‘壹’ 目前局域网常见的组网技术的主流技术什么
目前局域网常见的组网技术的主流技术如下:‘贰’ 局域网采用了什么技术
用以传输数据的介质,用以连接各种设备的拓扑结构,用以共享资源的介质控制方法。
局域网一般为一个部门或单位所有,建网、维护以及扩展等较容易,系统灵活性高,覆盖的地理范围较小,只在一个相对独立的局部范围内联,如一座或集中的建筑群内,使用专门铺设的传输介质进行联网,数据传输速率高10Mb/s~10Gb/s。
(2)最新的局域网网络技术有哪些扩展阅读:
注意事项:
一般家庭无线网络都习惯使用DHCP服务来为网络中的客户端动态分配IP,因为这样配置方便简单。这其实同样存在安全隐患,在成员很固定的家庭网络中,建议为网络成员设备分配固定的IP地址,然后再在无线路由器上设定允许接入设备的IP地址列表。
通常每个无线网络都有一个服务区标识符(SSID),无线客户端需要加入该网络的时候都需要有一个相同的SSID才行。一般情况下无线设备在出厂时都会设置一个默认的值,例如TP-LINK公司的设备SSID值就是TP-LINK。设置SSID值就是注意两点:修改默认值和保持修改后的一致性即可。
‘叁’ 局域网的3个关键技术是什么
局域网三个关键技术:网络拓扑、传输介质和介质访问控制方法。
局域网的类型很多,若按网络使用的传输介质分类,可分为有线网和无线网;若按网络拓扑结构分类,可分为总线型、星型、环型、树型、混合型等。
若按传输介质所使用的访问控制方法分类,又可分为以太网、令牌环网、FDDI网和无线局域网等。其中,以太网是当前应用最普遍的局域网技术。
(3)最新的局域网网络技术有哪些扩展阅读:
网络中各节点通过一条首尾相连的通信链路连接起来的一个闭合环形结构网。环形结构网络的结构也比较简单,系统中各工作站地位相等。系统中通信设备和线路比较节省。
在网中信息设有固定方向单向流动,两个工作站节点之间仅有一条通路,系统中无信道选择问题;某个结点的故障将导致物理瘫痪。环网中,由于环路是封闭的,所以不便于扩充,系统响应延时长,且信息传输效率相对较低。
‘肆’ 组建局域网的网络技术有哪些
总线型拓扑:是一种基于多点连接的拓扑结构,所有的设备连接在共同的传输介质上。总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可但是它的缺点是所有的PC不得不共享线缆,优点是不会因为一条线路发生故障而使整个网络瘫痪。
环行拓扑:把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,在环行结构中每台PC都与另两台PC相连每台PC的接口适配器必须接收数据再传往另一台一台出错,整个网络会崩溃因为两台PC之间都有电缆,所以能获得好的性能。
树型拓扑结构:把整个电缆连接成树型,树枝分层每个分至点都有一台计算机,数据依次往下传优点是布局灵活但是故障检测较为复杂,PC环不会影响全局。
星型拓扑结构:在中心放一台中心计算机,每个臂的端点放置一台PC,所有的数据包及报文通过中心计算机来通讯,除了中心机外每台PC仅有一条连接,这种结构需要大量的电缆,星型拓扑可以看成一层的树型结构不需要多层PC的访问权争用。星型拓扑结构在网络布线中较为常见。
菊花链拓扑:类似于环行拓扑结构,但是中间有一对断点
‘伍’ 常用的局域网传输技术有(给出任意三种)
在局域网中常用的传输介质有双绞线、同轴电缆和光导纤维等。
一、双绞线
双绞线是由两条外面被覆塑胶类绝缘材料、内含铜缆线,互相绝缘的双线互相缠绕,绞合成螺旋状的一种电缆线。双绞线可减少发送中信号的衰减、减少串扰及噪声、并改善了对外部电磁干扰的抑制能力。 它是由亚历山大·格拉汉姆·贝尔 发明的。一百多年来,一直用于电话网。
二、同轴电缆
同轴电缆是一种电线及信号传输线,一般是由四层物料造成:最内里是一条导电铜线,线的外面有一层塑胶围拢,绝缘体外面又有一层薄的网状导电体,然后导电体外面是最外层的绝缘物料作为外皮。根据尺寸来分同轴电缆则有不同标准规格,从1/8英寸到9英寸直径不等。
三、光纤维电缆
光导纤维电缆简称光纤电缆或光缆。随着对数据传输速度的要求不断提高,光缆的使用日益普遍。对于计算机网络来说,光缆具有无可比拟的优势。
光缆由纤芯。包层和护套层组成。其中纤芯由玻璃或塑料制成,包层由玻璃制成,护套由塑料制成。
(5)最新的局域网网络技术有哪些扩展阅读:
机理
局域网(LocalAreaNetwork,LAN),又称内网。指覆盖局部区域(如办公室或楼层)的计算机网络。按照网络覆盖的区域(距离)不同,其他的网络类型还包括个人网、城域网、广域网等。
早期的局域网网络技术都是各不同厂家所专有,互不兼容。后来,电机电子工程师学会推动了局域网技术的标准化,由此产生了IEEE 802系列标准。这使得在建设局域网时可以选用不同厂家的设备,并能保证其兼容性。
这一系列标准覆盖了双绞线、同轴电缆、光纤和无线等多种传输介质和组网方式,并包括网络测试和管理的内容。随着新技术的不断出现,这一系列标准仍在不断的更新变化之中。
以太网(IEEE 802.3标准)是最常用的局域网组网方式。以太网使用双绞线作为传输介质。在没有中继的情况下,最远可以覆盖200米的范围。最普及的以太网类型数据传输速率为100Mb/s,更新的标准则支持1000Mb/s和10Gb/s的速率。
其他主要的局域网类型有令牌环和FDDI(光纤分布数字接口,IEEE 802.8)。令牌环网络采用同轴电缆作为传输介质,具有更好的抗干扰性;但是网络结构不能很容易的改变。FDDI采用光纤传输,网络带宽大,适于用作连接多个局域网的骨干网。
近两年来,随着802.11标准的制定,无线局域网的应用大为普及。这一标准采用2.4GHz 和5.8GHz 的频段,数据传输速度最高可以达到300Mbps和866Mbps。
局域网标准定义了传输介质、编码和介质访问等底层(一二层)功能。要使数据通过复杂的网络结构传输到达目的地,还需要具有寻址、路由和流量控制等功能的网络协议的支持。
TCP/IP(传输控制协议/互联网络协议)是最普遍使用的局域网网络协议。它也是互联网所使用的网络协议。其他常用的局域网协议包括,IPX、AppleTalk等。
‘陆’ 网络新技术有哪些
当前使用广泛、最有发展前景的网络新技术:
新一代因特网、IPv6、宽带移动因特网、宽带接入新技术、10吉比特以太网、宽带智能网、网格计算、网络存储、无线自组织网络、无线Mesh网络、无线传感器网络、家庭网络、智能代理、移动代理、全光网络、智能光网络、自动交换光网络、主动网络、下一代网络和软交换等。
‘柒’ 局域网技术类型有哪些
一、局域网的特征:
局域网分布范围小,投资少,配置简单等,具有如下特征:
1.传输速率高:一般为1Mbps--20Mbps,光纤高速网可达100Mbps,1000MbpS
2.支持传输介质种类多。
3.通信处理一般由网卡完成。
4.传输质量好,误码率低。
5.有规则的拓扑结构。
二、局域网的组成:
局域网一般由服务器,用户工作站,传输介质四部分组成。
1.服务器:
运行网络0S,提供硬盘、文件数据及打印机共享等服务功能,是网络控制的核心。
从应用来说较高配置的普通486以上的兼容机都可以用于文件服务器,但从提高网络的整体性能,尤其是从网络的系统稳定性来说,还是选用专用服务器为宜。
目前常见的NOS主要有Netware,Unix和Windows NT三种。
Netware:
流行版本V3.12,V4.11,V5.0,对硬件要求低,应用环境与DOS相似,技术完善,可靠,支持多种工作站和协议,适于局域网操作系统,作为文件服务器,打印服务器性能好。
Unix:一种典型的32位多用户的NOS,主要应用于超级小型机,大型机上,目前常用版本有Unix SUR4.0。支持网络文件系统服务,提供数据等应用,功能强大,不易掌握,命令复杂,由AT&T和SCO公司推出。
Windows NT Server 4.0:
一种面向分布式图形应用程序的完整平台系统,界面与Win95相似,易于安装和管理,且集成了Internet网络管理工具,前景广阔。
服务器分为文件服务器,打印服务器,数据库服务器,在Internet网上,还有Web,FTP,E—mail等服务器。
网络0S朝着能支持多种通信协议,多种网卡和工作站的方向发展。
2.工作站:可以有自己的0S,独立工作;通过运行工作站网络软件,访问Server共享资源,常见有DOS工作站,Windows95工作站。
3.网卡:将工作站式服务器连到网络上,实现资源共享和相互通信,数据转换和电信号匹配。
网卡(NTC)的分类:
(1)速率:10Mbps,100Mbps
(2)总线类型:ISA/PCI
(3)传输介质接口:
单口:BNC(细缆)或RJ一45(双绞线)
4.传输介质:目前常用的传输介质有双绞线,同轴电缆,光纤等。
(1)双绞线(TP):
将一对以上的双绞线封装在一个绝缘外套中,为了降低干扰,每对相互扭绕而成。分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP).局域网中UTP分为3类,4类,5类和超5类四种。
以AMP公司为例:
3类:10Mbps,皮薄,皮上注“cat3’,箱上注“3类”,305米/箱,400元/箱
4类:网络中用的不多
5类:(超5类)100Mbps,10Mbps,皮厚,匝密,皮上注“cat5”,箱上注5类,305米/箱,600—700元/箱(每段100米,接4个中继器,最大500米)
接线顺序:
当线的一端从左到右的芯线顺序依次为:白绿、绿、白橙、蓝、白蓝、橙、白棕、棕时,另一端从左到右的芯线顺序则应当依次为:白橙、橙、白绿、蓝、白蓝、绿、白棕、棕。
当线的一端从左到右的芯线顺序依次为:白橙、橙、白绿、蓝、白蓝、绿、白棕、棕时,另一端从左到右的芯线顺序则应当依次为:白绿、绿、白橙、蓝、白蓝、橙、白棕、棕。
这种网线一般用在集线器(交换机)的级连、服务器与集线器(交换机)的连接、对等网计算机的直接连接等情况下。
STP:内部与UTP相同,外包铝箔,Apple,IBM公司网络产品要求使用STP双绞线,速率高,价格贵。
(2)同轴电缆:
由一根空心的外圆柱导体和一根位于中心轴线的内导线组成,两导体间用绝缘材料隔开。
按直径分为粗缆和细缆。
粗缆:传输距离长,性能高但成本高,使用于大型局域网干线,连接时两端需终接器。
A.粗缆与外部收发器相连。
B.收发器与网卡之间用AUI电缆相连。
C.网卡必须有AUI接口:每段500米,100个用户,4个中继器可达2500米,收发器之间最小2.5米,收发器电缆最大50米。
细缆:传输距离短,相对便宜,用T型头,与BNC网卡相连,两端安50欧终端电阻。
每段185米,4个中继器,最大925米,每段30个用户,T型头之间最小0.5米。
按传输频带分为基带和宽带传输。
基带:数字信号,信号占整个信道,同一时间内能传送一种信号。
宽带:传送的是不同频率的信号。
(3)光纤:
应用光学原理,由光发送机产生光束,将电信号变为光信号,再把光信号导入光纤,在另一端由光接收机接收光纤上传来的光信号,并把它变为电信号,经解码后再处理。分为单模光纤和多模光纤。绝缘保密性好。
单模光纤:由激光作光源,仅有一条光通路,传输距离长,2公里以上。
多模光纤:由二极管发光,低速短距离,2公里以内。
三、局域网的几种工作模式:
1.专用服务器结构:(Server—Baseb)
又称为“工作站/文件服务器”结构,由若干台微机工作站与一台或多台文件服务器通过通信线路连接起来组成工作站存取服务器文件,共享存储设备。
文件服务器自然以共享磁盘文件为主要目的。
对于一般的数据传递来说已经够用了,但是当数据库系统和其它复杂而被不断增加的用户使用的应用系统到来的时候,服务器已经不能承担这样的任务了,因为随着用户的增多,为每个用户服务的程序也增多,每个程序都是独立运行的大文件,给用户感觉极慢,因此产生了客户机/服务器模式。
2.客户机/服务器模式:(client/server)
其中一台或几台较大的计算机集中进行共享数据库的管理和存取,称为服务器,而将其它的应用处理工作分散到网络中其它微机上去做,构成分布式的处理系统,服务器控制管理数据的能力己由文件管理方式上升为数据库管理方式,因此,C/S由的服务器也称为数据库服务器,注重于数据定义及存取安全后备及还原,并发控制及事务管理,执行诸如选择检索和索引排序等数据库管理功能,它有足够的能力做到把通过其处理后用户所需的那一部分数据而不是整个文件通过网络传送到客户机去,减轻了网络的传输负荷。C/S结构是数据库技术的发展和普遍应用与局域网技术发展相结合的结果。
3.对等式网络:(Peer—to—Peer)
在拓扑结构上与专用Server与C/S相同。在对等式网络结构中,没有专用服务器
每一个工作站既可以起客户机作用也可以起服务器作用。
虽然目前的网卡、HUB和交换机都能提供100M甚至更宽的带宽,但一个局域网如果配置不当,尽管配置的设备都非常高档而网络速度仍不能如意;或者经常出现死机、打不开一个小文件或根本无法连通服务器,特别是在一些设备档次参差不齐的网络中这些现象更是时有发生。在局域网中恰当地进行配置,才能使网络性能尽可能地进行优化,最大限度地发挥网络设备、系统的性能。其实局域网也是由一些设备和系统软件通过一种连接方式组成的,所以局域网的优化包括以下几个方面:
设备优化。包括传输介质的优化、服务器的优化、HUB与交换机的优化等。
软件系统的优化。包括服务器软件的优化和工作站系统的优化。
布局的优化。包括布线和网络流量的控制。
设备优化篇
网线为什么会影响局域网的优化?
网线看似非常普通,价格也非常低廉,但它对整个网络性能起着非常重要的作用,网线选择不好、接口制作不恰当都会影响到网络性能的优化。
在配置网络设备过程中,网线(仅以因特网中所使用的双绞线为例)通常是人们最易忽略的,常常有人认为“网线”没有什么可考虑的,只要是双绞线,或只要是5类双绞线即可,其实不然。为了降低信号的干扰,双绞线电缆中的每一线对都是由两根绝缘的铜导线相互扭绕而成,而且同一电缆中的不同线对扭绕圈数也不一样。在绕线方向上标准双绞线电缆中的线对是按逆时针方向进行扭绕。但有些非正规厂商生产的电缆线为了简化制造工艺,电缆中所有线对的扭绕密度相同,线对中两根绝缘导线的扭绕密度不符合技术要求,还有线对的扭绕方向不符合要求。这些不良现象将会引起双绞线的近端串扰(指UTP中两线对之间的信号干扰程度),从而使传输距离达不到要求。双绞线的扭绕度在生产中都有较严格的标准,实际选购时,在有条件的情况下可用一些专业设备进行测量,但一般用户只能凭肉眼来观察。需要说明的是,5类UTP中线对的扭绕度要比3类密,超5类要比5类密,这个密度一般用肉眼很难看出来。
如何选择网线?
在为局域网选购线材时一般来说是选购5类或超5类网线,因为3、4类双绞线一般是使用在10M/bps的因特网中,而5类双绞线能满足现在日趋流行的100M/bps的因特网,超5类双绞线主要用于将来的千兆网上,但现在也普通应用于局域网中,因为价格方面比5类线贵不了多少,现在已有6类线了,一般用于ATM网络中,公司局域网中暂时还不推荐采用。
有些不良厂商经常会用3类、4类线的线材来冒充5类甚至超5类线,因此要注意选择择名牌产品,如AMP、LUCENT(原AT&T)、IBDN(加拿大北方电信)等。
这些线类如属正规厂家生产则都在包装的封皮上有标识,如3类线就用“3 cable”,5类线就用“5 cable”,而超5类线则一般表示为“5e(或5E)cable”,要注意看清楚。另外好的双绞线较粗且较软,所印字符很清晰;冒牌产品为了节约成本,通常较细且一般较硬,在包裹塑料皮上所印字符也较粗糙。
参考资料:http://www.enet.com.cn/eschool/includes/zhuanti/zt/lan/27.shtml
‘捌’ 当今局域网(LAN)的主流技术及其特点是什么
一、传输方式
传输方式涉及无线局域网采用的传输媒体、选择的频段及调制方式。目前无线局域网采用的传输媒体主要有两种,即微波与红外线。采用微波作为传输媒体的无线局域网按调制方式不同,又可分为扩展频谱方式与窄带调制方式。
1、扩展频谱方式
在扩展频谱方式中,数据基带信号的频谱被扩展至几倍~几十倍再被搬移至射频发射出去。这一做法虽然牺牲了频带带宽,却提高了通信系统的抗干扰能力和安全性。由于单位频带内的功率降低,对其它电子设备的干扰也减小了。采用扩展频谱方式的无线局域网一般选择所谓的ISM频段,这里ISM分别取自Instrial、 Scientific及Medical的第一个字母。许多工业、科研和医疗设备辐射的能量集中于该频段。欧美日等国家的无线管理机构分别设置了各自的ISM频段。例如美国的ISM频段由902~928MHz,2.4~2.484GHz, 5.725~5.850GHz三个频段组成。如果发射功率及带外辐射满足美国联邦通信委员会(FCC)的要求,则无需向FCC提出专门的申请即可使用这些ISM频段。
2、窄带调制方式
在窄带调制方式中,数据基带信号的频谱不做任何扩展即被直接搬移到射频发射出去。与扩展频谱方式相比,窄带调制方式占用频带少,频带利用率高。采用窄带调制方式的无线局域网一般选用专用频段,需要经过国家无线电管理部门的许可方可使用。当然,也可选用ISM频段,这样可免去向无线电管理委员会申请。但带来的问题是,当邻近的仪器设备或通信设备也在使用这一频段时,会严重影响通信质量,通信的可靠性无法得到保障。
3、红外线方式
基于红外线的传输技术最近几年有了很大发展。目前广泛使用的家电遥控器几乎都是采用的红外线传输技术。作为无线局域网的传输方式,红外线方式的最大优点是这种传输方式不受无线电干扰,且红外线的使用不受国家无线管理委员会的限制。然而,红外线对非透明物体的透过性极差,这导致传输距离受限制。
二、网络拓扑
无线局域网的拓扑结构可归结为两类:无中心或叫对等式(PEER TO PEER)拓扑和有中心(HUB-BASED)拓扑。
1、无中心拓扑
无中心拓扑的网络要求网中任意两个站点均可直接通信。采用这种拓扑结构的网络一般使用公用广播信道,各站点都可竞争公用信道,而信道接入控制(MAC)协议大多采用CSMA(载波监测多址接入)类型的多址接入协议。这种结构的优点是网络抗毁性好、建网容易、且费用较低。但当网中用户数(站点数)过多时,信道竞争成为限制网络性能的要害。并且为了满足任意两个站点可直接通信,网络中站点布局受环境限制较大。因此这种拓扑结构适用于用户数相对较少的工作群规模。
2、有中心拓扑
在有中心拓扑结构中,要求一个无线站点充当中心站,所有站点对网络的访问均由其控制。这样,当网络业务量增大时网络吞吐性能及网络时延性能的恶化并不据烈。由于每个站点只需在中心站覆盖范围内就可与其它站点通信,故网络中心点布局受环境限制亦小。此外,中心站为接入有线主干网提供了一个逻辑接入点。有中心网络拓扑结构的弱点是抗毁性差,中心站点的故障容易导致整个网络瘫痪,并且中心站点的引入增加了网络成本。
在实际应用中,无线局域网往往与有线主干网络结合起来使用。这时,中心站点充当无线局域网与有线主干网的转接器。
三、网络接口
这涉及无线局域网中站点从哪一层接入网络系统。一般来讲,网络接口可以选择在OSI参考模型的物理层或数据链路层。所谓物理层接口指使用无线信道替代通常的有线信道,而物理层以上各层不变。这样做的最大优点是上层的网络操作系统及相应的驱动程序可不做任何修改。这种接口方式在使用时一般做为有线局域网的集线器和无线转发器以实现有线局域网间互联或扩大有线局域网的覆盖范围。
另一种接口方法是从数据链路层接入网络。这种接口方法并不沿用有线局域网的MAC协议,而采用更适合无线传输环境的MAC协议。在实时,MAC层及其以下层对上层是透明的,配置相应的驱动程序来完成与上层的接口,这样可保证现有的有线局域网操作系统或应用软件可在无线局域网上正常运行。目前,大部分无线局域网厂商都采用数据链路层接口方法。
四、对移动计算网络的支持在无线局域网发展的初期阶段,无线局域网的最大特征是用无线媒体替代线缆,这样可省去布线,网络安装简便。随着笔记本型、膝上型、掌上型电脑个人数字助手(PDA)、以及便携式终端等的普及应用,支持移动计算网络的无线局域网就显得尤为重要。
从移动通信的观点来讲,移动计算网络应提供以下几个功能。小区内的站点可移动,同一小区内的站点可直接或经AP间接通信。不同小区内站点可经过网络接入点AP及主干网进行通信。当某一站点由一个小区移动至另一个小区时,通过越区切换协议或算法,该站点被切换至新的小区。在新的小区中该站点仍和在以前小区时一样保持与外界的连接。小区中的站点可通过主干网上的路由器访问公共网或被公共网访问。
五、无线局域网的应用环境
根据无线局域网的特点,其应用可分为两类:一类作为半移动网络应用,一类作为全移动网络应用。
1.半移动应用
在半移动应用环境下,又可分为室内应用和室外应用。
2.室内应用
在室内应用下,无线局域网作为有线局域网的补充,与有线局域网并存。由于无线局域网的价格比有线局域网高,故在室内环境下,无线局域网在以下应用情况可发挥其无线特长:大型办公室、车间; 超级市场、智能仓库; 临时办公室、会议室; 证券市场等。
3.室外应用
在难于布线的室外环境下,无线局域网可充分发挥其高速率、组网灵活之优点。尤其在公共通信网不发达的状态下,无线局域网可作为区域网(覆盖范围几十公里)使用。下面列出几种应用情况:城市建筑群间通信; 学校校园网络; 工矿企业厂区自动化控制与管理网络; 银行、金融证券城区网络; 城市交通信息网络; 矿山、水利、油田等区域网络; 港口、码头、江河湖坝区网络; 野外勘测、实验等流动网络; 军事、公安流动网络等。
4.全移动网络应用
无线局域网与有线主干网构成移动计算网络。这种网络传输速率高、覆盖面大,是一种可传输多媒体信息的个人通信网络。这是无线局域网的发展方向。
‘玖’ 局域网的种类有哪些
一、以太网
以太网最早是由Xerox(施乐)公司创建的,在1980年由DEC、Intel和Xerox三家公司联合开发为一个标准。以太网是应用最为广泛的局域网,包括标准以太网(10Mbps)、快速以太网(100Mbps)、千兆以太网(1000 Mbps)和10G以太网,它们都符合IEEE802.3系列标准规范。
二、FDDI网
FDDI的英文全称为“Fiber Distributed Data Interface”,中文名为“光纤分布式数据接口”,它是于80年代中期发展起来一项局域网技术,它提供的高速数据通信能力要高于当时的以太网(10Mbps)和令牌网(4或16Mbps)的能力。
FDDI标准由ANSI X3T9.5标准委员会制订,为繁忙网络上的高容量输入输出提供了一种访问方法。FDDI技术同IBM的Tokenring技术相似,并具有LAN和Tokenring所缺乏的管理、控制和可靠性措施,FDDI支持长达2KM的多模光纤。
三、令牌环网
令牌环网是IBM公司于20世纪70年代发展的,现在这种网络比较少见。在老式的令牌环网中,数据传输速度为4Mbps或16Mbps,新型的快速令牌环网速度可达100Mbps。令牌环网的传输方法在物理上采用了星形拓扑结构,但逻辑上仍是环形拓扑结构。
四、ATM网
ATM的英文全称为“asynchronous transfer mode”,中文名为“异步传输模式”,它的开发始于70年代后期。ATM是一种较新型的单元交换技术,同以太网、令牌环网、FDDI网络等使用可变长度包技术不同,ATM使用53字节固定长度的单元进行交换。
五、无线局域网
无线局域网是目前最新,也是最为热门的一种局域网,特别是自Intel推出首款自带无线网络模块的迅驰笔记本处理器以来。无线局域网与传统的局域网主要不同之处就是传输介质不同,传统局域网都是通过有形的传输介质进行连接的,如同轴电缆、双绞线和光纤等,
而无线局域网则是采用空气作为传输介质的。正因为它摆脱了有形传输介质的束缚,所以这种局域网的最大特点就是自由,只要在网络的覆盖范围内,可以在任何一个地方与服务器及其它工作站连接,而不需要重新铺设电缆。
‘拾’ 局域网技术要求主要有哪些
目前,计算机局域网常用的访问控制方式有3种,分别是载波多路访问/冲突检测(csma/cd)、令牌环访问控制法(token
ring)和令牌总线访问控制法(toking
bus)。