导航:首页 > 网络连接 > 计算机网络tcp工作示意图

计算机网络tcp工作示意图

发布时间:2025-04-29 07:11:56

⑴ 互联网的工作原理是什么

计算机网络是由许多计算机组成的,要实现网络的计算机之间传输数据,必须要作两件事,数据传输目的地址和保证数据迅速可靠传输的措施,这是因为数据在传输过程中很容易丢失或传错,Internet使用一种专门的计算机语言,以保证数据安全、可靠地到达指定的目的地,这种语言包括TCP传输控制协议和IP网间协议。
TCP/IP协议的数据传输过程:TCP/IP协议采用的通信方式是分组交换方式。所谓分组交换,简单说就是数据在传输时分成若干段,每个数据段称为一个数据包,TCP/IP协议的基本传输单位是数据包,TCP/IP协议主要包括两个主要的协议,即TCP协议和IP协议,这两个协议可以联合使用,也可以与其他协议联合使用,它们在数据传输过程中主要完成以下功能:
1)首先由TCP协议把数据分成若干数据包,给每个数据包写上序号,以便接收端把数据还原成原来的格式。
2)IP协议给每个数据包写上发送主机和接收主机的地址,一旦写上的源地址和目的地址,数据包就可以在物理网上传送数据了。IP协议还具有利用路由算法进行路由选择的功能。
3)这些数据包可以通过不同的传输途径(路由)进行传输,由于路径不同,加上其它的原因,可能出现顺序颠倒、数据丢失、数据失真甚至重复的现象。这些问题都由TCP协议来处理,它具有检查和处理错误的功能,必要时还可以请求发送端重发。简言之,IP协议负责数据的传输,而TCP协议负责数据的可靠传输。
互联网又称网际网络,或因特网、英特网,是网络与网络之间所串连成的庞大网络,这些网络以一组通用的协议相连,形成逻辑上的单一巨大国际网络。
这种将计算机网络互相联接在一起的方法可称作“网络互联”,在这基础上发展出覆盖全世界的全球性互联网络称互联网,即是互相连接一起的网络结构。互联网并不等同万维网,万维网只是一建基于超文本相互链接而成的全球性系统,且是互联网所能提供的服务其中之一。

⑵ 28 张图详解网络基础知识:OSI、TCP/IP 参考模型(含动态图)


目录


1、网络协议


其实协议在我们生活中也能找到相应的影子。


举个例子,有 2 个男生准备追求同一个妹子,妹子来自河南,讲河南话,还会点普通话;一个男生来自胡建,讲闽南语,也会点普通话;另一个男生来自广东,只讲粤语;

协议一致,沟通自如

语言不通,无法沟通

你们猜猜?最后谁牵手成功了?答案肯定是来自胡建的那位,双方可以通过 普通话 进行沟通,表达内容都能理解。而来自广东的帅哥只会讲粤语,不会普通话,妹子表示听不懂,就无法进行沟通下了。


每个人的成长环境不同,所讲的语言、认知、理解能力也就不同。为了使来自五湖四海的朋友能沟通自如,就需要大家协商,认识某一个语言或规则,彼此能互相理解,这个语言就是普通话。


通过这个例子,大家可以这样理解:


把普通话比作“协议”、把聊天比作“通信”,把说话的内容比作“数据”。


相信这样类比,大家就知道,协议是什么了?


简单地说,就是程序员指定一些标准,使不同的通信设备能彼此正确理解、正确解析通信的内容。我们都知道计算机世界里是二进制,要么 1,要么 0,那为啥可以表达丰富多彩的内容呢?


也是因为协议,不同字段,不同组合,可以解析不同意思,这就依然协议,让协议来正确处理。


例如,我们使用手机连 WiFi 来刷抖音,使用的是 802.11(WLAN)协议,通过这个协议接入网络。如果你所连的 WIFI 是不需要手动设置 IP 地址,是通过自动获取的,就使用到了 DHCP 协议,这样你的手机算上接入了 局域网, 如果你局域网内有台 NAS 服务器,存放了某些不可描述的视频资源,你就可以访问观看了,但这时你可能无法访问互联网资源,例如,你还想刷会抖音,看看妹子扭一扭,结果出现如下画面:


出现这种画面,说明无法使用 互联网, 可能是无线路由器没有设置好相关协议,比如: NAT、PPPoE 协议(上网账号或密码设置错误了),只有设置正确了,就可以通过运营商(ISP)提供的线路把局域网接入到互联网中,实现手机可以访问互联网上的资源(服务器)。玩微信撩妹子、刷抖音看妹子。

网络协议示意图


延伸阅读

1、局域网:最显着的特点就是范围有限,行政可控的区域可以是一所高校、一个餐厅、一个园区、一栋办公楼或一个家庭的私有网络。

2、城域网:原本是介意局域网和广域网之间,实际工作中很少再刻意去区分城域网和广域网了,所以这边不再介绍。

3、广域网:简单说就是负责把多个局域网连接起来,它的传输距离长距离传输,广域网的搭建一般是由运营商来。

4、互联网:把全世界上提供资源共享的 IT 设备所在网络连接起来,接入了互联网就可以随时随地访问这些资源了。

5、物联网:把所有具有联网功能的物体都接入互联网就形成了物联网。如空调联网,就可以远程控制空调; 汽车 联网,就可以远程获取行程数据。


总结一下吧!我们可以把电脑、手机等 IT 设备比喻做来自五湖四海的人们,大家都通过多种语言(网络协议)实现沟通(通信)。所有人要一起交流,就用普通话,大家都能理解。所有胡建人在一起,就用闽南语进行沟通,彼此也能理解。这么的方言,就好比计算机网络世界里也有这么多协议,只是不同协议用在不同地方。


好奇的同学,可能就会问,那网络协议是由谁来规定呢?这就需要提到一个组织,ISO。这个组织制定了一个国际标准 ,叫做 OSI 参考模型,如下,很多厂商都会参考这个制定网络协议。

OSI 参考模型图


2、OSI 参考模型


既然是模型,就好比模范一样,大家都要向它学习,以它为原型,展开学习研究。前面我们也提到了一些协议,这么多协议如果不进行归纳,分层,大家学习起来是不是感觉很凌乱?


所以 OSI 参考模型就是将这样复杂的协议整理并进行分层,分为易于理解的 7 层,并定义每一层的 服务 内容,协议的具体内容是 规则 。上下层之间通过 接口 进行交互,同一层之间通过 协议 进行交互。相信很多网络工程师在今后工作中遇到问题,讨论协议问题还会用到这个模型展开讨论。所以说,对于计算机网络初学者来说,学习了解 OSI 参考模型就是通往成功的第一步。

OSI 参考模型分层功能


7.应用层


为应用程序提供服务并规定应用程序中通信相关的细节,OSI 的最高层。包括文件传输、Email、远程登录等协议。程序员接触这一层比较多。

应用层示例图

6.表示层


主要负责数据格式的转换,为上下层能够处理的格式。如编码、加密、解密等。

表示层示例图


5.会话层


即负责建立、管理和终止通信连接(数据流动的逻辑通路),数据分片、重组等传输的管理。

会话层示例图

4.传输层


保证可靠传输,不需要再路由器上处理,只需再通信双方节点上进行处理,如处理差错控制和流量控制。

传输层示例图


3.网络层

主要负责寻址和路由选择,将数据包传输到目的地。

网络层示例图


2.数据链路层

负责物理层面上互连、节点之间的通信传输,将0 、 1 序列比特流划分为具有意义的数据帧传输给对端。这一层有点类似网络层,网络层也是基于目的地址来传输,不同是:网络层是将数据包负责在整个网络转发,而数据链路层仅是在网段内转发,所以大家抓包会发现,源目 MAC 地址每经过一个二层网段,都会变化。

数据链路层示例图


1.物理层

负责 0、1 比特流(0、1 序列)与电压高低电平、光的闪灭之间的互相转换,为数据链路层提供物理连接。

物理层示例图



OSI 为啥最后没有得到运用呢?其实最主要的原因,是 OSI 模型出现的比 tcp/ip 出现的时间晚,在 OSI 开始使用前,TCP/IP 已经被广泛的应用了。如果要换成 OSI 模型也不太现实。其次是 OSI 是专家们讨论,最后形成的,由于没有实践,导致该协议实现起来很复杂,很多厂商不愿意用 OSI,与此相比,TCP/IP 协议比较简单,实现起来也比较容易,它是从公司中产生的,更符合市场的要求。综合各种因素,最终 OSI 没有被广泛的应用。


下面我们来看看 TCP/IP 与 OSI 分层之间的对应关系及相应的协议:

4.应用层


从上图,可以知道 TCP/IP 四层模型,把应用层、表示层、会话层集成再一起了,该层的协议有:HTTP 、 POP3 、 TELNET 、 SSH 、 FTP 、 SNMP 等。


目前,大部分基于 TCP/IP 的应用都是 客户端/服务端 架构。一般我们把提供资源服务的那一侧叫服务端, 发起访问服务资源的这一侧叫客户端。

应用层


3.传输层


主要职责就是负责两端节点间的应用程序互相通信,每个节点上可能有很多应用程序,例如,登录了微信,又打开了网页,又打开迅雷看看,那数据到达后怎么正确传送到相应的应用程序呢?那就需要 端口号 来正确识别了。传输层中最为常见的两个协议分别是传输控制协议 TCP (Transmission Control Protocol)和用户数据报协议 UDP (User Datagram Protocol)

面向连接 顾名思义,就是建立连接,什么时候建立连接呢?就是在通信之前需要先建立一条逻辑的通信链路。就跟我们平时打电话一样,得先拨通,通了之后即链路建立好了,这条链路只有你和对方可以在这条链路传播说话内容。挂电话后,这条链路也就断开了。


面向无连接 无连接,即通信之前不需要建立连接,直接发送即可。跟我们以前写信很像,不需要管对方在不在?直接写信寄过去就可以了。

面向连接传输

面向无连 接传输


2.网络层


主要职责就是将数据包从源地址发送到目的地址。

在网络传输中,每个节点会根据数据的 IP 地址信息,来判断该数据包应该由哪个接口(网卡)发送出去。各个地址会参考一个发出接口列表, MAC 寻址中所参考的这张表叫做 MAC 地址转发表 ,而 IP 寻址中所参考的叫做 路由表 。MAC 地址转发表根据自学自动生成。路由控制表则根据路由协议自动生成。MAC 地址转发表中所记录的是实际的 MAC 地址本身,而路由表中记录的 IP 地址则是集中了之后的网络号(即网络号与子网掩码)。


1.网络接口层


在 TCP/IP 把物理层和数据链路层集成为 网络接口层 。主要任务是将上层的数据封装成帧发送到网络上,数据帧通过网络到达对端,对端收到后对数据帧解封,并检查帧中包含的 MAC 地址。如果该地址就是本机的 MAC 地址或者是广播地址,则上传到网络层,否则丢弃该帧。


封装与解封装


所谓的封装,其实就跟你寄快递的时候,给物品加上纸盒包装起来或者快件到站点,快递员贴一层标签的过程。在网络上,就是上层的数据往下送的时候,下层会添加头部,不过,只有在二层,不仅会加上头部,还会在上层数据尾部添加 FCS。


封装


所谓解封装,就如同你收到快件一样,一层一层地拆外包装,直到看到快件。网络也是,一层一层地拆掉头部,往上层传送,直到看到数据内容。

解封装


我们把应用层的数据封装传输层头部后的报文,称为


把段封装网络层头部后的报文,称为


把包封装以太网头部和帧尾,称为

⑶ 计算机网络——TCP/UDP协议

计算机网络七层模型中,传输层有两个重要的协议:
(1)用户数据报协议UDP (User Datagram Protocol)
(2)传输控制协议TCP (Transmission Control Protocol)

UDP 在传送数据之前不需要先建立连接。远地主机的运输层在收到UDP 报文后,不需要给出任何确认。虽然UDP 不提供可靠交付,但在某些情况下UDP 却是一种最有效的工作方式。

TCP 则提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。TCP 不提供广播或多播服务。由于TCP 要提供可靠的、面向连接的运输服务,因此不可避免地增加了许多的开销,如确认、流量控制、计时器以及连接管理等。

UDP 的主要特点是:

首部手段很简单,只有8 个字节,由四个字段组成,每个字段的长度都是两个字节。

前面已经讲过,每条TCP 连接有两个端点,TCP 连接的端点叫做套接字(socket)或插口。套接字格式如下:

套接宁socket= (IP 地址:端口号’)

每一条TCP 连接唯一地被通信两端的两个端点(即两个套接宇)所确定。即:
TCP 连接= {socket1, socket2} = {(IP1: port1), (IP2: port2)}

3次握手链接

4次握手释放链接

断开连接请求可以由客户端发出,也可以由服务器端发出,在这里我们称A端向B端请求断开连接。

各个状态节点解释如下:

下面为了讨论问题的万便,我们仅考虑A发送数据而B 接收数据并发送确认。因此A 叫做发送方,而B 叫做接收方。

“停止等待”就是每发送完一个分组就停止发送,等待对方的确认。在收到确认后再发送下一个分组。

使用上述的确认和重传机制,我们就可以在不可靠的传输网络上实现可靠的通信。像上述的这种可靠传输协议常称为自动重传请求ARQ (Automatic Repeat reQuest)。意思是重传的请求是自动进行的。接收方不需要请求发送方重传某个出错的分组。

滑动窗口协议比较复杂,是TCP 协议的精髓所在。这里先给出连续ARQ 协议最基本的概念,但不涉提到许多细节问题。详细的滑动窗口协议将在后面讨论。

下图表示发送方维持的发送窗口,它的意义是:位于发送窗口内的5 个分组都可连续发送出去,而不需要等待对方的确认。这样,信道利用率就提高了。

连续ARQ 协议规定,发送方每收到一个确认,就把发送窗口向前滑动一个分组的位置。

接收方一般都是采用 累积确认 的方式。这就是说,接收方不必对收到的分组逐个发送确认,而是可以在收到几个分组后,对按序到达的最后一个分组发送确认,这样就表示:到这个分组为止的所有分组都己正确收到了。

累积确认 的优点是容易实现,即使确认丢失也不必重传。但缺点是不能向发送方反映出接收方己经正确收到的所有分组的信息。

例如,如果发送方发送了前5 个分组,而中间的第3 个分组丢失了。这时接收方只能对前两个分组发出确认。发送方无法知道后面三个分组的下落,而只好把后面的三个分组都再重传一次。这就叫做Go-back-N (回退N ),表示需要再退回来重传己发送过的N 个分组。可见当通信线路质量不好时,连续ARQ 协议会带来负面的影响。

TCP 的滑动窗口是以字节为单位的。现假定A 收到了B 发来的确认报文段,其中窗口是20 (字节),而确认号是31 (这表明B 期望收到的下一个序号是31 ,而序号30 为止的数据己经收到了)。根据这两个数据, A 就构造出自己的发送窗口,其位置如图所示。

发送窗口表示:在没有收到B 的确认的情况下, A可以连续把窗口内的数据都发送出去。凡是己经发送过的数据,在未收到确认之前都必须暂时保留,以便在超时重传时使用。

发送窗口后沿的后面部分表示己发送且己收到了确认。这些数据显然不需要再保留了。而发送窗口前沿的前面部分表示不允许发送的,因为接收方都没有为这部分数据保留临时存放的缓存空间。

现在假定A 发送了序号为31 ~ 41 的数据。这时发送窗口位置并未改变,但发送窗口内靠后面有11个字节(灰色小方框表示)表示己发送但未收到确认。而发送窗口内靠前面的9 个字节( 42 ~ 50 )是允许发送但尚未发送的。】

再看一下B 的接收窗口。B 的接收窗口大小是20,在接收窗口外面,到30 号为止的数据是已经发送过确认,并且己经交付给主机了。因此在B 可以不再保留这些数据。接收窗口内的序号(31~50)足允许接收的。B 收到了序号为32 和33 的数据,这些数据没有按序到达,因为序号为31 的数据没有收到(也许丢失了,也许滞留在网络中的某处)。 请注意, B 只能对按序收到的数据中的最高序号给出确认,因此B 发送的确认报文段中的确认号仍然是31 (即期望收到的序号)。

现在假定B 收到了序号为31 的数据,并把序号为31~33的数据交付给主机,然后B删除这些数据。接着把接收窗口向前移动3个序号,同时给A 发送确认,其中窗口值仍为20,但确认号是34,这表明B 已经收到了到序号33 为止的数据。我们注意到,B还收到了序号为37, 38 和40 的数据,但这些都没有按序到达,只能先存在接收窗口。A收到B的确认后,就可以把发送窗口向前滑动3个序号,指针P2 不动。可以看出,现在A 的可用窗口增大了,可发送的序号范围是42~53。整个过程如下图:

A 在继续发送完序号42-53的数据后,指针P2向前移动和P3重合。发送窗口内的序号都已用完,但还没有再收到确认。由于A 的发送窗口己满,可用窗口己减小到0,因此必须停止发送。

上面已经讲到, TCP 的发送方在规定的时间内没有收到确认就要重传已发送的报文段。这种重传的概念是很简单的,但重传时间的选择却是TCP 最复杂的问题之一。

TCP采用了一种自适应算法 ,它记录一个报文段发出的时间,以及收到相应的确认的时间。这两个时间之差就是报文段的往返时间RTT,TCP 保留了RTT的一个加权平均往返时间RTTs (这又称为平滑的往返时间, S 表示Smoothed 。因为进行的是加权平均,因此得出的结果更加平滑)。每当第一次测量到RTT样本时, RTTs值就取为所测量到的RTT样本值。但以后每测量到一个新的RTT样本,就按下式重新计算一次RTTs:

新的RTTs = (1 - α)×(旧的RTTs) + α ×(新的RTT样本)

α 越大表示新的RTTs受新的RTT样本的影响越大。推荐的α 值为0.125,用这种方法得出的加权平均往返时间RTTs 就比测量出的RTT值更加平滑。

显然,超时计时器设置的超时重传时间RTO (RetransmissionTime-Out)应略大于上面得出的加权平均往返时间RTTs。RFC 2988 建议使用下式计算RTO:

RTO = RTTs + 4 × RTTd

RTTd是RTT 的偏差的加权平均值,它与RTTs和新的RTT样本之差有关。计算公式如下:

新的RTTd= (1- β)×(旧的RTTd) + β × |RTTs-新的RTT样本|

发现问题: 如图所示,发送出一个报文段。设定的重传时间到了,还没有收到确认。于是重
传报文段。经过了一段时间后,收到了确认报文段。现在的问题是:如何判定此确认报文段是对先发送的报文段的确认,还是对后来重传的报文段的确认?

若收到的确认是对重传报文段的确认,但却被源主机当成是对原来的报文段的确认,则这样计算出的RTTs 和超时重传时间RTO 就会偏大。若后面再发送的报文段又是经过重传后才收到确认报文段,则按此方法得出的超时重传时间RTO 就越来越长。

若收到的确认是对原来的报文段的确认,但被当成是对重传报文段的确认,则由此计算出的RTTs 和RTO 都会偏小。这就必然导致报文段过多地重传。这样就有可能使RTO 越来越短。

Kam 提出了一个算法:在计算加权平均RTTs 时,只要报文段重传了就不采用其往返时间样本。这样得出的加权平均RTTs 和RTO 就较准确。

新问题: 设想出现这样的情况:报文段的时延突然增大了很多。因此在原来得出的重传时间内,不会收到确认报文段。于是就重传报文段。但根据Kam 算法,不考虑重传的报文段的往返时间样本。这样,超时重传时间就无法更新。

解决方案: 对Kam 算法进行修正,方法是z报文段每重传一次,就把超时重传时间RTO 增大一些。典型的做法是取新的重传时间为2 倍的旧的重传时间。当不再发生报文段的重传时,才根据上面给出的公式计算超时重传时间。

流量控制(flow control)就是让发送方的发送速率不要太快,要让接收方来得及接收。

利用滑动窗口机制可以很方便地在TCP 连接上实现对发送方的流量控制。

接收方的主机B 进行了三次流量控制。第一次把窗口减小到rwnd =300,第二次又减到rwnd = 100 ,最后减到rwnd = 0 ,即不允许发送方再发送数据了。这种使发送方暂停发送的状态将持续到主机B 重新发出一个新的窗口值为止。我们还应注意到,B 向A 发送的三个报文段都设置了ACK=1,只有在ACK=1 时确认号字段才有意义。

发生死锁: 现在我们考虑一种情况。上图中, B 向A 发送了零窗口的报文段后不久, B 的接收缓存又有了一些存储空间。于是B 向A 发送了rwnd = 400 的报文段。然而这个报文段在传送过程中丢失了。A 一直等待收到B 发送的非零窗口的通知,而B 也一直等待A 发送的数据。如果没有其他措施,这种互相等待的死锁局面将一直延续下去。

解决方案: TCP 为每一个连接设有一个 持续计时器(persistence timer) 。只要TCP 连接的一方收到对方的零窗口通知,就启动持续计时器。若持续计时器设置的时间到期,就发送一个 零窗口探测报文段 (仅携带1 宇节的数据),而对方就在确认这个探测报文段时给出了现在的窗口值。

1 TCP连接时是三次握手,那么两次握手可行吗?

在《计算机网络》中是这样解释的:已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送ACK包。这样就会白白浪费资源。而经过三次握手,客户端和服务器都有应有答,这样可以确保TCP正确连接。

2 为什么TCP连接是三次,挥手确是四次?

在TCP连接中,服务器端的SYN和ACK向客户端发送是一次性发送的,而在断开连接的过程中,B端向A端发送的ACK和FIN是是分两次发送的。因为在B端接收到A端的FIN后,B端可能还有数据要传输,所以先发送ACK,等B端处理完自己的事情后就可以发送FIN断开连接了。

3 为什么在第四次挥手后会有2个MSL的延时?

MSL是Maximum Segment Lifetime,最大报文段生存时间,2个MSL是报文段发送和接收的最长时间。假定网络不可靠,那么第四次发送的ACK可能丢失,即B端无法收到这个ACK,如果B端收不到这个确认ACK,B端会定时向A端重复发送FIN,直到B端收到A的确认ACK。所以这个2MSL就是用来处理这个可能丢失的ACK的。

1 文件传送协议

文件传送协议FTP (File Transfer Protocol) [RFC 959]是因特网上使用得最广泛的文件传送协议,底层采用TCP协议。

盯P 使用客户服务器方式。一个FTP 服务器进程可同时为多个客户进程提供服务。FTP的服务器进程由两大部分组成:一个主进程,负责接受新的请求:另外有若干个从属进程,负责处理单个请求。

在进行文件传输时,客户和服务器之间要建立两个并行的TCP 连接:“控制连接”(21端口)和“数据连接”(22端口)。控制连接在整个会话期间一直保持打开, FTP 客户所发出的传送请求,通过控制连接发送给服务器端的控制进程,但控制连接并不用来传送文件。实际用于传输文件的是“数据连接”。服务器端的控制进程在接收到FTP 客户发送来的文件传输请求后就创建“数据传送进程”和“数据连接”,用来连接客户端和服务器端的数据传送进程。

2 简单文件传送协议TFTP

TCP/IP 协议族中还有一个简单文件传送协议TFfP (Trivial File Transfer Protocol),它是一个很小且易于实现的文件传送协议,端口号69。

TFfP 也使用客户服务器方式,但它使用UDP 数据报,因此TFfP 需要有自己的差错改正措施。TFfP 只支持文件传输而不支持交耳。

3 TELNET

TELNET 是一个简单的远程终端协议,底层采用TCP协议。TELNET 也使用客户服务器方式。在本地系统运行TELNET 客户进程,而在远地主机则运行TELNET 服务器进程,占用端口23。

4 邮件传输协议

一个电子邮件系统应具如图所示的三个主要组成构件,这就是用户代理、邮件服务器,以及邮件发送协议(如SMTP )和邮件读取协议(如POP3), POP3 是邮局协议(Post Office Protocol)的版本3 。

SMTP 和POP3 (或IMAP )都是在TCP 连接的上面传送邮件,使用TCP 的目的是为了使邮件的传送成为可靠的。

⑷ 图解TCP/IP

计算机使用模式的演变:
20世纪50年代 批处理时代
20世纪60年代 分时系统时代
20世纪70年代 计算机间通信时代
20世纪80年代 计算机网络时代
20世纪90年代 互联网普及时代
2000年 以互联网为中心的时代
2010年 无论何时何地地一切皆TCP/IP的网络时代

在计算机网络与信息通信领域,人们经常提及 “协议” 。简单来说。 协议 就是计算机与计算机之间通过网络实现通信时事先达成的一种“约定”。这种“约定”使那些由不同厂商的设备、不同的CPU以及不同的操作系统组成的计算机之间,只要遵循相同的协议就能实现通信。换句话说, 协议 就是计算机之间的通信语言,只有支持相同的协议,计算机之间才能相互通信。

计算机通信也会在每一个分组中附加上源主机地址和目标主机地址送给通信线路。这些发送端地址、接收端地址以及分组序号写入的部分称为 “报文首部”

TCP/IP协议并非ISO(国际标准化组织)所制定的某种国际标准,而是由IETF(Internet Engineering Task Force国际互联网工程任务组)所建议的、致力于推进器标准化作业的一种协议。

OSI参考模型
应用层 :针对特定应用的协议。以电子邮件为例,用户A在主机A上新建一封电子邮件,指定收件人为B,并输入邮件内容为“早上好”。应用层协议会在所要传递数据的前端附加一个首部(标签)信息,该首部标明了邮件内容为“早上好”和收件人为B。

表示层 :设备固有数据格式和网络标准数据格式的转换。用户A和用户B使用的邮件客户端一致,便能够顺利收取和阅读邮件,不一致时表示层就发挥作用了:将数据从“某个计算机特定的数据格式”转换为“网络通用的标准数据格式”后再发送出去,接收端也进行相应处理。表示层与表示层之间为了识别编码格式也会附加首部信息,从而将实际传输的数据转交给下一层处理。

会话层 :通信管理。负责建立和断开通信连接(数据流动的逻辑通路)。管理传输层以下的分层。假定用户A新建了5封电子邮件准备发送给用户B,是建立一次连接一起发送,还是分别建立5次连接各自发送,都是会话层决定的,会话层和表示层一样,也会在数据前段附加首部或标签信息再转发给下一层。而这些首部或标签中记录着数据传送顺序的信息。

传输层 :管理两个节点之间的数据传输。负责可靠传输(确保数据被可靠传送到目标地址)。用主机A将“早上好”这一数据发送给主机B,期间可能因为某些原因导致数据损坏,主机B只收到“早上”,此时也会将这一事实告诉主机A,主机A得知情况会将后面的“好”重发给主机B。保证数据传输的可靠性是传输层的一个重要作用。为了确保可靠性,这一层所要传输的数据附加首部以识别这一分层的数据。然而,实际上将数据传输给对端的处理是由网络层来完成的。

网络层 :地址管理与路由选择。两端主机之间虽然有众多数据链路,但能够将数据从主机A送到主机B也都是网络层的功劳。相当于TCP/IP协议中的IP协议,网络层不能保证数据的可达性,所以需要传输层TCP协议确保可达性,所以TCP/IP协议实现了可靠传输。

数据链路层 :互连设备之间传送和识别数据帧。网络层负责将整个数据发送给最终目标地址,而数据链路层则只负责发送一个分段内的数据。

物理层 :以“0”、“1”代表电压的高低、灯光的闪灭。界定连接器和网线的规格。将数据的0、1转换为电压和脉冲光传输给物理的传输介质。

计算机之间的网络连接通过 电缆 相互连接。任何一台计算机连接网络时,必须要使用 网卡 (网络适配器、NIC、LAN卡), 中继器 的作用是将电缆传过来的信号调整和放大再传给另一个电缆,可以完成不同媒介之间的连接工作。 网桥 是数据链路层面上连接两个网络的设备,提供的是传递数据帧的作用,并且还具备自学机制。 路由器 是在网络层面上(OSI七层模型网络层)连接两个网络、并对分组报文进行转发的设备。 网桥 是根据物理地址(MAC地址)进行处理,而路由器/3层交换机则是根据IP地址进行处理的。由此,TCP/IP中网络层的地址就成为了IP地址。对于并发访问量非常大的一个企业级Web站点,使用一台服务器不足以满足前端的访问需求,这时通常会架设多台服务器来分担。这些服务器的访问的入口地址通常只有一个,为了能通过同一个URL将前端访问分发到后台多个服务器上,可以将这些服务器的前端加一个负载均衡器。这种负载均衡器就是4-7层交换机的一种。 网关 是OSI参考模型中负责将从传输层到应用层的数据进行转换和转发的设备。在两个不能进行直接通信的协议之间进行翻译,最终实现两者的通信。非常典型的例子就是互联网邮件和手机邮件之间的转换服务。防火墙也是一款通过网关通信,针对不用应用提高安全性的产品。

美国军方利用分组交换技术组件的ARPANET网络是互联网的鼻祖。而BSD UNIX操作系统实现了TCP/IP协议,随着UNIX系统的普及,TCP/IP协议开始盛行。TCP/IP可以单纯的指这两种协议,然而在很多情况下,它指的是包含HTTP、SMTP、FTP、TCP、UDP、IP、ARP等很多协议的 网际协议族

发送数据包的过程,和上节OSI参考模型中介绍的差不多。数据链路层是由网络接口(以太网驱动)来处理的,它会改数据附加上 以太网首部 以太网首部 中包含接收端的MAC地址、发送端MAC地址以及标志以太网类型的以太网数据的协议。

在以太网普及之初,一般多台终端使用同一根同轴电缆的 共享介质型 连接方式,访问控制一般以半双工通信为前提采用CSMA/CD方式。随着ATM交换技术的进步和CAT5 UTP电缆的普及很快发生了变化,逐渐采用像 非共享介质网络 那样直接与交换机连接的方式。

网络层与数据链路层的关系
某人要去一个很远的地方旅行,并计划先后乘坐飞机、火车、公交车到达目的地。旅行社不仅帮他预订好了飞机票和火车票,甚至还为他指定了一个详细的行程表,详细到几点几分需要乘坐飞机或火车都一目了然。机票和火车票只能够在某一限定区间内移动,此处的“区间内”就如同通信网络上的数据链路。这个区间内的出发地点和目的地点就如同某一个数据链路的源地址和目标地址等首部信息。整个行程表的作用就相当于网络层。

DNS :将域名和IP地址相匹配。
ARP :以目标IP地址为线索,用来定位下一个应该接受数据分包的网络设备对应的MAC地址。ARP只适用于IPv4,IPv6可以用ICMPv6替代ARP发送邻居探索消息。
ICMP :在IP通信中如果某个IP包因为某种原因未能送达目标地址,那么这个具体的原因将由ICMP负责通知。
DHCP :使用移动设备时,每移动到一个新地方,都要重新设置IP地址,为了实现自动设置IP地址、统一管理IP地址分配,就产生了DHCP协议。
NAT :是用于在本地网络中使用私有地址,在连接互联网时转而使用全局IP地址的技术。
IP隧道 :IPv4和IPv6之间进行通信的技术就是IP隧道。

TCP用于低速可靠传输
UDP用于高速不可靠传输
端口号就是用来识别同一台计算机中进行通信的不同应用程序,也被称为程序地址。
TCP传输利用 窗口控制 提高速度,无需等到每次应答来进行下一次发送,而是有个窗口进行缓冲,来提高吞吐量。
TCP拥塞控制,利用拥塞窗口来调节发送的数据量,拥塞时减小窗口,流畅是增大窗口来控制吞吐量。

我们日常网络访问的 http 用的是 tcp ,那还是看一下这个过程吧
tcp 可以提供全双工的数据流传输服务,全双工说白了,就是同一时间 A 可以发信息给 B , B 也可以发消息给 A ,俩人同时都可以给对方发消息;半双工就是某个时间段 A 可以发给 B ,但 B 不能给 A ,换个时间段,就反过来了。

这个过程理解起来,就像两人在喊话:
A:喂,有人吗,我想建立连接
B:有哇,你建立吧,等你吆
A:好哒,我来啦
然后俩人就建立连接了...

一定要三次握手么,两次行不行?
这么一个场景:
A->B: 洞幺洞幺,我是洞拐,收到请回复。
B->A: 洞拐洞拐,洞幺收到。

请问根据以上对话判断:
1、B是否能收到A的信息? (答案是肯定的)
2、A是否能收到B的信息? (你猜?)

tcp的核心思想是保证数据可靠传输,如果 2 次,显然不行,但 3 次就一定行么?未必,可能第三次的时候网络中断了,然后 A 就认为 B 收到了,然后一通发消息,其实 B 没收到,但这是无法完全保证的。无论握手多少次都不能满足传输的绝对可靠,为了效率跟相对可靠而看, 3 次刚刚好,所以就 3 次了(正好 AB 相互确认了一次)。

举个栗子:把客户端比作男孩,服务器比作女孩。通过他们的分手来说明“四次挥手”过程:

"第一次挥手" :日久见人心,男孩发现女孩变成了自己讨厌的样子,忍无可忍,于是决定分手,随即写了一封信告诉女孩。
“第二次挥手” :女孩收到信之后,知道了男孩要和自己分手,怒火中烧,心中暗骂:你算什么东西,当初你可不是这个样子的!于是立马给男孩写了一封回信:分手就分手,给我点时间,我要把你的东西整理好,全部还给你!男孩收到女孩的第一封信之后,明白了女孩知道自己要和她分手。随后等待女孩把自己的东西收拾好。
“第三次挥手” :过了几天,女孩把男孩送的东西都整理好了,于是再次写信给男孩:你的东西我整理好了,快把它们拿走,从此你我恩断义绝!
“第四次挥手” :男孩收到女孩第二封信之后,知道了女孩收拾好东西了,可以正式分手了,于是再次写信告诉女孩:我知道了,这就去拿回来!

为什么连接的时候是三次握手,关闭的时候却是四次握手?
答:因为当 Server端 收到 Client端 的 SYN 连接请求报文后,可以直接发送 SYN+ACK报文 。其中 ACK报文 是用来应答的, SYN报文 是用来同步的。但是关闭连接时,当 Server端 收到 FIN报文 时,很可能并不会立即 关闭SOCKET ,所以只能先回复一个 ACK报文 ,告诉 Client端 ,"你发的 FIN报文 我收到了"。只有等到我 Server端 所有的报文都发送完了,我才能发送 FIN报文 ,因此不能一起发送。故需要四步握手。

静态路由 是指事先设置好路由器和主机中并将路由信息固定的一种方法。缺点是某个路由器发生故障,基本上无法自动绕过发生故障的节点,只有在管理员手工设置以后才能恢复正常。
动态路由 是管理员先设置好路由协议,其设定过程的复杂程度与具体要设置路由协议的类型有直接关系。在路由器个数较多的网络,采用动态路由显然能够减轻管理员负担。网络发生故障,只要有一个可绕的其他路径,数据包会自动选择这个路径,但路由器需要定期相互交换必要的路由控制信息,会增加一定程度的负荷。

根据路由控制范围分为 IGP (内部网关协议)和 EGP (外部网关协议)

路由算法分为 距离向量算法 链路状态算法
距离向量算法 :通过距离与方向确定通往目标网络的路径
链路状态算法 :链路状态中路由器知道网络的连接状态,并根据链路信息确定通往目标网络的路径。

IGP包含RIP、RIP2、OSPF
EGP包含EGP、BGP

RIP是距离向量型的一种路由协议,广泛应用于LAN
RIP2是RIP的第二版。新增以下特点:使用多播、支持子网掩码、路由选择域、外部路由标志、身份验证密钥
OSPF是一种链路状态型路由协议。

在RIP和OSPF中利用IP的网络地址部分进行着路由控制,然而BGP则需要放眼整个互联网进行路由控制。BGP的最终路由控制表有网络地址和下一站的路由器组来表示,不过它会根据所要经过的AS个数进行路由控制。有了AS编号的域,就相当于有了自己一个独立的“国家”。AS的代表可以决定AS内部的网络运营和相关政策。与其他AS相连的时候,可以像一位“外交官”一样签署合约再进行连接。正是有了这些不同地区的AS通过签约的相互连接,才有了今天全球范围内的互联网。

转发IP数据包的过程中除了使用路由技术外,还在使用标记交换技术。最有代表性的就是多协议标记交换技术(MPLS)。
MPLS的标记不像MAC地址直接对应到硬件设备。因此,MPLS不需要具备以外网或ATM等数据链路层协议的作用,而只需要关注它与下面一层IP层之间的功能和协议即可。
MPLS优点:
1.转发速度快
2.利用标记生成虚拟路径,并在它的上面实现IP等数据包的通信。

⑸ TCP数据包是什么

概念性的东西就是以下内容:简单的来说,就是一种传输协议发出的一段数据源传输控制协议(Transmission Control Protocol, TCP)
TCP协议主为了在主机间实现高可靠性的包交换传输协议。本文将描述协议标准和实现的一些方法。因为计算机网络在现代社会中已经是不可缺少的了,TCP协议主要在网络不可靠的时候完成通信,对军方可能特别有用,但是对于政府和商用部门也适用。TCP是面向连接的端到端的可靠协议。它支持多种网络应用程序。TCP对下层服务没有多少要求,它假定下层只能提供不可靠的数据报服务,它可以在多种硬件构成的网络上运行。下面的图是TCP在层次式结构中的位置,它的下层是IP协议,TCP可以根据IP协议提供的服务传送大小不定的数据,IP协议负责对数据进行分段,重组,在多种网络中传送。

TCP的上面就是应用程序,下面是IP协议,上层接口包括一系列类似于操作系统中断的调用。对于上层应用程序来说,TCP应该能够异步传送数据。下层接口我们假定为IP协议接口。为了在并不可靠的网络上实现面向连接的可靠的传送数据,TCP必须解决可靠性,流量控制的问题,必须能够为上层应用程序提供多个接口,同时为多个应用程序提供数据,同时TCP必须解决连接问题,这样TCP才能称得上是面向连接的,最后,TCP也必须能够解决通信安全性的问题。

网络环境包括由网关(或其它设备)连接的网络,网络可以是局域网也可以是一些城域网或广域网,但无论它们是什么,它们必须是基于包交换的。主机上不同的协议有不同的端口号,一对进程通过这个端口号进行通信。这个通信不包括计算机内的I/O操作,只包括在网络上进行的操作。网络上的计算机被看作包传送的源和目的结点。特别应该注意的是:计算机中的不同进程可能同时进行通信,这时它们会用端口号进行区别,不会把发向A进程的数据由B进程接收的。

进程为了传送数据会调用TCP,将数据和相应的参数传送给TCP,于是TCP会将数据传送到目的TCP那里,当然这是通过将TCP包打包在IP包内在网络上传送达到的。接收方TCP在接收到数据后会通信上层应用程序,TCP会保证接收数据顺序的正确性。虽然下层协议可能不会保证顺序是正确的。这里需要说明的是网关在接收到这个包后,会将包解开,看看是不是已经到目的地了,如果没有到,应该走什么路由达到目的地,在决定后,网关会根据下一个网络内的协议情况再次将TCP包打包传送,如果需要,还要把这个包再次分成几段再传送。这个落地检查的过程是一个耗时的过程。从上面,我们可以看出TCP传送的基本过程,当然具体过程可能要复杂得多。

在实现TCP的主机上,TCP可以被看成是一个模块,和文件系统区别不大,TCP也可以调用一些操作系统的功能,TCP不直接和网络打交道,控制网络的任务由专门的设备驱动模块完成。TCP只是调用IP接口,IP向TCP提供所有TCP需要的服务。通过下图我们可以更清楚地看到TCP协议的结构。

上面已经说过了,TCP连接是可靠的,而且保证了传送数据包的顺序,保证顺序是用一个序号来保证的。响应包内也包括一个序列号,表示接收方准备好这个序号的包。在TCP传送一个数据包时,它同时把这个数据包放入重发队列中,同时启动记数器,如果收到了关于这个包的确认信息,将此包从队列中删除,如果计时超时则需要重新发送此包。请注意,从TCP返回的确认信息并不保证最终接收者接收到数据,这个责任由接收方负责。

每个用于传送TCP的通道都有一个端口标记,因为这个标记是由每个TCP终端确定的,因此TCP可能不唯一,为了保证这个数值的唯一,要使用网络地址和端口号的组合达到唯一标识的目的,我们称这个为了套接字(Socket),一个连接由连接两端的套接字标识,本地的套接字可能和不同的外部套接字通信,这种通信是全双工的。

通过向本地端口发送OPEN命令及外部套接字参数建立连接,TCP返回一个标记这个连接的名称,以后如果用户需要使用这个名称标记这个连接。为了保存这个连接的信息,我们假设有一个称为传输控制块(Transmission Control Block,TCB)的东西来保存。OPEN命令还指定这个连接的建立是主动请求还是被动等待请求。下面我们要涉及具体的功能了,TCP段以internet数据报的形式传送。IP包头传送不同的信息域,包括源地址和目的地址。TCP头跟在internet包头后面,提供了一些专用于TCP协议的信息。下图是TCP包头格式图:

源端口:16位;

目的端口:16位

序列码:32位,当SYN出现,序列码实际上是初始序列码(ISN),而第一个数据字节是ISN+1;

确认码:32位,如果设置了ACK控制位,这个值表示一个准备接收的包的序列码;

数据偏移量:4位,指示何处数据开始;

保留:6位,这些位必须是0;

控制位:6位;

窗口:16位;

校验位:16位;

优先指针:16位,指向后面是优先数据的字节;

选项:长度不定;但长度必须以字节记;选项的具体内容我们结合具体命令来看;

填充:不定长,填充的内容必须为0,它是为了保证包头的结合和数据的开始处偏移量能够被32整除;



我们前面已经说过有一个TCB的东西了,TCB里有存储了包括发送方,接收方的套接字,用户的发送和接收的缓冲区指针等变量。除了这些还有一些变量和发送接收序列号有关:

发送序列变量

SND.UNA - 发送未确认

SND.NXT - 发送下一个

SND.WND - 发送窗口

SND.UP - 发送优先指针

SND.WL1 - 用于最后窗口更新的段序列号

SND.WL2 - 用于最后窗口更新的段确认号

ISS - 初始发送序列号



接收序列号

RCV.NXT - 接收下一个

RCV.WND - 接收下一个

RCV.UP - 接收优先指针

IRS - 初始接收序列号

下图会帮助您了解发送序列变量间的关系:

当前段变量

SEG.SEQ - 段序列号

SEG.ACK - 段确认标记

SEG.LEN - 段长

SEG.WND - 段窗口

SEG.UP - 段紧急指针

SEG.PRC - 段优先级

连接进程是通过一系列状态表示的,这些状态有:LISTEN,SYN-SENT,SYN-RECEIVED,ESTABLISHED,FIN-WAIT-1,FIN-WAIT-2,CLOSE-WAIT,CLOSING,LAST-ACK,TIME-WAIT和 CLOSED。CLOSED表示没有连接,各个状态的意义如下:

LISTEN - 侦听来自远方TCP端口的连接请求;

SYN-SENT - 在发送连接请求后等待匹配的连接请求;

SYN-RECEIVED - 在收到和发送一个连接请求后等待对连接请求的确认;

ESTABLISHED - 代表一个打开的连接,数据可以传送给用户;

FIN-WAIT-1 - 等待远程TCP的连接中断请求,或先前的连接中断请求的确认;

FIN-WAIT-2 - 从远程TCP等待连接中断请求;

CLOSE-WAIT - 等待从本地用户发来的连接中断请求;

CLOSING - 等待远程TCP对连接中断的确认;

LAST-ACK - 等待原来发向远程TCP的连接中断请求的确认;

TIME-WAIT - 等待足够的时间以确保远程TCP接收到连接中断请求的确认;

CLOSED - 没有任何连接状态;

TCP连接过程是状态的转换,促使发生状态转换的是用户调用:OPEN,SEND,RECEIVE,CLOSE,ABORT和STATUS;传送过来的数据段,特别那些包括以下标记的数据段SYN,ACK,RST和FIN;还有超时,上面所说的都会时TCP状态发生变化。



下面的图表示了TCP状态的转换,但这图中没有包括错误的情况和错误处理,不要把这幅图看成是总说明了。



3.3. 序列号

请注意,我们在TCP连接中发送的字节都有一个序列号。因为编了号,所以可以确认它们的收到。对序列号的确认是累积性的,也就是说,如果用户收到对X的确认信息,这表示在X以前的数据(不包括X)都收到了。在每个段中字节是这样安排的:第一个字节在包头后面,按这个顺序排列。我们需要认记实际的序列空间是有限的,虽然很大,但是还是有限的,它的范围是0到2的32次方减1。我想熟悉编程的一定知道为什么要在计算两个段是不是相继的时候要使用2的32次方为模了。TCP必须进行的序列号比较操作种类包括以下几种:

(a) 决定一些发送了的但未确认的序列号;

(b) 决定所有的序列号都已经收到了;

(c) 决定下一个段中应该包括的序列号。

对于发送的数据TCP要接收确认,处理确认时必须进行下面的比较操作:

SND.UNA = 最老的确认了的序列号;

SND.NXT = 下一个要发送的序列号;

SEG.ACK = 接收TCP的确认,接收TCP期待的下一个序列号;

SEG.SEQ = 一个数据段的第一个序列号;

SEG.LEN = 数据段中包括的字节数;

SEG.SEQ+SEG.LEN-1 = 数据段的最后一个序列号。

请注意下面的关系:

SND.UNA < SEG.ACK =< SND.NXT

如果一个数据段的序列号小于等于确认号的值,那么整个数据段就被确认了。而在接收数据时下面的比较操作是必须的:

RCV.NXT = 期待的序列号和接收窗口的最低沿;

RCV.NXT+RCV.WND-1 = 最后一个序列号和接收窗口的最高沿;

SEG.SEQ = 接收到的第一个序列号;

SEG.SEQ+SEG.LEN-1 = 接收到的最后一个序列号;



上面几个量有如下关系:

RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND 或 RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

测试的第一部分是检查数据段的开始部分是否在接收窗口中,第二部分是检查数据段的结束部分是否也在接收窗口内;上面两个检查通过任何一个就说明它包括窗口要求的数据。实际中的情况会更复杂一些,因为有零窗口和零数据段长,因此我们有下面四种情况:

段长度
接收窗口
测试

0
0
SEG.SEQ = RCV.NXT

0
>0
RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

>0
0
不可接受

>0
>0
RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND或RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

请注意接收窗口的大小可以为零,在窗口为零时它只用来接收ACK信息,因此对于一个TCP来说,它可以使用零大小窗口在发送数据的同时接收数据。即使接收窗口的大小为零,TCP必须处理所有接收到信息的RST和URG域。

我们也应用计数的方式保护了一些特定的控制信息,这是通过隐式地使用一些控制标记使数据段能够可靠地重新发送(或确认)为达到的。控制信息并不在段数据空间中传送,因此,我们必须采用隐式指定序列号进行控制。SYN和FIN是需要保护的控制量,这两个控制量也只在连接打开和关闭时使用。SYN被认为是在第一个实际数据之间的数据,而FIN是最后一个实际数据之后的数据。段长度(SEG.LEN)包括数据和序列号空间,如果出现了SYN,那么SEG.SEQ是SYN的序列号。

初始序列号选择

协议对于特定连接被重复使用没有什么限制。连接是由一对套接字定义的。新的连接实例被定义为连接的另一次恢复,这就带来了问题:TCP如果确定多个数据段是从以前连接的另一次恢复中取得的呢?这个问题在连接迅速打开和关闭,或因为内存原因被关闭然后又迅速建立后显示特别突出。

为了避免混乱,用户必须避免因此恢复使用某一连接,而使序列号发生混乱。我们必须保证序列号的正确性,即使TCP失败,根本不知道以前的序列号是什么的情况下也要保证序列号的正确性。当新的连接被创建时,产生一个新的初始序列号(ISN)产生子,它用来选择一个新的32位ISN。产生子和32位时钟的低度位字节相关,低位字节的刷新频率大概是4微秒,因此ISN的循环时间大概是4.55小时。因此我们把网络包的最长生存时间(MSL)小于4.55小时,因此我们可以认为ISN是唯一的。对于每个连接都有发送序列号和接收序列号,初始发送序列号(ISS)由发送TCP选择,而初始接收序列号是在连接建立过程中产生的。

对于将要连接或初始化的连接,两个TCP必须和对方的初始序列号同步。这通过交换一个控制位SYN和初始序列号完成。我们把带有SYN的数据段称为"SYNs"。同步的获得过程这里就不重复了,每方必须发送自己的序列号并返回对对方序列号的确认。

1) A --> B SYN 本方序列号是X

2) A <-- B ACK 本方序列号被确认

3) A <-- B SYN 对方序列号是Y

4) A --> B ACK 确认对方序列号

上面的第2步和第3步可以合并,这时可以成为3阶段,所以我们可以称它为三消息握手。这个过程是必须的,因为序列号不和全局时钟关联,TCP也可以有不同的机制选择ISN。接收到第一个SYN的接收方不可能知道这个数据段是不是被延时,除非它记住了在连接上使用的最近的序列号(这通常是不可能的),因此它必须要求发送者确认。

为了保证TCP获得的确认是刚才发送的段产生的,而不是仍然在网络中的老数据段产生的,因此TCP必须在MSL时间之内保持沉默。在本文中,我们假设MSL=2小时,这是出于工程的需要,如果用户觉得可以,他可以改变MSL。请注意如果TCP重新初始化,而内存中的序列号正在使用,不需要等待,但必须确认使用的序列号比当前使用的要大。

如果一台主机在未保留任何序列号的情况下失败,那么它应该在MSL时间之内不发出任何数据段。下面将会这一情况进行说明。TCP的实现可以不遵守这个规定,但是这会造成老数据被当成新数据接收,而新数据被当成老数据拒绝的情况。

每当数据段形成并进入输出队列,TCP会为它指定序列空间中的一个值。TCP中多复本检测和序列算法都依赖于这个地址空间,在对方发送或接收之前不会超过2的32次方个包存在于输出队列中。所有多余的数据段都会被删除。如果没有这个规定,会出现多个数据段被指定同一个序列号的情况,会造成混乱。数据段中序列号的多少和数据段中的字节数一样多。

在通常情况下,TCP保留下一个要发送的序列号和还未确认的最老的序列号,不要在没有确认的时候就再次使用,这样会有些风险,也正是因为这样的目的,所以序列空间很大。对于2M的网络,要4.5小时来耗尽序列空间,因为一个数据段可能的最大生存时间也不过十几分之一秒,这就留下了足够的空间;而在100M的网络上需要5.4分钟,虽然少了点,但也可以了。

如果在实现TCP时没有为保存序列号留下空间,那清除多余的包可能就不能实现了,因此推荐这种类型的TCP实现最好在失败后等待MSL时间,这样保证多余的包被删除。这种情况有时候也可能会出现在保留序列号的TCP实现中。如果TCP在选择一个另一个TCP连接正在使用的序列号时,这台主机突然失败了,这就产生了问题。这个问题的实质在于主机不知道它失败了多久,也不知道多余的复本是不是还在网络中。

处理这种问题的方法是等待MSL时间,如果不这样就要冒着对方错误接收数据的危险,要等待的时间也就称为“沉默时间”。实现者可以让用户选择是不是等待,但是无论用户如何也不见得非要等待MSL时间。

3.4. 建立一个连接

建立连接应用的是三消息握手。如果双方同时都发送SYN也没有关系,双方会发现这个SYN中没有确认,于是就知道了这种情况,通常来说,应该发送一个"reset"段来解决这种情况。三消息握手减少了连接失败的可能性。下面就是一个例子,在尖括号是的就是数据段中的内容和标记。其它的就不多说了。

在第2行,TCP A发送SYN初始化序列号,表示它要使用序列号100;第3行中,TCP B给出确认,并且期待着A的带有序列号101的数据段;第4行,TCP A给出确认,而在第5行,它也给出确认,并发送了一些数据,注意第4行的序列号与第5号的一样,因为ACK信息不占用序列号空间内的序列号。同时产生请求的情况如下图所示,只复杂一点。

使用三消息握手的主要原因是为了防止使用过期的数据段。为了这个目的,必须引入新的控制消息,RESET。如果接收TCP处理异步状态,在接收到RESET后返回到LISTEN状态。如果TCP处理下面几种状态ESTABLISHED,FIN-WAIT-1,FIN-WAIT-2,CLOSE-WAIT,CLOSING,LAST-ACK,TIME-WAIT时,放弃连接并通过用户。我们下面就详细说明后一种情况。

通过上面的例子,我们可以看出TCP连接是如何从过期数据段的干扰下恢复的。请注意第4行和第5行中的RST(RESET信号)。

半开连接和其它非正常状态

如果一方在未通过另一方的情况下关闭连接,或双方虽然失败而不同步的情况我们称为半开连接状态。在一方试图发送数据时连接会自动RESET。然而这种情况毕竟属于不正常情况。应该做出相应的处理。如果A处的连接已经关闭,B处并不知道。当B希望发送数据到A时,就会收到RESET信号,表示这个TCP连接有误,要中止当前连接。

假设A和B两个进程相互通信的时候A的TCP发生了失败,A依靠操作系统支持TCP的存在,通常这种情况下会有恢复机制起作用,当TCP重新恢复的时候,A可能希望从恢复点开始工作。这样A可能会试图OPEN连接,然后在这个它认为还是打开的连接上传送数据,这时A会从本地(也就是A的)TCP上获得错误消息“未打开连接”。A的TCP将发送包括SYN的数据段。下面的例子将显示这一过程:

上面这个例子中,A方收到的信息并没有确认任何东西,这时候A发现出了问题,于是发送了RST控制信息。另一种情况是发生在A失败,而B方仍然试图发送数据时,下面的例子可以表示这种情况,请注意第2行中A对B发送来的信息不知所云。

在下面的例子中,A方和B方进行的被动连接,它们都在等待SYN信息。过期的包传送到B方使B回应了,而收到回应的A却发现不对头,传送RST控制信息,B方返回被动LISTEN状态。

现实中的情况太多了,我们列举一些产生RST控制信息的规则如下:通常情况下,RST在收到的信息不是期待的信息时产生。如果在不能确定时不要轻易发送RST控制信息。下面有三类情况:

如果连接已经不存在,而发送来的消息又不是RST,那么要返回RST。如果想拒绝对不存在的连接进行SYN,可以使用这种办法。如果到达的信息有一个ACK域,返回的RST信息可以从ACK域中取得序列号,如果没有这个域,就把RST的序列号设置为0,ACK域被设备为序列号和到达段长度之和。连接仍然处于CLOSE状态。

如果连接处于异步状态(LISTEN,SYN-SENT,SYN-RECEIVED),而且收到的确认是对未发出包的确认或是接收到数据段的安全级别与不能连接要求的相一一致时,就发送RST。如果SYN未被确认时,而且收到的数据段的优先级比要求的优先级要高,那么要么提高本地优先级(得事先征得用户和系统的许可)要么发送RST;如果接收数据段的优先级比要求的优先级低,就算是匹配了,当然如果对方发现优先级不对提高了优先级,在下一个包中提高了优先级,这就不算是匹配了。如果连接已经进入SYN,那么接收到数据段的优先级必须和本地优先级一样,否则发送RST。如果到达的信息有一个ACK域,返回的RST信息可以从ACK域中取得序列号,如果没有这个域,就把RST的序列号设置为0,ACK域被设备为序列号和到达段长度之和。连接仍然处于与原来相同的状态。

如果连接处于同步状态(ESTABLISHED,FIN-WAIT-1,FIN-WAIT-2,CLOSE-WAIT,CLOSING,LAST-ACK,TIME-WAIT),任何超出接收窗口的序列号的数据段都产生如下结果:发出一个空确认数据段,此段中包括当前发送序列号,另外还包括一个确认指出希望接收的下一个数据段的序列号,连接仍然保存在原来的状态。如果因为安全级,优先级之类的问题,那就发送RST信号然后进入CLOSED状态。

阅读全文

与计算机网络tcp工作示意图相关的资料

热点内容
网络三格信号和4格信号哪个好 浏览:347
电脑连不上带网口网络摄像头 浏览:341
嘉峪关服务好的网络公司在哪里 浏览:176
新电脑怎么连接工作网络 浏览:419
二手安居客网络端口多少钱 浏览:380
win10手动设置专用网络 浏览:866
网络基础ip怎么算 浏览:924
手机连接希沃的网络 浏览:464
最新好听且伤感的网络歌曲有哪些 浏览:39
网络中心战是美国哪个部门提出的 浏览:641
跳闸后有信号没有网络 浏览:68
无线网络怎么看上不了 浏览:928
网络共享与网关有关系吗 浏览:690
苹果玩海外游戏怎么显示没网络 浏览:680
网络课程如何讲课 浏览:870
大疆带屏遥控器的网络设置 浏览:741
家庭网络在哪里下载 浏览:485
数学网络图怎么画要注意什么 浏览:240
为什么小米手机连上wifi无网络 浏览:484
先锋网络有哪些股票 浏览:337

友情链接