导航:首页 > 网络营销 > 哪些不属于神经网络

哪些不属于神经网络

发布时间:2022-06-15 02:37:08

什么叫神经网络

南搞小孩给出基本的概念: 一.一些基本常识和原理 [什么叫神经网络?] 人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 [人工神经网络的工作原理] 人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。 所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。 如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。 南搞小孩一个小程序: 关于一个神经网络模拟程序的下载 人工神经网络实验系统(BP网络) V1.0 Beta 作者:沈琦 http://emuch.net/html/200506/de24132.html 作者关于此程序的说明: 从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值 0.515974。而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果 P *Out1: 0.520051看到了吗? "大脑"识别出了4和11是属于第二类的!怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别! 南搞小孩神经网络研究社区: 人工神经网络论坛 http://www.youngfan.com/forum/index.php http://www.youngfan.com/nn/index.html(旧版,枫舞推荐) 国际神经网络学会(INNS)(英文) http://www.inns.org/ 欧洲神经网络学会(ENNS)(英文) http://www.snn.kun.nl/enns/ 亚太神经网络学会(APNNA)(英文) http://www.cse.cuhk.e.hk/~apnna 日本神经网络学会(JNNS)(日文) http://www.jnns.org 国际电气工程师协会神经网络分会 http://www.ieee-nns.org/ 研学论坛神经网络 http://bbs.matwav.com/post/page?bid=8&sty=1&age=0 人工智能研究者俱乐部 http://www.souwu.com/ 2nsoft人工神经网络中文站 http://211.156.161.210:8888/2nsoft/index.jsp =南搞小孩推荐部分书籍: 人工神经网络技术入门讲稿(PDF) http://www.youngfan.com/nn/ann.pdf 神经网络FAQ(英文) http://www.youngfan.com/nn/FAQ/FAQ.html 数字神经网络系统(电子图书) http://www.youngfan.com/nn/nnbook/director.htm 神经网络导论(英文) http://www.shef.ac.uk/psychology/gurney/notes/contents.html =南搞小孩还找到一份很有参考价值的讲座 <前向网络的敏感性研究> http://www.youngfan.com/nn/mgx.ppt 是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存. 南搞小孩添言:很久之前,枫舞梦想智能机器人从自己手中诞生,SO在学专业的时候也有往这方面发展...考研的时候亦是朝着人工智能的方向发展..但是很不幸的是枫舞考研失败...SO 只好放弃这个美好的愿望,为生活奔波.希望你能够成为一个好的智能计算机工程师..枫舞已经努力的在给你提供条件资源哦~~

Ⅱ 人工神经网络有哪些类型

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:

(1)前向网络 网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

(2)反馈网络 网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。

学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。
研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

Ⅲ 什么是神经网络

神经网络是机器学习的一个流派。这是现今最火的一个学派。我们在第一讲中,已经知道人学习知识是通过神经元的连接,科学家通过模仿人脑机理发明了人工神经元。技术的进一步发展,多层神经元的连接,就形成了神经网络。那么神经网络是怎么搭建起来的呢?神经元是构建神经网络的最基本单位, 这张图就是一个人工神经元的原理图,非常简单,一个神经元由一个加法器和一个门限器组成。加法器有一些输入,代表从其他神经元来的信号,这些信号分别被乘上一个系数后在加法器里相加,如果相加的结果大于某个值,就“激活”这个神经元,接通到下个神经元,否则就不激活。原理就这么简单,做起来也很简单。今天所有的神经网络的基本单元都是这个。输入信号乘上的系数,我们也叫“权重”,就是网络的参数,玩神经网路就是调整权重,让它做你想让它做的事。 一个神经元只能识别一个东西,比如,当你训练给感知器会“认”数字“8”,你给它看任何一个数字,它就会告诉你,这是“8”还不是“8”。为了让机器识别更多更复杂的图像,我们就需要用更多的神经元。人的大脑由 1000 亿个神经元构成,人脑神经元组成了一个很复杂的三维立体结构。

Ⅳ 神经网络具体是什么

神经网络由大量的神经元相互连接而成。每个神经元接受线性组合的输入后,最开始只是简单的线性加权,后来给每个神经元加上了非线性的激活函数,从而进行非线性变换后输出。每两个神经元之间的连接代表加权值,称之为权重(weight)。不同的权重和激活函数,则会导致神经网络不同的输出。 举个手写识别的例子,给定一个未知数字,让神经网络识别是什么数字。此时的神经网络的输入由一组被输入图像的像素所激活的输入神经元所定义。在通过非线性激活函数进行非线性变换后,神经元被激活然后被传递到其他神经元。重复这一过程,直到最后一个输出神经元被激活。从而识别当前数字是什么字。 神经网络的每个神经元如下

基本wx + b的形式,其中 x1、x2表示输入向量 w1、w2为权重,几个输入则意味着有几个权重,即每个输入都被赋予一个权重 b为偏置bias g(z) 为激活函数 a 为输出 如果只是上面这样一说,估计以前没接触过的十有八九又必定迷糊了。事实上,上述简单模型可以追溯到20世纪50/60年代的感知器,可以把感知器理解为一个根据不同因素、以及各个因素的重要性程度而做决策的模型。 举个例子,这周末北京有一草莓音乐节,那去不去呢?决定你是否去有二个因素,这二个因素可以对应二个输入,分别用x1、x2表示。此外,这二个因素对做决策的影响程度不一样,各自的影响程度用权重w1、w2表示。一般来说,音乐节的演唱嘉宾会非常影响你去不去,唱得好的前提下 即便没人陪同都可忍受,但如果唱得不好还不如你上台唱呢。所以,我们可以如下表示: x1:是否有喜欢的演唱嘉宾。x1 = 1 你喜欢这些嘉宾,x1 = 0 你不喜欢这些嘉宾。嘉宾因素的权重w1 = 7 x2:是否有人陪你同去。x2 = 1 有人陪你同去,x2 = 0 没人陪你同去。是否有人陪同的权重w2 = 3。 这样,咱们的决策模型便建立起来了:g(z) = g(w1x1 + w2x2 + b ),g表示激活函数,这里的b可以理解成 为更好达到目标而做调整的偏置项。 一开始为了简单,人们把激活函数定义成一个线性函数,即对于结果做一个线性变化,比如一个简单的线性激活函数是g(z) = z,输出都是输入的线性变换。后来实际应用中发现,线性激活函数太过局限,于是引入了非线性激活函数。

Ⅳ 我想问一下什么是神经网络

神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。

Ⅵ 支持向量机属于神经网络吗

支持向量机不属于神经网络,属于传统的机器学习算法。

Ⅶ SVM属于神经网络范畴吗

不属于,但是SVM和神经网络有许多联系,比如采用sigmoid核的SVM和前馈神经网络就有一些类似,采用RBF核的SVM与RBF神经网络又有一些异同。

Ⅷ 以下哪些不属于卷积神经网络常用的计算过程

一般都是定了一个固定的核的,例如你29*29的图片,就用5*5的核。
这些都是经验。
当然你也可以用大些的。
然后核的具体的值,就是要训练出来的, 核的初始化的话,若果你的输入是0-1之前,那么核值也可以初始化在0-1之间,不会有太大的误差。

Ⅸ 神经网络是什么

神经网络是一种以人脑为模型的机器学习,简单地说就是创造一个人工神经网络,通过一种算法允许计算机通过合并新的数据来学习。
神经网络简单说就是通过一种算法允许计算机通过合并新的数据来学习!

Ⅹ 前馈神经网络、BP神经网络、卷积神经网络的区别与联系

一、计算方法不同

1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。

2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。

3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。

二、用途不同

1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。

2、BP神经网络:

(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;

(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;

(3)分类:把输入向量所定义的合适方式进行分类;

(4)数据压缩:减少输出向量维数以便于传输或存储。

3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。

联系:

BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。

三、作用不同

1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。

2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。

3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。

(10)哪些不属于神经网络扩展阅读

1、BP神经网络优劣势

BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。

①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。

②容易陷入局部极小值。

③网络层数、神经元个数的选择没有相应的理论指导。

④网络推广能力有限。

2、人工神经网络的特点和优越性,主要表现在以下三个方面

①具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。

②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。

③具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

阅读全文

与哪些不属于神经网络相关的资料

热点内容
不使用移动网络它连接哪里 浏览:262
网络暴力属于网络安全范畴 浏览:660
3gwifi信号看网络机顶盒 浏览:369
手机网络上网太慢了怎么解决 浏览:825
网络电视缓冲c盘在哪里 浏览:305
无线网络出现plus 浏览:406
网络升级改造需要哪些东西 浏览:165
哪家的网络wifi比较好用 浏览:921
苹果网络链接在哪里 浏览:855
买来的电脑怎么有网络 浏览:681
网络室外音箱ip设置方法 浏览:777
网络手机如何解锁 浏览:29
2020年网络营销市场产值 浏览:300
苹果游戏蜂窝移动网络怎么下载 浏览:392
手机可以关闭wifi保留网络吗 浏览:798
网络特效工作工资多少 浏览:875
红米网络扫描在哪里 浏览:435
苹果手机怎么切换网络流量 浏览:381
国外的网络管理系统有哪些 浏览:779
网络共享电脑驱动 浏览:673

友情链接