⑴ ptn设备在光纤网络中的作用
为你奉上,请参考!
PTN技术特点
全业务承载能力在ALLIP时代,解决少量TDM业务传送,必须使用电路仿真,PTN就是通过PWE3边缘到边缘的伪线仿真技术和LSP弹性分组管道实现对传统业务的承载。PWE3是一种二层承载技术,对ATM异步转移模式、以太网、低速TDM时分复用等电路业务进行封装适配,通过隧道,在PTN网络中进行透明传送。PWE3类似SDH的低阶通道保护,LSP类似SDH的高阶通道保护。通用分组交叉能力PTN使用统一的通用交换平台,将业务处理和业务交换相互分离,简化了网络,将数据、电路及光层传送等功能融于一体,实现分组交叉和对各种业务的统计复用。QoS能力PTN使用DiffServ区分服务的QoS机制,将数据流分为三大类:EF优先转发、AF保证转发、BE尽力而为。通常将语音等对时延敏感的业务划分为EF类,将对带宽保证严格,而对时延不敏感的业务如信息内网划分到AF类,对时延和带宽无特殊要求的业务如信息外网划分为BE类。PTN对业务提供具有针对性的QoS,满足差异化需求,并对带宽进行按需分配。这种灵活地面向连接管理可以提供比传统电路连接更丰富的管理模式,给业务提供更多的接入选择,带宽的统计复用能力比基于电路的性价比更高。网络安全性PTN提供鉴权认证、防重发攻击、消息完整性验证和私密性机制等安全机制保证业务、网管的安全性。强大的OAM能力PTN还定义了功能强大的OAM机制,使得网络中每一个层面的传送实体,不管属于客户、业务提供商还是运营商,都能执行故障检测、故障定位和性能监测任务,知晓该层收发信息的完整性和通道情况,能够达到和SDH类似的OAM功能,实现对网络故障的迅速诊断和定位,最终提高网络的可用性和业务的服务质量。保护机制PTN提供了完善的分层保护方式,有1+1和1:1的路径保护以及环网保护,1+1和1:1两种路径类型,与SDH网络中的1+1和1:1保护类似。同步技术PTN同步系统是时钟(频率)同步系统和时间同步系统的融合,时钟同步系统包括物理层同步和1588v2报文同步两种方案。IEEE1588v2时钟标准已经建立,包括OC/BC/TC模式,10GE/GE/FE/PPS+TOD时钟接口,满足灵活组网的要求。同步以太网技术可以很好地支持频率同步,通过以太网物理层实现同步,实现方式类似于传统的SDH网络。
PTN在电力网络的应用定位
PTN既采用统计复用和分组交叉,良好地支持二层以太网业务,又有完善的QoS能力,使用先进的分组环实现业务层小于50ms的保护倒换,支持TDM业务传送,满足对电网实时性和安全性的要求,顺应了电网通信网IP化和网络融合的趋势,未来将使用一张统一的传送网来承载不同的业务应用。基于目前县级供电企业的网络特点,国内技术标准已经成熟的PTN分组传送网比增强型以太网(CE)和基于路由器的网络更适合电力通信网的演进发展。PTN技术的组网方式目前PTN技术所能提供的最大网络侧接口速率只有10Gbit/s,环网容量有限,同时,受收敛时间对业务的影响,不适合作为长距离传送,所以,PTN技术不适合电力通信网骨干层,无法满足骨干层当前业务带宽高速增长的需求。PTN的体现在小颗粒业务的灵活接入、汇聚收敛和统计复用上,因此,PTN适合定位于汇聚层和接入层。县级供电企业和110kV变电站组建PTN核心层,10GE核心调度层采用MESH结构,达到光方向连接丰富、业务调度灵活的目的作为网络的高速交换主干,进行数据包的快速转发;供电所、工区组建汇聚层,采用10GE环网,双节点向核心层接入,处理来自接入层的所有数据量,并提供到核心层的上行链路;其他节点,如营业站、巡操站等组建GE速率接入层,同样,原则上双节点接入上一层,接入层提供大量的接入端口,满足各种业务的接入和业务处理策略,如TDM、ATM、GE业务的接入,可采用线性接入。业务规划低速E1业务规划。语音业务在PTN中采用PWE3中的CES电路仿真技术,QoS等级为EF,并设置较小的报文装载时间和抖动缓冲时间。以太网业务规划。以太网业务在PTN中采用E–LINE以太网专线映射进PWE3进行承载,视频监控业务、配网自动化、调度自动化网、会议电视等业务配置成基于端口+VLAN的以太专线,通过端到端隧道透传到汇聚层节点端口,并将PWE3封装还原,实现业务的端到端透传,这类业务比例不要过高。同时,带宽要求不高、时延要求高的软交换业务也采用这种封装方式;信息内外网使用BE类型的QoS等级,在网络拥塞时,流量可以统计复用,保证高优先级业务先行。业务容量规划。对于接入环,一般可按照接入节点的实际上传容量、未来扩容预期指数、800Mbit/s环网带宽容量来规划接入环节点的数量,同时需结合实际拓扑。在业务密集区域一般不超过8个接入节点,业务稀疏区域不超过16个节点以保证业务时延性能和时间传送精度性能。对于汇聚环,在双节点互联的情况下,一般将接入环网流量平均分配在两个汇聚节点上,避免接入环单节点故障时接入环所有业务都发生倒换,以4~5个节点为佳。各接入环区域业务流量就近接入汇聚层节点,在向上层传送时按照各节点分流的方式,应避免过多业务路径(包括保护路径)经过同一中间汇聚节点,避免保护路径和主用路径在中间某一节点相交。核心环的业务容量规划与汇聚环相同。
结束语
在电力信息化业务快速集中和电力通信终端业务IP化已经成熟的大背景下,传统的SDH/MSTP网络已经不适合大规模IP业务的接入,PTN作为面向分组的传送网新技术,其承载IP业务的优势非常明显,非常适合县级供电企业信息网和通信网的融合改造。
⑵ ptn设备是干什么用的
PTN:(英文全称:PacketTransportNetwork)意思为分组传送网络,它的作用有:
1、可以很好地解决移动网络由2G向3G演进背景下,由TDM业务向IP业务的逐步过渡,满足2G/3G基站回传业务的统一接入和传送,是下一代城域传送网的一个重要发展方向。
2、分组传送网在垂直网络协议中位于一层的物理层和三层的IP层之间,能够对分组业务提供高效统计复用传送,网络结构支持分层分域,具有良好的可扩展性;
3、可以提供可靠的网络保护及OAM管理功能,具备完善的QoS功能,兼容传统TDM、ATM、FR等业务的综合传送网技术,支持分组的时间及时钟同步;
4、分组传送网需要具备多种功能来实现上述业务的传送,既有继承的原来SDH传送网的功能需求,也有新的功能需求。
⑶ PTN网络技术的原理及分析
一、PTN网络技术现状
1、技术体制
PTN的最初设想是用一个有连接的、支持类似SDH端到端性能管理的网络,来满足网络从当前向下一代平滑演进的能力,满足IP类业务的高带宽需求,出于这个目的,业界分别从IEEE 802.1系列的二层以太网技术和ITU-T 6.8110系列的三层IP交换技术分别进行改良,形成了PBB-TE(PBT)和MPLS-TP两大主流技术体制。
2、标准情况
PTN的技术标准分别由三大组织共同制订:①IEEE主导以太网技术,重点关注增强以太网如PBB、PBB-TE;②IETF主导开发IP/MPLS协议,重点关注MPLS-TP、PWE3、L2VPN(VPLS);③ITU-T曾主导开发T-MPLS, 目前重点关注MPLS-TP G.8110.1系列, EOT G.8010 系列,集中在框架和需求制订。
MPLS-TP技术的前身是传送—多协议标签交换(T-MPLS),ITU-T自2005年开始开发T-MPLS技术标准,已开发出包括体系架构、设备、保护倒换和操作管理维护(OAM)的一整套标准,从2008年4月开始,ITU-T和IETF正式合作开发MPLS-TP标准,IETF主导协议开发,ITU-T负责传送需求。
截至目前PTN的相关技术标准仍在不断完善中,目前已批准公布的标准有:G.8110.1v1MPLS-TP 层网络架构;G.7712DCN 网络架构和规范;G.8101v1MPLS-TP 术语和定义;G.8113MPLS-TP 层网络OAM 机制(分为传送网、IP/MPLS 两种应用场景);G.8121MPLS-TP 设备功能特性;G.8112MPLS-TP 网络接口;G.8151MPLS-TP 网元管理规范;G.8131MPLS-TP 线性保护;G.8132MPLS-TP 环网保护;G.8121am1 G.8121的增补1;G.8152MPLS-TP 网元信息管理模型。
近年来,我国在基于MPLS-TP的PTN标准研制和产业应用方面已处于国际前列。中国通信标准化协会(CCSA)TC6已积极组织会员开展了PTN的通信行业标准制定工作,截至2012年12月,CCSA(中国通信标准化协会)已发布的标准有:分组传送网PTN总体技术要求;分组传送网PTN设备技术要求;分组传送网PTN测试方法;分组传送网(PTN)互通技术要求。
总的来说,MPLS-TP 的数据平面、管理平面和OAM 方面的需求和框架标准相对成熟稳定,控制平面的草案在研究开发之中,目前MPLS-TP 标准的主要分歧在OAM 和保护方面,已分化为以PTN 和IP/MPLS扩展为代表的两种技术方案,实际上是传送和数据两个产业利益矛盾在国际标准上的.突出体现,最终以OAM的两种方案均列入标准,标准化工作才得以顺利推动。
二、PTN主要关键技术原理及分析
1、网络内保护
网络内保护分为线性保护和环网保护两类。
线性保护是指在工作路径失效后,线性保护会自动切换至保护路径实现业务端到端的保护过程,线性保护按照保护路径的不同的又可分为1+1、1:1、1:N,几种方式优缺点见下表:
PTN技术标准定义了两种环网保护机制:Wrapping 和Steering 。其中Wrapping保护类似于SDH的复用段保护,它只在受故障影响的相邻两个节点执行保护动作,让所有业务通过环网的保护带宽绕开故障点,然后在故障点的另一端返回工作带宽。Steering保护与此相反,所有网元都需要判断它的业务连接是否受到故障点的影响,如果受损,则本地上环的业务就近桥接到保护带宽,业务的目的端也就近倒换到保护带宽上。
线性保护和环网保护是网络内保护的重要方式,根据组网环境的不同选择不同的保护方式,可以有效保障业务通信的可靠性,两者也可以互相补充,一般在环网架构下,首选环网保护,针对特别重要的业务也可以另行配置线性保护,双重保护通过 Hold-off机制协同动作,可以为业务提供更可靠的服务。
2、同步技术
同步包含频率同步和时间同步两个概念。
2.1 同步以太网
PTN网络中一般采用同步以太网技术实现频率同步。
同步以太网技术是基于物理层的同步技术,主要是以太网链路码流恢复时钟的技术。以太网通过物理层芯片从串行数据流中恢复出发送端的时钟,在发送侧将高精度时钟灌入以太网物理层(PHY)芯片,PHY芯片利用高精度的时钟将数据发送出去,接收侧的PHY芯片将时钟恢复出来,然后判断各个接口上报的时钟质量,从其中选择一个精度最高的,将系统时钟与其同步息的同时,也要将时钟质量等级信息上报。同步以太网接口就通过以太网同步消息信道(ESMC)传递专有的携带时钟信息的同步状态信息(SSM)报文,来告知下游设备,从而实现全网同步。
2.2 IEEE 1588 V2技术
随着PTN技术在移动回传等网络中的应用,应用环境提出了更为精确的时间同步要求,例如CDMA2000中要求时钟频率在0.05ppm,时间同步要求为3us,TD-SCDMA中时间同步要求为1.5us.
目前PTN网络中广泛采用IEEE 1588技术实现时间同步,IEEE 1588 V2标准的全称是“网络测量和控制系统的精确时钟同步协议标准”简称为精确定时协议(PTP)。
PTP本质上是主从同步系统,通过采用主从时钟方式,对时间进行信息编码,这样可以记录同步时钟信息的发出时间和接收时间,并且给每一条信息加上时间戳,接收方就可以通过时间记录计算出传输时网络中的延时和主从时钟的偏移量,从而修正从设备时钟,使之与主时钟同步。 虽然PTP支持频率和时间同步,但是由于IEEE 1588采用软件层面的算法,在来回传递报文时,频率同步收敛性不好,而且报文经过复杂的数据网络,抖动和非对称性的不可控导致从IEEE 1588报文中恢复的频率和时间精确度难以保证。 所以IEEE 1588主要面向时间的同步要求,同步以太网主要面向时钟频率的同步要求,一般将二者结合在一起,共同实现PTN全网同步。
2.3三层功能
PTN作为承载网络,支持IP数据业务的接入及承载,需要支持三层功能以满足IP业务的路由及转发,目前普遍采用PTN核心层开启三层功能。接入汇聚层采用PTN 隧道技术来实现,如图1所示。
PTN接入汇聚层设备通过PTN隧道技术,将来自CE的IP数据接入到PTN核心层,PTN核心层节点内部实现隧道的终结,识别IP报文,根据IP报文的目的地址及接口信息,完成L2到L3 VRF的桥接功能,查找VRF路由表或者IP路由表进行报文的路由转发处理(直接转发到实际物理端口或添加VRF标签),PTN核心层支持多个虚拟路由转发实例能力,即可以提供多个VRF,不同VRF之间的路由转发表项逻辑隔离;PTN核心层节点间路由学习可通过静态或动态方式;静态方式是通过网管静态配置路由转发表,动态方式是通过MP-BGP路由协议来动态发布和学习路由(适用于VPN路由方式)。
三、网络技术发展分析
业务需求永远是技术发展的驱动力,PTN的一项重要使命是为了应对即将到来的TD-LTE网络,作为一种新的网络架构,LTE单站网络流量对带宽开销很大,网络层次趋于网状。
1、更高的带宽
随着移动互联网时代的到来,数据业务在整个网络流量中的比重越来越高逐渐占据主导,承载网络需要具备带宽可扩展以及网络可持续性增长。
由于PTN内核基于分组传输,因此选用以太网承载效率最高,但是以太网最高传输速率远远小于光纤的传输容量(80波×40G)3.2T,在有更高传输带宽要求的场合下,PTN和光网络技术融合将是最好的选择即POTN(PTN+OTN),也是未来技术发展最重要的方向之一。
2、更加智能
PTN是基于面向连接的技术,采用以静态配置为主的方式建立连接,网络的连接数与网络节点数的平方成正比。规模越大,连接数量越多,开通和维护连接的工作量也越大,为此需要引入智能控制平面技术。通过引入智能控制平面技术可以极大地增强PTN网络对承载业务的保护并同时增加对网络带宽的使用效率。能以一种极具性价比的方式为运营商提供一个强壮并高可靠的网格化PTN网络。
3、网络技术的融合
技术的发展是在不断融合不断更替,网络技术的发展最终是受业务驱动影响,PTN技术也不例外,PTN发展历程较为短暂,尚存在许多问题,必须吸收其他先进技术不断完善以满足业务需求,未来的PTN将逐步在逐步融合吸收OTN、IP/MPLS等技术特征同时,改造光传送层向未来的分组光传送网(P-OTN)发展,通过引入ASON智能控制平面,为用户提供更智能化、全分组化的服务,以提供更高的带宽和更加灵活的网络应用。
⑷ IP RAN和PTN的区别
一、指代不同
1、IP RAN:以IP/MPLS协议及关键技术为基础,主要面向移动业务承载并兼顾提供二三层通道类业务承载,以省为单位,依托CN2骨干层组成的端到端的业务承载网络。
2、PTN:在IP业务和底层光传输媒质之间设置了一个层面,针对分组业务流量的突发性和统计复用传送的要求而设计。
二、内容不同
1、IP RAN:主要包括接入层、汇聚层和核心层,而核心层又分为城域核心层、省核心层。
2、PTN:支持多种基于分组交换业务的双向点对点连接通道,具有适合各种粗细颗粒业务、端到端的组网能力,提供了更加适合于IP业务特性的“柔性”传输管道;具备丰富的保护方式。
三、特点不同
1、IP RAN:IPRAN具有统计复用的能力,可以对流量进行收敛承载的是高价值业务,需要对业务进行高质量保证,因此一般也需要通过轻载来实现。
2、PTN:以分组业务为核心并支持多业务提供,具有更低的总体使用成本(TCO),同时秉承光传输的传统优势,包括高可用性和可靠性、高效的带宽管理机制和流量工程、便捷的OAM和网管、可扩展、较高的安全性等。
⑸ 请简述PTN网络是如何实现全程电信级保护。
PTN是在以以太网为外部表现形式的业务层和WDM等光传输介质之间设置的一个层面,针对IP业务流量的突发性和统计复用传送的要求而设计,以分组业务为核心并支持多业务提供。
具有更低的总体使用成本(TCO),同时秉承SDH的传统优势,包括高可用性和可靠性、高效的业务调度机制和流量工程、便捷的OAM和网管、易扩展、业务隔离与高安全性等。
(5)ptn网络中的哪些ip禁止重用扩展阅读:
PTN网络的特点
PTN网络是基于包交换、端到端连接、多业务支持、低成本的网络。近年来作为IP over WDM解决方案的PTN和OTN逐渐成为光通信领域的两个技术热点,其应用场景分别针对不同的传送层面。
PTN针对分组业务流量特征优化传送带宽,同时秉承SDH技术的高可靠性、可用性和可管理性优势,适用于FE/GE/10GE以太网接口传输,兼容TDM。
⑹ 请教下华为传输大拿!关于PTN设备的问题
题主你的领域选错了…这不是手机领域可以解答的= =
去网络领域提问吧,或者考虑更专业化的例如知乎/相关设备的技术社区会好些
问题好专业…
按照我的理解
1.ip用完了考虑端口映射(如果可行的话)
2.950/960是一类3900/7900是另一类
3.技术人员才知道怎么配置
4.25535?(不知道)
⑺ PTN的网络地址划分
个人观点,仅供参考:
PTN设备时有路由功能的。
1、用交换机相连场景所有PTN与网管在同一个二层网络,是否一个网段与广播域划分有关系,如果每个设备一个VLAN(广播域)的话,那么就需要网管设备支持多个IP地址分别在不同的广播域,网管通常没法做到。
2、用DCC连接场景下,PTN设备的二层网络是相互隔离的,中间存在三层设备,如果设备在同一网段那么中间连接的三层设备的路由就会出问题,同一个网段的路由分别对应多个出口(每个出口都可能连接到不同的PTN设备)。
⑻ 请教下华为传输界大拿,关于PTN的问题!
PTN设备是用在接入层和汇聚层代替SDH的光传输设备,其作用就是在固网和移动回传中用来传输语音业务和数据业务,最大的特点是通过实现统计复用功能弥补了SDH时隙电路刚性缺陷。
以后的传输网会是PTN+OTN的组网,不再是现在的SHD+DWDM的组网方式。
0 4
⑼ ptn功能传输层有哪些,各有什么特点
PTN分组传送网,一种光传送网络架构和技术在IP业务和底层光传输媒质之间设置了一个层面,它针对分组业务流量的突发性和统计复用传送的要求而设计,以分组业务为核心并支持多业务提供,具有更低的总体使用成本,同时秉承光传输的传统优势,包括高可用性和可靠性、高效的带宽管理机制和流量工程、便捷的OAM和网管、可扩展、较高的安全性等。PTN产品为分组传送而设计,主要特征:灵活的组网调度能力、多业务传送能力、全面的电信级安全性、电信级的OAM能力、具备业务感知和端到端业务开通管理能力、传送单位比特成本低。 PTN解决方案示例为了实现这些目标,同时结合应用中可能出现的需求,需要重点关注TDM业务的支持能力、分组时钟同步、互联互通问题。
⑽ 关于PTN传输问题:
1、传统的基于SDH的MSTP网难以适应数据业务的突发性和灵活性分组业务的迅速增长,给传统基于刚性管道的传送网(VC静态颗粒调度)的业务调度处理、带宽效率、大带宽接口等方面有较多不足/也没有相关的查分服务,不能体现大客户“大”的价值。而传统的面向非连接的IP网络,由于其难以严格保证重要业务的质量和性能,因此不适宜作为电信级承载网络。顺应传送网络分组化的趋势,才推出了PTN。
2、PTN = 增强的分组核心 + SDH Operation 体验。增强的分组核心Packet 技术搭建面向ALL IP的平台,具有更高的网络效率,灵活的调整能力,更好的可扩展性,而SDH 传送体验确保了由everything over SDH的承载网到 everything over IP承载网的平滑转型 .
3、SDH网就是指MSTP传送网,目前还在大量使用的同步数字传送技术,各大运营商还在大量使用,但随着3G甚至LTE的发展到来PTN代替SDH成为主流是一种趋势。
4、接入网和传输网的概念很不好说,你可以问问别人,我感觉接入网偏向于最底层直接面向客户,传输网可以理解成一条链路,使用的设备不一样,领域不一样,原理和技术也不一样。
5、你的这个问题在第一个问题里就解答了。