结构的变化,有利于改善网络的性能,但是由于算法比较复杂,会增加网络的负担,开销比较大~!
最常见的动态路由算法有两种其算法是:
距离矢量算法.每个路由器维护一张路由表(既一个矢量),他以子网中的没个路由器为索引,表中给出了当前已知的路由器到每个目标路由器的最佳距离,以及所使用的线路.通过在邻居之间相互交换信息,路由器不断更新他们的内部路由表. 一个路由器针对每个邻居都执行一个距离加法计算,就可以发现最佳的到达目标路由器的估计值,然后在新的路由表中使用这个最佳估计值以及对应的线路.
链路状态路由算法.
1: 发现自己的邻居.在每条线路上发送一个HELLO分组,另一端的路由器即返回一个应答来说明自己是谁~
2: 测量线路开销.在线路上发送一个ECHO分组,另一端回送一个应答,算出往返时间,除2就得到合理的估计值.
3: 创建链路状态分组.该分组内容首先是发送方的标示,接着是一个序列号(Seq)和年龄(Age),以及一个邻居列表.对于每个邻居也都要给出这个路由器到每个邻居的延迟.
4: 发布链路状态分组.首先使用泛射法发布链路状态分组,为了控制泛射过程,每个分组都宝号一个序列号,序列号随着每一个新的分组递增.每个路由器纪录下他所看到的分组列表中检查这个新进来的分组,如果是一个重复分组则丢弃,.如果一个分组的序列号小于当前所看到过的来自该路由器的最大序列号,则将它看着过时分组拒绝,因为该路由器已经有了更新的数据.
5: 计算新路由.一旦一个路由器已经获得了全部的链路状态分组后,它就可以构造出完整的子网图了.以为每条链路都已经被表示出来了.然后在路由器本地运行寻找最短路径算法,将该算法得出的结果安装在路由表里,然后恢复正常的操作.
㈢ 计算机网络-网络层-路由器的构成
路由器是一种具有多个输入端口和多个输出端口的专用计算机,其任务是转发分组。从路由器某个输入端口收到的分组,按照分组要去的目的地(即目的网络),把该分组从路由器的某个合适的输出端口转发给下一跳路由器。下一跳路由器也按照这种方法处理分组,直到该分组到达终点为止。路由器的转发分组正是网络层的主要工作。
整个的路由器结构可划分为两大部分:路由选择部分和分组转发部分。
路由选择部分也叫做控制部分,其核心构件是路由选择处理机。 路由选择处理机的任务是根据所选定的路由选择协议构造出路由表,同时经常或定期地和相邻路由器交换路由信息而不断地更新和维护路由表。 分组转发部分由三部分组成:交换结构、一组输入端口和一组输出端口(请注意:这里的端口就是硬件接口)。
交换结构(switching fabric)又称为交换组织 ,交换结构是路由器的关键构件,它的作用就是根据转发表(forwarding table)对分组进行处理,将某个输入端口进入的分组从一个合适的输出端口转发出去,交换结构本身就是一种网络,但这种网络完全包含在路由器之中,因此交换结构可看成是“在路由器中的网络”。实现这样的交换有多种方法,以下这三种方法都是将输入端口 I1收到的分组转发到输出端口O2。
图4-45(a)的示意图表示 分组通过存储器进行交换 。目的地址的查找和分组在存储器中的缓存都是在输入端口中进行的。若存储器的带宽(读或写)为每秒M个分组,那么路由器的交换速率(即分组从输入端口传送到输出端口的速率)一定小于M2。这是因为存储器对分组的读和写需要花费的时间是同一个数量级。
图4-45(b)是 通过总线进行交换 的示意图。采用这种方式时,数据报从输入端口通过共享的总线直接传送到合适的输出端口,而不需要路由选择处理机的干预。但是,由于总线是共享的,因此在同一时间只能有一个分组在总线上传送。当分组到达输入端口时若发现总线忙(因为总线正在传送另一个分组),则被阻塞而不能通过交换结构,并在输入端口排队等待。因为每一个要转发的分组都要通过这一条总线,因此路由器的转发带宽就受总线速率的限制。现代的技术已经可以将总线的带宽提高到每秒吉比特的速率,因此许多的路由器产品都采用这种通过总线的交换方式。
图4-45(c)是 通过纵横交换结构(crossbar switch fabric)进行交换 。这种交换机构常称为互连网络(interconnection network),它有2N条总线,可以使N个输入端口和N个输出端口相连接,这取决于相应的交叉结点是使水平总线和垂直总线接通还是断开。当输入端口收到一个分组时,就将它发送到与该输入端口相连的水平总线上。若通向所要转发的输出端口的垂直总线是空闲的,则在这个结点将垂直总线与水平总线接通,然后将该分组转发到这个输出端口。但若该垂直总线已被占用(有另一个分组正在转发到同一个输出端口),则后到达的分组就被阻塞,必须在输入端口排队。
在图4-42中,路由器的输入和输出端口里面都各有三个方框,用方框中的1,2和3分别代表物理层、数据链路层和网络层的处理模块。物理层进行比特的接收。数据链路层则按照链路层协议接收传送分组的核。在把航的首部和尾部去后,分组就被送入网络层的处理模块。若接收到的分组是路由器之间交换路由信总的分组(如RIP或OSPF分组等),则把这种分组送交路由器的路由选择部分中的路由选择处理机。若接收到的是数据分组,则按照分组首部中的目的地址查找转发表,根据得出的结果,分组就经过交换结构到达合适的输出端口。 一个路由器的输入端口和输出端口就做在路由器的线路接口卡上。
输入端口 中的查找和转发功能在路由器的交换功能中是最重要的。为了使交换功能分散化,往往把复制的转发表放在每一个输入端口中(如图4-42中的虚线箭头所示)。路由远择处理机负责对各转发表的副本进行更新。这些副本常称为“影子副本”(shadow ),分散化交换可以避免在路由器中的某一点上出现瓶颈。
“但在具体的实现中还是会遇到不少困难。问题就在于路由器必须以很高的速率转发分组。最理想的情况是 输入端口的处理速率能够跟上线路把分组传送到路由器的速率。这种速率称为线速 (line speed 或 wirc peed)。可以粗略地估算一下。设线路是0C-48链路,即2.5 Gbit/s。若分组长度为256字节,那么线速就应当达到每秒能够处理100万以上的分组。现在常用Mpps(百万分组每秒)为单位来说明一个路由器对收到的分组的处理速率有多高。”
当一个分组正在查找转发表时,后面又紧跟着从这个输入端口收到另一个分组。这个后到的分组就必须在队列中排队等待,因而产生了一定的时延。
输出端口 从交换结构接收分组,然后把它们发送到路由器外面的线路上。在网络层的处理模块中设有一个缓冲区,实际上它就是一个队列。当交换结构传送过来的分组的速率超过输出链路的发送速率时,来不及发送的分组就必须暂时存放在这个队列中。数据链路层处理模块把分组加上链路层的首部和尾部,交给物理层后发送到外部线路。
从以上可以看出,分组在路由器的输入端口和输出端口都可能会在队列中排队等候处理。若分组处理的速率赶不上分组进入队列的速率,则队列的存储空间最终必定减少到零,这就使后面再进入队列的分组由于没有存储空间而只能被丢弃。分组丢失就是发生在路由器中的输入或输出队列产生溢出的时候。当然,设备或线路出故障也可能使分组丢失。
“转发”和“路由选择”的区别 :在互联网中, “转发” 就是路由器根据转发表把收到的IP数据报从路由器合适的端口转发出去。“转发”仅仅涉及到一个路由器。但 “路由选择” 则涉及到很多路由器,路由表则是许多路由器协同工作的结果。这些路由器按照复杂的路由算法,得出整个网铭的拓扑变化情况,因而能够动态地改变所选择的路由,并由此构造出整个的路由表,路由表一般仅包含从目的网络到下一跳(用P地址表示)的映射,而转发表是从路由表得出的。转发表必须包含完成转发功能所必需的信息。这就是说,在转发表的每一行必须包含从要到达的目的网路到输出端口和某些MAC地址信息(如下跳的以太网地址)的映射。将转发表和路由表用不同的数据结构实现会带来一些好处,这是因为在转发分组时,转发表的结构应当使查找过程最优化,但路由表则需要对网络拓扑变化的计算最优化。路由表总是用软件实现的,但转发表则甚至可用特殊的硬件来实现。请读者注意,在讨论路由选择的原理时, 往往不去区分转发表和路由表的区别,而可以笼统地都使用路由表这一名词。
㈣ 计算机网络路由算法
关于路由器如何收集网络的结构信息以及对之进行分析来确定最佳路由,有两种主要的路由算法:
总体式路由算法和分散式路由算法。采用分散式路由算法时,每个路由器只有与它直接相连的路由器的信息——而没有网络中的每个路由器的信息。这些算法也被称为DV(距离向量)算法。采用总体式路由算法时,每个路由器都拥有网络中所有其他路由器的全部信息以及网络的流量状态。这些算法也被称为LS(链路状态)算法。
㈤ 计算机网络,简述路由器和交换机的工作原理,要的是简述哦
1:路由器与交换机,本质上,一个是三层设备,一个是二层设备。路由器是三层,交换机是二层。
2:所谓三层,就是路由器数据交换的时候,需要携带IP头,根据IP地址来进行寻找转发路径。而交换机,数据交换的时候,根据二层MAC地址来转发的。
3:路由器本质上是起到连接网络的作用,连接一个网络跟另一个网络。而交换机,是一个网络内所有电脑通信用。
4:路由器成本比较贵,交换机较便宜。
㈥ 计算机网络RIP路由协议
不是有答案了吗,
跟你分析一下吧, 首先,你要了解路由和概念,RIP路由的优良是看跳数的, 然而当他收到R 2 的更新路由之,他的路由表发生了改变
10.0.0.0 0
20.0.0.0 4
30.0.0.0 4
40.0.0.0 3 上面可以看到R1 接到10 网段里面,所以不变, R1接到20 网段的跳数变为4 证明他有更加好的路由去到达20 网段 又因为他接的是R2 ,所以R2 的距离应该是3 排除了 A与D
现在只有 B C 如果是C的话,那么R1 到40 r的距离应该不是3 而是2 因为R1与R2 是相连的,中间只隔了一个路由,所以正确的答案就是B了
㈦ 什么是路由,在计算机网络中路由起司猫作用
路由(routing)是指分组从源到目的地时,决定端到端路径的网络范围的进程[1] 。路由工作在OSI参考模型第三层——网络层的数据包转发设备。路由器通过转发数据包来实现网络互连。虽然路由器可以支持多种协议(如TCP/IP、IPX/SPX、AppleTalk等协议),但是在我国绝大多数路由器运行TCP/IP协议。路由器通常连接两个或多个由IP子网或点到点协议标识的逻辑端口,至少拥有1个物理端口。路由器根据收到数据包中的网络层地址以及路由器内部维护的路由表决定输出端口以及下一跳地址,并且重写链路层数据包头实现转发数据包。
其基本作用即使两个:
1、确定最佳路径
2、通过网络传输信息
㈧ 计算机网络-4-6-互联网的路由选择协议
路由选择协议的核心是 路由算法 。即 需要一种算法来获取路表中的各项 ,一个比较好的路由选择算法应该有以下特点[BELL86]:
一个实际的路由选择算法,应该尽可能的接近于理想的算法,在不同的应用条件下,可以对上面提出的六个方面有不同的侧重。
倘若从路由算法能否随网络的通信量或拓扑自适应的进行调整变化来划分,则只有两大类: 静态路由选择策略 和 动态路由选择策略 。静态路由选择策略也叫做 非自适应路由选择 ,其特点是简单和开销较小,但不能即使适应网络状态的变化。对于很简单的小网络,完全可以采用静态路由选择,用人工配置每一条路由。动态路由选择也叫做 自适应路由选择 ,其特点是能够较好的适应网络状态的变化,但实现起来较为复杂,开销也比较大,因此动态路由选择适用于较复杂的大网络。
互联网采用的路由选择协议主要是自适应的(动态的),分布式路由选择协议。由于以下两种原因,互联网采用分层次的路由选择协议:
为此,可以把整个互联网划分为许多较小的 自治系统AS(autonomous system) ,自治系统AS是在单一技术管理下的一组路由器,而这些路由器使用一种自治系统内部的路由选择协议和共同的度量,一个AS对其他AS表现的出是 一个单一的和一致的路由选择策略 。
在目前的互联网中,一个大的ISP就是一个自治系统。这样,互联网就把路由选择协议划分为两大类:
自治系统之间的路由选择协议也叫做 域间路由选择(interdomain routing) ,而在自治系统内部的路由选择叫做 域内路由选择(intradomain routing) 。如图4-31
RIP(routing information protocol)是内部网关协议IGP中最先得到广泛使用的协议[RFC1058],也叫 路由信息协议 ,RIP是一种分布式的 基于距离向量的路由选择协议 。最大的优点就是简单。
RIP协议要求网络中的每一个路由器都要维护从它自己到其他每一个目的网络的距离记录(因此这是一组距离,叫做距离向量),RIP将距离定义如下:
从一路由器到直接连接的网络的距离为1,从路由器到非之间的网络的距离定义为所经过的路由器数+1。
RIP协议的距离也称之为 跳数 ,但是一条跳数最多只能包含15个路由器,因此,当距离=16时,就相当于不可达。因此RIP只能适用于小型互联网。
注意的是,到直接连接的网络也定义为0(采用这种定义的理由是:路由器在和直接连接在该网络上的主机进行通信并不需要经过另外的路由器,既然经过每一个路由器都要将距离增加1,那么不经过路由器就不需要+1,就是0)。
RIP不能在两个网络之间同时使用多条路由。RIP选择一条具有最少路由器的路由(最短路由),哪怕还存在另一条高速低延时的但是路由器较多的路由。
路由器在刚开始工作的时候,其内部路由表是空的。然后路由器就可以和直接相连的几个网络的距离(这些距离为1),接着,每个路由器和与自己相连的路由器不断交换路由表信息,经过若干次更新后,所有的路由器最终就可以知道本自治系统中任何一个网络地址和最短下一跳路由器的地址。
路由器最主要的信息是:到某个网路的距离(最短距离),以及下一跳的地址,路由表更新的原则是找出到每个网络的 最短距离 ,这种算法又称之为 距离向量算法 。
对 每一个相邻的路由器 发送过来的RIP报文,进行以下步骤:
算法描述:其实就是求一个路由器到另一个路由器的最短距离。
例题:
已知路由器R6有表4-9(a)所表示的路由表,现在收到相邻路由器路由表R4发过来的路由更新信息,如图4-9(b)所示。试更新路由器R6的路由表。
解:首先把R4发过来的路由表中的距离都+1:
把这个表和R6的路由表进行比较:
RIP协议让每一个自治系统中的所有路由都和自己的相邻路由器定期交换路由表信息,并不断更新路由表,使得每从 每一个路由器到每一个目的网络的路由都是最短距离(也就是跳数最小)。
现在比较新的RIP协议报文格式是1998年提出的RIP2。
RIP协议使用运输层的用户数据报(UDP端口为520)进行传输。
RIP报文由首部和路由部分组成。
RIP首部占4个字节,其中的命令字段指出报文的意义。
RIP2报文中的路由部分有若干路由信息组成,每个路由信息需要用20字节。 地址标识符(又称地址列别) 字段用来标识所用的地址协议。如果采用IP地址就为2。 路由标记填入自治系统号ASN(Autonomous System Number) ,这是考虑使用RIP有可能收到本自治系统以外的路由选择信息,再后面指出某个 网络地址 , 下一跳路由器地址 以及 到此网络的距离 ,一个RIP报文最多可以包含25个路由,因而RIP报文的最大长度是4+20x25=504字节。如果超过,则必然再使用以恶搞RIP报文来传送。
RIP还具有简单的鉴别功能,若使用鉴别功能,则将原来写入第一个路由信息(20字节)的位置用作鉴别,这时应该将地址标识符置为全1(0xFFFF),而路由标记写入鉴别类别,剩下的16字节作为鉴别数据,在鉴别数据之后才能写入路由信息,但这时只能写入24个路由信息。
RIP存在的一个问题是 当网络出现故障的时候,要经过比较长的时间才能将信息传送到所有的路由器 ,RIP协议的这一特点是: 好消息传播的很快,而坏消息传播的很慢 ,网络出现故障的传播时间往往需要经过较长时间,这是RIP协议的一个主要缺点。
为了使坏消息传播的更快些,可以采用多种措施,例如,让路由器记录收到某特定路由信息的接口,而不是让同一个路由信息再通过此接口反方向传送。
总之,RIP协议最大的优点是 实现简单,开销较小 ,但RIP协议缺点也很明显,首先 限制了网络规模,因为路由器最大的跳数是15跳,一般中大型网络规模RIP协议就不适用了 。其次就是 路由器之间交换的路由信息是路由器中完整的路由表,因而随着网络规模变大,开销也就增加 。最后就是 好消息传播的很快,坏消息传播的很慢 。
㈨ (计算机网络技术)简述使用静态路由的目的
摘要 你好,静态路由作用是使网络安全保密性高。动态路由因为需要路由器之间频繁地交换各自的路由表,而对路由表的分析可以揭示网络的拓扑结构和网络地址等信息。因此,网络出于安全方面的考虑也可以采用静态路由。不占用网络带宽,因为静态路由不会产生更新流量。