导航:首页 > 网络营销 > 分析网络拓扑需要利用哪些协议

分析网络拓扑需要利用哪些协议

发布时间:2022-06-12 04:57:55

❶ P4P的网络协议

P2P软件的应用吞噬了巨量的网络带宽,这使得运营商头痛不已。Verizon的工程师搞了一套新型的拓扑理论下的P4P算法,很有可能以技术方式调和这个矛盾。
传统的P2P方式下数据节点和传输是随机的,也就是说这种传输方式可能占据任意一个网络节点或者出口的带宽。而P4P则是智能选取数据交换对象,更多的通过智能运算选择同一路由器或者地域性网络来进行数据交换,最大程度上解决大型节点和网络出口负载,同样通过智能选择数据交换对象也能大大提高数据传输能力。
与P2P随机挑选Peer(对等机)不同,P4P协议可以协调网络拓扑数据,能够有效选择节点,从而提高网络路由效率。仍以上述例子来说,北京的用户就可以优先和北京同城的用户来实现文件片段的交换,再扩展至较远的地区,有十分的必要时,才会出国进行文件片段交换。当然,P4P的运行机制,要远远超过“同城交换”的概念,它还会根据用户的上行、下载带宽进行综合判断,以进行最有效选择,最大化整体交换的效率。
值得一提的是,P4P的开山鼻祖是一位工作在耶鲁大学的中国人,谢海永博士。谢博士系美国分布式计算工业联盟(DCIA)和P4P工作组的首席研究员,提出并完成了P4P理论和系统设计。自今年2月底以来,谢海永等研究人员对P4P系统设计进行了大规模现场测试。
这项中国人主导的发明,在商业测试中有出色表现。根据Verizon的反馈,使用P4P技术,P2P用户平均下载速度提高60%,光纤到户用户提高205%~665 %。此外,运营商内部数据传送距离减少了84%。用户有58%的数据是来自同城,较传统P2P的6.3%比例有了近10倍提升。 7月30日消息:德国一个名为iPoque的研究机构在2007年研究了一百多万网民将近3TB的匿名数据流量,调查地区包括澳大利亚、东欧、德国、中东和南欧地区。调查发现,目前网络带宽“消费大户”是P2P文件共享,在中东占据了49%,东欧地区占据了84%。从全球来看,晚上时段的网络带宽有95%被P2P占据。据国内权威部门统计,当前P2P流量已经占整个互联网流量的约70%,并且正在以每年350%的速度增长。P2P流量消耗了巨大的网络带宽,尤其是国际带宽,使网络基础设施不堪重负,运营商苦不堪言。
问题的症结不在于P2P,而在于交换的机制。P2P过于强调“对等”,每个节点之间的交换完全是无序的。一个北京的用户,既可能和广州的用户进行文件片段的交换,也可能和远在美国的某用户进行交换。显然,无序的交换导致了无谓的跨地区甚至是跨国的“流量旅行”,这耗费了宝贵的国内和国际带宽资源,代价巨大。
如果正好用户都在同一个地区,那么,本地化的交换的成本就会大大降低。这也正是P4P的简单原理——让P2P也玩“同城”。 P4P全称是“Proactive network Provider Participation for P2P(电信运营商主动参与P2P网络)”。与P2P随机挑选Peer(对等机)不同,P4P协议可以协调网络拓扑数据,能够有效选择节点,从而提高网络路由效率。仍以上述例子来说,北京的用户就可以优先和北京同城的用户来实现文件片段的交换,再扩展至较远的地区,有十分的必要时,才会出国进行文件片段交换。当然,P4P的运行机制,要远远超过“同城交换”的概念,它还会根据用户的上行、下载带宽进行综合判断,以进行最有效选择,最大化整体交换的效率。 P4P首次提出依靠ISP和P2P应用的合作,由最了解网络状态的ISP提供底层网络信息,供上层应用有效选择“临近”节点、拥塞程度低和开销小的链路传输内容。
其实,将节点数据内容交换限制在某一个区域附近的思想其实由来已久,并不是P4P所独有的技术。在P4P之前,就有很多应用采用p2p自身的机制来限制流量跨域过多,将数据交换最大本地化,称之为交换数据的locality特性。但是纯粹依靠P2P应用本身限制内容交换在本地的方式存在一定问题。
比如,纯基于locality的节点选择方式的会给骨干网带来拥塞。比如北京到天津的链路link是最为流量集中的热点,基于位置信息在选择节点过程中,不考虑实际流量的拥塞限制,仍选择该段链路作为最邻近的通路,从而造成链接负荷过重。另外,基于locality的方式没有考虑不同运营商之间的差异所带来的开销。比如仅依靠时延或者跳数方式选择结点,即使交换数据的节点在同一个city中,但分属不同ISP(比如教育网、电信网运营商等),可以达到时延较小的目的,但会导致ISP域间传输,造成不必要的费用开销。在ISP域间传递不可避免的情况下,纯基于locality的应用选择节点也可能会不经选择的通过开销较高的ISP的链路,同样造成不必要的费用开销。
另外,P2P应用还可以采用自身的探测技术和机制调整选择流量走向,这种方式也存在一定弱点:P2P应用自身需要采用逆向流量工程推测(probe)底层网络状态,比如发出探测消息以推测目前拓扑信息、拥塞程度、链接开销等,它依赖网络测量技术,而目前的测量技术本身就耗费网络带宽资源,且不能完全反映网络真实状态。一些新技术比如MPLS交换对于probe探测消息不做回应,使得纯网络测量某些场合难以应用。而ISP运营商的策略信息(哪些link昂贵不适合用p2p应用,那些ISP之间的link开销便宜等)逆向工程无法推测。
总而言之,单靠P2P应用来解决流量问题是不现实和可靠的。
P2P(Peer to Peer)已经深入人心了,电影下载、在线视频、文件下载、IM等均采用了这项技术。通过P2P,网络的下载速度、视频的观看效果有了极大的提高与改善。然而,P2P应用的普及给电信运营商的网络带宽造成非常大的压力,常常是运营商扩多少,P2P应用就占用多少,而且P2P还占用http等端口的带宽,导致网页浏览等正常的互联网业务受到影响。在这种情况下,P4P技术应运而生,它给了运营商和用户一个新的选择,有望在提高用户满意度的同时减少运营商的宽带压力,因而被认为是一个非常有前景的技术。 P2P是随机挑选位于不同网络位置的资源的,换句话说,它对资源在网络中的位置不作区分一律平等地返回给用户。以多个运营商为例,在最初的P2P中,当P2P用户在互联网上找某个资源时,它可能在5处找到,分别在运营商1、运营商2、运营商3中,其中资源6是P2P用户所在网络的网内资源。如果用户使用P2P引擎查询,结果得到的优先资源可能是资源2、资源5,全部是网外资源,这会导致运营商之间网络的拥堵,并且导致下载速度变慢(参见图1)。
上面是资源位于不同电信运营商网络中的情形,如果资源都位于电信运营商自己的网络内,情况也和前面类似,同样会造成省与省之间网络拥堵,并且下载速度变慢(参见图2)。
P2P的这种无序方式给运营商带来了很大的困扰,而彻底杜绝这种应用又是不可能、不现实的,这时疏导不失为一个明智之举,即通过使用P4P技术改善P2P与网络之间的通信,让客户端程序更好地使用网络状态信息,进而减轻网络压力、降低运营成本。
P4P“Proactive network Provider Participation for P2P”意思是要改善服务供应商(ISP)与客户端程序的通信,降低运营商骨干网络传输压力和运营成本,将运营商的网络压力尽量边缘化,并提高P2P的文件传输性能。与P2P随机挑选资源点不同,P4P协议可以利用网络拓扑数据,选择最佳的Peer(资源点),从而提高网络路由效率。
据相关测试数据显示,P4P可以提高大约200%的性能,部分时候甚至超过600%,因此P4P的未来发展前景非常广阔。此外,P4P由于采用了网络拓扑信息管理,可以减轻骨干网络压力,因此对于电信运营商而言其比P2P具有更大的优势。 由于资源位于不同运营商与资源位于同一运营商不同省分公司的情况相类似,因此下面以前一种情形为例进行分析。
针对上述情形,为了降低运营商之间的带宽需求,可以设法在用户下载范围上进行限制,例如用户下载时根据IP匹配范围,优先选择本网络内的资源。例如,在图1中,搜索引擎返回5个资源,优先返回ISP网络的资源6,若本网内部P2P速度很快(一般是快的),则不再(或较少)连接其他的资源,这样就能减少出网流量。对于同一个运营商而言,内部可再进一步按省内IP细分,优先返回运营商本省内的资源,以进一步加快下载速度,减轻网际压力。
但是这种方法也有缺陷,如果运营商2网络内的内容资源贫乏,会造成符合查询要求的资源仍然是其他网络的资源,这种情况在用户下载非热门的资源时常出现, 这将导致此类下载资源的体验很差,给运营商2的网络出口造成比较大的压力。
为了解决上面提到的问题,需在运营商2的网络内建立镜像节点,通过镜像节点对P2P进行加速。加速部分需要大量存储,并且进行相关分析处理后为运营商2的用户提供加速后的P2P服务。
镜像节点的数据来源于P2P用户下载资源的统计和分析,P2P用户下载完一个资源后,会进行相关分析,满足条件的进入存储,为运营商2的其他P2P应用提供高速服务。
有了镜像节点后,P2P用户下载一个资源时,P2P引擎返回1个网内资源(资源),并且返回镜像节点。当网内和镜像节点都无资源时,就通过其他运营商为P2P用户提供服务。通过经过一定的统计分析,将需要的相关资源补充到镜像节点中去。
这种方式由于可以通过镜像节点缓冲数据,因此可以大大提高用户服务质量。但是这种方式需要比较大的投资,同时在镜像节点初期由于其存储数据量比较少,因此给用户的加速效果要随着时间的增加才能得到逐步改善。在上述处理的基础上,通过网格计算、文件热度计算等系统的处理,可进一步提高系统处理能力,提高文件的命中率,从而为用户提供更加快捷的访问速度。
上面所说是针对于多个运营商而言,在运营商内部也可以通过这种办法将P2P的访问进行加速,从而将所有的用户P2P访问尽量边缘化,也就是实现有效选择Peer,进而提高网络路由效率。 从上面的分析不难发现,P4P在软件、硬件方面分别进行了深度的研究,并且进行了相关的硬件投资,原有的那种松散的P2P已经变成了一种有规划的部署和应用。因而P4P在提高用户满意度的前提下,又进一步降低了到其他运营商或者出省的P2P流量,这样对运营商网络的压力大大减少,因此受到了运营商的欢迎。
总体说来,P4P技术的本意是为网络运营商提供服务,其应用对象也将是合法商业服务,可以预见这一技术至少在短期内将面向大的ISP。但是不管怎么说,P4P相对于P2P是一个非常重要的进步,也为共享问题指出了新方向,相信P4P最终将扩展到整个P2P网络,并替代P2P。因为P2P的特点决定了其发展具有坚实的用户基础,但是其出现的问题决定了它必须进行完善,这正是P4P诞生的背景。P4P这种方式不仅能更好地为用户提供服务,而且运营商也欢迎这种技术,因此,P4P很可能将在中国互联网市场蓬勃发展,为中国的互联网用户提供更加可靠、快捷的互联网服务。

❷ 常见的网络协议有哪些

第一章 概述

电信网、计算机网和有线电视网 三网合一

TCP/IP是当前的因特网协议簇的总称,TCP和 IP是其中的两个最重要的协议。

RFC标准轨迹由3个成熟级构成:提案标准、草案标准和标准。

第二章 计算机网络与因特网体系结构

根据拓扑结构:计算机网络可以分为总线型网、环型网、星型网和格状网。

根据覆盖范围:计算机网络可以分为广域网、城域网、局域网和个域网。

网络可以划分成:资源子网和通信子网两个部分。

网络协议是通信双方共同遵守的规则和约定的集合。网络协议包括三个要素,即语法、语义和同步规则。

通信双方对等层中完成相同协议功能的实体称为对等实体 ,对等实体按协议进行通信。

有线接入技术分为铜线接入、光纤接入和混合光纤同轴接入技术。

无线接入技术主要有卫星接入技术、无线本地环路接入和本地多点分配业务。

网关实现不同网络协议之间的转换。

因特网采用了网络级互联技术,网络级的协议转换不仅增加了系统的灵活性,而且简化了网络互联设备。

因特网对用户隐藏了底层网络技术和结构,在用户看来,因特网是一个统一的网络。

因特网将任何一个能传输数据分组的通信系统都视为网络,这些网络受到网络协议的平等对待。

TCP/IP 协议分为 4 个协议层 :网络接口层、网络层、传输层和应用层。

IP 协议既是网络层的核心协议 ,也是 TCP/IP 协议簇中的核心协议。

第四章 地址解析

建立逻辑地址与物理地址之间 映射的方法 通常有静态映射和动态映射。动态映射是在需要获得地址映射关系时利用网络通信协议直接从其他主机上获得映射信息。 因特网采用了动态映射的方法进行地址映射。

获得逻辑地址与物理地址之间的映射关系称为地址解析 。

地址解析协议 ARP 是将逻辑地址( IP 地址)映射到物理地址的动态映射协议。

ARP 高速缓存中含有最近使用过的 IP 地址与物理地址的映射列表。

在 ARP 高速缓存中创建的静态表项是永不超时的地址映射表项。

反向地址解析协议 RARP 是将给定的物理地址映射到逻辑地址( IP地址)的动态映射。RARP需要有RARP 服务器帮助完成解析。

ARP请求和 RARP请求,都是采用本地物理网络广播实现的。

在代理ARP中,当主机请求对隐藏在路由器后面的子网中的某一主机 IP 地址进行解析时,代理 ARP路由器将用自己的物理地址作为解析结果进行响应。

第五章 IP协议

IP是不可靠的无连接数据报协议,提供尽力而为的传输服务。

TCP/IP 协议的网络层称为IP层.

IP数据报在经过路由器进行转发时一般要进行三个方面的处理:首部校验、路由选择、数据分片

IP层通过IP地址实现了物理地址的统一,通过IP数据报实现了物理数据帧的统一。 IP 层通过这两个方面的统一屏蔽了底层的差异,向上层提供了统一的服务。

IP 数据报由首部和数据两部分构成 。首部分为定长部分和变长部分。选项是数据报首部的变长部分。定长部分 20 字节,选项不超过40字节。

IP 数据报中首部长度以 32 位字为单位 ,数据报总长度以字节为单位,片偏移以 8 字节( 64 比特)为单位。数据报中的数据长度 =数据报总长度-首部长度× 4。

IP 协议支持动态分片 ,控制分片和重组的字段是标识、标志和片偏移, 影响分片的因素是网络的最大传输单元 MTU ,MTU 是物理网络帧可以封装的最大数据字节数。通常不同协议的物理网络具有不同的MTU 。分片的重组只能在信宿机进行。

生存时间TTL是 IP 数据报在网络上传输时可以生存的最大时间,每经过一个路由器,数据报的TTL值减 1。

IP数据报只对首部进行校验 ,不对数据进行校验。

IP选项用于网络控制和测试 ,重要包括严格源路由、宽松源路由、记录路由和时间戳。

IP协议的主要功能 包括封装 IP 数据报,对数据报进行分片和重组,处理数据环回、IP选项、校验码和TTL值,进行路由选择等。

在IP 数据报中与分片相关的字段是标识字段、标志字段和片偏移字段。

数据报标识是分片所属数据报的关键信息,是分片重组的依据

分片必须满足两个条件: 分片尽可能大,但必须能为帧所封装 ;片中数据的大小必须为 8 字节的整数倍 ,否则 IP 无法表达其偏移量。

分片可以在信源机或传输路径上的任何一台路由器上进行,而分片的重组只能在信宿机上进行片重组的控制主要根据 数据报首部中的标识、标志和片偏移字段

IP选项是IP数据报首部中的变长部分,用于网络控制和测试目的 (如源路由、记录路由、时间戳等 ),IP选项的最大长度 不能超过40字节。

1、IP 层不对数据进行校验。

原因:上层传输层是端到端的协议,进行端到端的校验比进行点到点的校验开销小得多,在通信线路较好的情况下尤其如此。另外,上层协议可以根据对于数据可靠性的要求, 选择进行校验或不进行校验,甚至可以考虑采用不同的校验方法,这给系统带来很大的灵活性。

2、IP协议对IP数据报首部进行校验。

原因: IP 首部属于 IP 层协议的内容,不可能由上层协议处理。

IP 首部中的部分字段在点到点的传递过程中是不断变化的,只能在每个中间点重新形成校验数据,在相邻点之间完成校验。

3、分片必须满足两个条件:

分片尽可能大,但必须能为帧所封装 ;

片中数据的大小必须为8字节的整数倍,否则IP无法表达其偏移量。

第六章 差错与控制报文协议(ICMP)

ICMP 协议是 IP 协议的补充,用于IP层的差错报告、拥塞控制、路径控制以及路由器或主机信息的获取。

ICMP既不向信宿报告差错,也不向中间的路由器报告差错,而是 向信源报告差错 。

ICMP与 IP协议位于同一个层次,但 ICMP报文被封装在IP数据报的数据部分进行传输。

ICMP 报文可以分为三大类:差错报告、控制报文和请求 /应答报文。

ICMP 差错报告分为三种 :信宿不可达报告、数据报超时报告和数据报参数错报告。数据报超时报告包括 TTL 超时和分片重组超时。

数据报参数错包括数据报首部中的某个字段的值有错和数据报首部中缺少某一选项所必须具有的部分参数。

ICMP控制报文包括源抑制报文和重定向报文。

拥塞是无连接传输时缺乏流量控制机制而带来的问题。ICMP 利用源抑制的方法进行拥塞控制 ,通过源抑制减缓信源发出数据报的速率。

源抑制包括三个阶段 :发现拥塞阶段、解决拥塞阶段和恢复阶段。

ICMP 重定向报文由位于同一网络的路由器发送给主机,完成对主机的路由表的刷新。

ICMP 回应请求与应答不仅可以被用来测试主机或路由器的可达性,还可以被用来测试 IP 协议的工作情况。

ICMP时间戳请求与应答报文用于设备间进行时钟同步 。

主机利用 ICMP 路由器请求和通告报文不仅可以获得默认路由器的 IP 地址,还可以知道路由器是否处于活动状态。

第七章 IP 路由

数据传递分为直接传递和间接传递 ,直接传递是指直接传到最终信宿的传输过程。间接传递是指在信

源和信宿位于不同物理网络时,所经过的一些中间传递过程。

TCP/IP 采用 表驱动的方式 进行路由选择。在每台主机和路由器中都有一个反映网络拓扑结构的路由表,主机和路由器能够根据 路由表 所反映的拓扑信息找到去往信宿机的正确路径。

通常路由表中的 信宿地址采用网络地址 。路径信息采用去往信宿的路径中的下一跳路由器的地址表示。

路由表中的两个特殊表目是特定主机路由和默认路由表目。

路由表的建立和刷新可以采用两种不同 的方式:静态路由和动态路由。

自治系统 是由独立管理机构所管理的一组网络和路由器组成的系统。

路由器自动获取路径信息的两种基本方法是向量—距离算法和链路 —状态算法。

1、向量 — 距离 (Vector-Distance,简称 V—D)算法的基本思想 :路由器周期性地向与它相邻的路由器广播路径刷新报文,报文的主要内容是一组从本路由器出发去往信宿网络的最短距离,在报文中一般用(V,D)序偶表示,这里的 V 代表向量,标识从该路由器可以到达的信宿 (网络或主机 ),D 代表距离,指出从该路由器去往信宿 V 的距离, 距离 D 按照去往信宿的跳数计。 各个路由器根据收到的 (V ,D)报文,按照最短路径优先原则对各自的路由表进行刷新。

向量 —距离算法的优点是简单,易于实现。

缺点是收敛速度慢和信息交换量较大。

2、链路 — 状态 (Link-Status,简称 L-S)算法的基本思想 :系统中的每个路由器通过从其他路由器获得的信息,构造出当前网络的拓扑结构,根据这一拓扑结构,并利用 Dijkstra 算法形成一棵以本路由器为根的最短路径优先树, 由于这棵树反映了从本节点出发去往各路由节点的最短路径, 所以本节点就可以根据这棵最短路径优先树形成路由表。

动态路由所使用的路由协议包括用于自治系统内部的 内部网关协 议和用于自治系统之间的外部网关协议。

RIP协议在基本的向量 —距离算法的基础上 ,增加了对路由环路、相同距离路径、失效路径以及慢收敛问题的处理。 RIP 协议以路径上的跳数作为该路径的距离。 RIP 规定,一条有效路径的距离不能超过

RIP不适合大型网络。

RIP报文被封装在 UDP 数据报中传输。RIP使用 UDP 的 520 端口号。

3、RIP 协议的三个要点

仅和相邻路由器交换信息。

交换的信息是当前本路由器所知道的全部信息,即自己的路由表。

按固定的时间间隔交换路由信息,例如,每隔30秒。

4、RIP 协议的优缺点

RIP 存在的一个问题是当网络出现故障时,要经过比较长的时间才能将此信息传送到所有的路由器。

RIP 协议最大的优点就是实现简单,开销较小。

RIP 限制了网络的规模,它能使用的最大距离为15(16表示不可达)。

路由器之间交换的路由信息是路由器中的完整路由表,因而随着网络规模的扩大,开销也就增加。

5、为了防止计数到无穷问题,可以采用以下三种技术。

1)水平 分割 法(Split Horizon) 水平分割法的基本思想:路由器从某个接口接收到的更新信息不允许再从这个接口发回去。在图 7-9 所示的例子中, R2 向 R1 发送 V-D 报文时,不能包含经过 R1 去往 NET1的路径。因为这一信息本身就是 R1 所产生的。

2) 保持法 (Hold Down) 保持法要求路由器在得知某网络不可到达后的一段时间内,保持此信息不变,这段时间称为保持时间,路由器在保持时间内不接受关于此网络的任何可达性信息。

3) 毒性逆转法 (Poison Reverse)毒性逆转法是水平分割法的一种变化。当从某一接口发出信息时,凡是从这一接口进来的信息改变了路由表表项的, V-D 报文中对应这些表目的距离值都设为无穷 (16)。

OSPF 将自治系统进一步划分为区域,每个区域由位于同一自治系统中的一组网络、主机和路由器构成。区域的划分不仅使得广播得到了更好的管理,而且使 OSPF能够支持大规模的网络。

OSPF是一个链路 —状态协议。当网络处于收敛状态时, 每个 OSPF路由器利用 Dijkstra 算法为每个网络和路由器计算最短路径,形成一棵以本路由器为根的最短路径优先 (SPF)树,并根据最短路径优先树构造路由表。

OSPF直接使用 IP。在IP首部的协议字段, OSPF协议的值为 89。

BGP 是采用路径 —向量算法的外部网关协议 , BGP 支持基于策略的路由,路由选择策略与政治、经济或安全等因素有关。

BGP 报文分为打开、更新、保持活动和通告 4 类。BGP 报文被封装在 TCP 段中传输,使用TCP的179 号端口 。

第八章 传输层协议

传输层承上启下,屏蔽通信子网的细节,向上提供通用的进程通信服务。传输层是对网络层的加强与弥补。 TCP 和 UDP 是传输层 的两大协议。

端口分配有两种基本的方式:全局端口分配和本地端口分配。

在因特网中采用一个 三元组 (协议,主机地址,端口号)来全局惟一地标识一个进程。用一个五元组(协议 ,本地主机地址 ,本地端口号 ,远地主机地址 ,远地端口号)来描述两个进程的关联。

TCP 和 UDP 都是提供进程通信能力的传输层协议。它们各有一套端口号,两套端口号相互独立,都是从0到 65535。

TCP 和 UDP 在计算校验和时引入伪首部的目的是为了能够验证数据是否传送到了正确的信宿端。

为了实现数据的可靠传输, TCP 在应用进程间 建立传输连接 。TCP 在建立连接时采用 三次握手方法解决重复连接的问题。在拆除连接时采用 四次握手 方法解决数据丢失问题。

建立连接前,服务器端首先被动打开其熟知的端口,对端口进行监听。当客户端要和服务器建立连接时,发出一个主动打开端口的请求,客户端一般使用临时端口。

TCP 采用的最基本的可靠性技术 包括流量控制、拥塞控制和差错控制。

TCP 采用 滑动窗口协议 实现流量控制,滑动窗口协议通过发送方窗口和接收方窗口的配合来完成传输控制。

TCP 的 拥塞控制 利用发送方的窗口来控制注入网络的数据流的速度。发送窗口的大小取通告窗口和拥塞窗口中小的一个。

TCP通过差错控制解决 数据的毁坏、重复、失序和丢失等问题。

UDP 在 IP 协议上增加了进程通信能力。此外 UDP 通过可选的校验和提供简单的差错控制。但UDP不提供流量控制和数据报确认 。

1、传输层( Transport Layer)的任务 是向用户提供可靠的、透明的端到端的数据传输,以及差错控制和流量控制机制。

2 “传输层提供应用进程间的逻辑通信 ”。“逻辑通信 ”的意思是:传输层之间的通信好像是沿水平方向传送数据。但事实上这两个传输层之间并没有一条水平方向的物理连接。

TCP 提供的可靠传输服务有如下五个特征 :

面向数据流 ; 虚电路连接 ; 有缓冲的传输 ; 无结构的数据流 ; 全双工连接 .

3、TCP 采用一种名为 “带重传功能的肯定确认 ( positive acknowledge with retransmission ) ”的技术作为提供可靠数据传输服务的基础。

第九章 域名系统

字符型的名字系统为用户提供了非常直观、便于理解和记忆的方法,非常符合用户的命名习惯。

因特网采用层次型命名机制 ,层次型命名机制将名字空间分成若干子空间,每个机构负责一个子空间的管理。 授权管理机构可以将其管理的子名字空间进一步划分, 授权给下一级机构管理。名字空间呈一种树形结构。

域名由圆点 “.”分开的标号序列构成 。若域名包含从树叶到树根的完整标号串并以圆点结束,则称该域名为完全合格域名FQDN。

常用的三块顶级域名 为通用顶级域名、国家代码顶级域名和反向域的顶级域名。

TCP/IP 的域名系统是一个有效的、可靠的、通用的、分布式的名字 —地址映射系统。区域是 DNS 服务器的管理单元,通常是指一个 DNS 服务器所管理的名字空间 。区域和域是不同的概念,域是一个完整的子树,而区域可以是子树中的任何一部分。

名字服务器的三种主要类型是 主名字服务器、次名字服务器和惟高速缓存名字服务器。主名字服务器拥有一个区域文件的原始版本,次名字服务器从主名字服务器那里获得区域文件的拷贝,次名字服务器通过区域传输同主名字服务器保持同步。

DNS 服务器和客户端属于 TCP/IP 模型的应用层, DNS 既可以使用 UDP,也可以使用 TCP 来进行通信。 DNS 服务器使用 UDP 和 TCP 的 53 号熟知端口。

DNS 服务器能够使用两种类型的解析: 递归解析和反复解析 。

DNS 响应报文中的回答部分、授权部分和附加信息部分由资源记录构成,资源记录存放在名字服务器的数据库中。

顶级域 cn 次级域 e.cn 子域 njust.e.cn 主机 sery.njust.e.cn

TFTP :普通文件传送协议( Trivial File Transfer Protocol )

RIP: 路由信息协议 (Routing Information Protocol)

OSPF 开放最短路径优先 (Open Shortest Path First)协议。

EGP 外部网关协议 (Exterior Gateway Protocol)

BGP 边界网关协议 (Border Gateway Protocol)

DHCP 动态主机配置协议( Dynamic Host Configuration Protocol)

Telnet工作原理 : 远程主机连接服务

FTP 文件传输工作原理 File Transfer Protocol

SMTP 邮件传输模型 Simple Message Transfer Protocol

HTTP 工作原理

❸ 这个网络拓扑图,A路由要eigrp协议 B路由要ospf协议 C路由要rip协议

我回答过一个类似的问题,比较ripv1 ripv2 eigip ospf区别 特点:

1.距离矢量/链路状态路由协议
Rip v1和v2都是距离矢量型,ospf是链路状态型,Eigrp是混合型的。

2.有类别/无类别路由协议
支持有类的:rip v1 无类的:rip v2,ospf,eigrp

3.是否支持VLSM、CIDR
不支持的:rip v1 支持的:rip v2,ospf,eigrp

4.是否支持认证技术
不支持的:rip v1 支持的:rip v2,ospf,eigrp

5.是否定期发送更新
定期:rip v1和v2 不定期:ospf,eigrp

6.采用什么算法来完成网络收敛
Rip v1和v2:Bellman-Ford
Ospf: Dijkstra
Eigrp:DUAL

❹ 对等网络通常采用什么拓扑结构和网络协议

对等网是简单的局域网。
对等网中最常用的是星型拓朴结构和总线型拓朴结构。
网络协议主要是TCP/IP协议。

❺ 什么是网络的拓扑结构、常见的网络拓扑结构有哪些 3 OSI模型分几层,描述各层的作用。

有线网络的拓扑结构大致有以下三种:

总线结构——所有节点均处于一条同轴电缆上,同轴电缆的两端有终端匹配器。例如:早期的3+网和Novell网;

环形结构——所有节点处于由光纤构成的环路上。例如:早期的FDDI网络以及目前的大型城域网;

星形结构——目前最常见的网络拓扑结构,以网络交换机为中心,向四周辐射,并且可以级连多层交换机构建多层结构形成树状结构。

❻ 网络层分为哪几种协议

TCP/IP网络层的核心是IP协议,与IP协议配套使用实现其功能的还有地址解析协议ARP、逆地址解析协议RARP、因特网报文协议ICMP、因特网组管理协议IGMP。

❼ 路由器的IP路由协议有哪些他们主要应用在哪些场合

路由协议分为静态路由协议和动态路由协议。其中静态路由协议又包括默认路由、静态路由和静态浮动路由;动态路由协议包括距离矢量类和链路状态类以及混合型的路由协议。rip是距离矢量类路由协议的代表,而ospf则是链路状态类路由协议的代表,混合型的路由协议则是BGP,is-is现在不是很常用,而eigrp则是思科私有的协议。
路由协议用在路由器或者是三层交换机之间以及路由器、三层交换机和主机之间。根据网络拓扑的不同,选择的路由协议也是不一样的,要根据具体的情况来选择使用哪种路由协议。比如和主机相连的网络边缘,用到静态路由协议的时候就比较多,如果网络比较简单(15台以下),则rip可以满足需求,当然ospf肯定也是可以的,如果网络再大一点,就可能需要ospf或者是bgp了。

❽ 计算机网络应用层和传输层及网络层协议有哪些

应用层协议:

1、远程登录协议(Telnet)

2、文件传输协议(FTP)

3、超文本传输协议(HTTP)

4、域名服务协议(DNS)

5、简单邮件传输协议(SMTP)

6、邮局协议(POP3)

其中,从网络上下载文件时使用的是FTP协议,上网游览网页时使用的是HTTP协议;在网络上访问一台主机时,通常不直接输入IP地址,而是输入域名,用的是DNS服务协议,它会将域名解析为IP地址;通过FoxMail发送电子邮件时,使用SMTP协议,接收电子邮件时就使用POP3协议。

传输层协议:

1、传输控制协议TCP

2、用户数据报协议UDP

TCP协议:面向连接的可靠传输协议。利用TCP进行通信时,首先要通过三步握手,以建立通信双方的连接。TCP提供了数据的确认和数据重传的机制,保证发送的数据一定能到达通信的对方。

UDP协议:是无连接的,不可靠的传输协议。采用UDP进行通信时不用建立连接,可以直接向一个IP地址发送数据,但是不能保证对方是否能收到。

网络层协议:

1、网际协议IP、Internet互联网控制报文协议ICMP、Internet组织管理协议IGMP、地址解析协议ARP。

❾ 简述网络的几种主要拓扑结构,并分析其优缺点

计算机网络的拓扑结构主要有:总线型拓扑、星型拓扑、环型拓扑、树型拓扑和混合型拓扑。

1、星型网路拓扑结构:

优点:控制简单;故障诊断和隔离容易;方便服务;

缺点:电缆长度和安装工作量可观;中央节点负担较重,形成瓶颈;各站点的分布处理能力较低。

2、总线型网络拓扑结构:

优点:总线结构所需电缆数量少;结构简单又是无源工作,有较高的可靠性;易于扩充,增减用户方便。

缺点:传输距离有限,通信范围受到限制;故障诊断和隔离困难;分布式协议不保证信息及时传送,不具实时功能。站点必须是智能的,要有媒体访问控制功能,增加站点软件和硬件的开销。

网络拓扑结构形成过程中

首先假定某平面中布置着许多个节点,同时存在着一个均匀走动的离散的时钟,通过这个时钟将每个节点进入网络的时间记录下来,记录下来的时间都是随机分布的。每一个节点在进入网络时刻的前后所要采取的行为就是接收信息或者消息和发送对已收信息的响应。这些收发信息中设置了优先度和传达范围,它们将对信息的辐射范围产生着最为直接的影响。

以上内容参考:网络-拓扑结构

❿ 网络拓扑有哪几种

Topology Gategories(拓扑分类)
1、总线型拓扑(Bus Topology):连接LAN 使用以太网协议,连接设备HUB
2、环形拓扑(Ring Topology):连接LAN 用令牌环(tokenking)协议,连接设备用令牌环交换机 连成环就是为了传送令牌环信令,拿到令牌环的主机可以传送数据。
3、星形拓扑(StarTopology):连接LAN或者WAN使用以太网协议,连接设备是交换机。

阅读全文

与分析网络拓扑需要利用哪些协议相关的资料

热点内容
军队网络安全守则 浏览:315
无线网络局域怎么设置 浏览:48
wifi网速快但手机网络差 浏览:608
没有网络的车怎么接收信号 浏览:94
电信卡为什么有的网络不好 浏览:793
麦包包网络营销策略 浏览:775
无线网络移动设备 浏览:820
没有网络无线路由器能用吗 浏览:965
请检查光猫网络设置电视 浏览:182
市场营销对比网络营销有哪些优势 浏览:256
网络设置登录用户个数 浏览:624
富途牛牛因网络出现异常 浏览:105
手机信号4格但是没有网络 浏览:261
修网络的上门电话号多少 浏览:940
沪教版中学网络教学哪个网站好 浏览:208
古剑奇谭网络版远程选哪个 浏览:232
无线网络开关电源改造 浏览:584
电脑插u盘连接网络wifi 浏览:164
一直显示无网络连接wifi 浏览:553
淘宝网网络营销现状 浏览:672

友情链接