导航:首页 > 网络营销 > 全光网络技术哪里学习

全光网络技术哪里学习

发布时间:2022-04-21 13:11:03

Ⅰ 光交换技术的市场前景

全球光交换设备市场从2001年的3.07亿美元开始增长,到2006年将达到64.5亿美元。2006年以后,该技术市场在整个电信市场领域将会占主导地位,尤其是在北美、西欧各国及亚洲部分地区。而在网络进展速度缓慢的发展中国家,诸如非洲、中东、拉丁美洲等地区,这项技术的使用可能还会花一段时间。
2001年后光交换技术市场日益成熟,价格也在迅速下降。批量生产以后,这些技术设备的价格有望在2002年下半年更大幅度地下降。如果说2000-2002年是光交换技术的试用期,那么2003年将是这项技术在全球范围内的大规模使用期。许多运营商,比如Global Crossing、法国电信和日本电信等都已经表达了对光交换系统性能的满意,并已经计划在2002-2003年间在他们的网络中广泛采用这项技术。北京市通信公司宣布采用北电网络的OPTera DX光交换机完成了长途光传输系统工程,升级后的网络已于2001年六月投入商业服务。
虽然在低迷的环境下,大多数运营商2006年都宣布了资本与运作支出缩减计划。与2001年相比,2002-2003 年间的缩减率高达30%。但是,受宽带业务需求影响,尽管电子商务呈下降趋势,数据通信仍然持续增长。如果运营商不与此快速增长业务同步,到2002年下半年其网络的最大使用容限将只有40%。因而,运营商恰当地选择技术设备来升级其网络、减少其成本和运作支出,日益显得重要。
业内专家指出,光分组交换技术将成为一项重要的网络交换升级技术得到广泛应用。未来,基于电路交换的电信网必然要升级到以数据为重心以分组为基础的新型通信网,而光分组交换网能以更细的粒度快速分配光信道,支持ATM和IP的光分组交换,是下一代全光网络技术,其应用前景广阔。以2001年以后,世界上许多发达国家进行了光分组交换网的研究,如欧洲RACD计划的 ATMOS 项目和ACTS计划的 KEOPS 项目,美国 DARPA 支持的POND项目和CORD项目,英国EPRC支持的 WASPNET 项目,日本NTT光网络实验室的项目等。而且,光分组交换网的实用化,取决于一些关键技术的进步,如光标记交换、微电子机械系统MEMS 、光器件技术等。光器件技术中固态光交换技术已开始迅速发展,在芯片上实现光交换一直是人们的梦想。利用固态交换技术,交换速度可以在纳秒的范围之内,这样高的速度主要用于光的分组交换。已经有一些公司在这个方向上取得了重大进展,例如Brimcon,Lynx and NTT公司。

Ⅱ 光通信原理与技术有那些

【光通信原理】光纤通信(Fiber-optic communication),也作光纤通讯。光纤通信是以光作为信息载体,以光纤作为传输媒介的通信方式,首先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。光经过调变后便能携带资讯。自1980年代起,光纤通讯系统对于电信工业产生了革命性 ,同时也在数位时代里扮演非常重要的角色。光纤通信传输容量大,保密性好等优点。光纤通信现在已经成为当今最主要的有线通信方式。
光纤通信的原理就是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤经过光的全反射原理传送;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
光通信正是利用了全反射原理,当光的注入角满足一定的条件时,光便能在光纤内形成全反射,从而达到长距离传输的目的。光纤的导光特性基于光射线在纤芯和包层界面上的全反射,使光线限制在纤芯中传输。光纤中有两种光线,即子午光线和斜射光线,子午光线是位于子午面上的光光线,而斜射光线是不经过光纤轴线传输的光线。
【全光网络】未来传输网络的最终目标,是构建全光网络,即在接入网、城域网、骨干网完全实现“光纤传输代替铜线传输”。而目前的一切研发进展,都是“逼近”这个目标的过程。
骨干网是对速度、距离和容量要求最高的一部分网络,将ASON技术应用于骨干网,是实现光网络智能化的重要一步,其基本思想是在过去的光传输网络上引入智能控制平面,从而实现对资源的按需分配。DWDM也将在骨干网中一显身手,未来有可能完全取代SDH,从而实现IPOVERDWDM。
城域网将会成为运营商提供带宽和业务的瓶颈,同时,城域网也将成为最大的市场机遇。目前基于SDH的MSTP技术成熟、兼容性好,特别是采用了RPR、GFP、LCAS和MPLS等新标准之后,已经可以灵活有效地支持各种数据业务。
对接入网来说,FTTH(光纤到户)是一个长远的理想解决方案。FTTx的演进路线将是逐渐将光纤向用户推近的过程,即从FTTN(光纤到小区)到FTTC(光纤到路边)和FTTB(光纤到公寓小楼)乃至最后到FTTP(光纤到驻地)。当然这将是一个很长的过渡时期,在这个过程中,光纤接入方式还将与ADSL/ADSL2+并存。
基于上述全光网络构架有很多核心技术,它们将引领光通信的未来发展。ASON、FTTH、DWM、RPR这四项目前是光通信行业最重要的技术。
【光通信技术】
1、ASON
无论从国内研发进展、试商用情况,还是从国外的发展经验来看,国内运营商在传送网中大规模引入ASON技术将是必然的趋势。ASON(,智能光网络)是一种光传送网技术。目前的产品和市场状况表明,ASON技术已经达到可商用的成熟程度,随着3G、NGN的大规模部署,业务需求将进一步带动传送网技术的发展,预计2007年ASON将得到更加广泛的商用。
2006年各大主要设备提供商华为、中兴、烽火、Lucent等已经推出了其可商用的ASON产品。中国电信、中国网通、中国移动、中国联通和中国铁通陆续开展了ASON的应用测试和小规模商用。
ASON在国外成功商用的经验表明,ASON将在骨干传送网发挥不可替代的作用。例如,AT&T的140个节点覆盖美国的骨干传送网;BT组建21CN网,目前已建40个ASON节点;Vodafone的131个节点覆盖英国的ASON骨干传送网,等等。
然而,目前ASON在路由、自动发现、ENNI接口等几方面的标准化工作还不完善,这成为制约ASON技术发展和商用的重要因素。未来我国将参与更多的ASON标准化工作,同时,ASON的标准化,尤其是其中ENNI的标准化,将在近年内取得突破性进展。
2、FTTH
FTTH(FiberToTheHome,光纤到户)是下一代宽带接入的最终目标。目前,实现FTTH的技术中,EPON将成为未来我国的主流技术,而GPON最具发展潜力。
EPON采用Ethernet封装方式,所以非常适于承载IP业务,符合IP网络迅猛发展的趋势。目前,国家已经将EPON作为“863”计划重大项目,并在商业化运作中取得了主动权。
GPON比EPON更注重对多业务的支持能力,因此更适合未来融合网络和融合业务的发展。但是它目前还不够成熟并且价格偏高,还无法在我国大规模推广。
我国的FTTH还处于市场启动阶段,离大规模的商业部署还有一段距离。在未来的产业化发展中,运营商对本地网“最后一公里”的垄断是制约FTTH发展的重要因素,采取“用户驻地网运营商与房地产开发商合作实施”的形式,更有利于FTTH产业的健康发展。从日本、美国、欧洲和韩国等国家的FTTH发展经验来看,FTTH的核心推动力在于网络所提供的丰富内容,而政府对应用和内容的监控和管理政策也会制约FTTH的发展。
3、WDM
WDM突破了传统SDH网络容量的极限,将成为未来光网络的核心传输技术。 按照通道间隔的不同,WDM(,波分复用)可以分为DWDM(密集波分复用)和CWDM(稀疏波分复用)这两种技术。DWDM是当今光纤传输领域的首选技术,但CWDM也有其用武之地。
2006年,烽火、华为等设备厂商都推出了自己的DWDM系统,国内运营商也开展了相关的测试和小规模商用。未来DWDM将在对传输速率要求苛刻的网络中发挥不可替代的作用,如利用DWDM来建设骨干网等。
相对于DWDM,CWDM具有成本低、功耗低、尺寸小、对光纤要求低等优点。未来几年,电信运营商将会严格控制网络建设成本,这时CWDM技术就有了自己的生存空间,它适合快速、低成本多业务网络建设,如应用于城域和本地接入网、中小城市的城域核心网等。
4、RPR
弹性分组环(ResilientPacketRing,RPR)将成为未来重要的光城域网技术。近年来许多国内外传输设备厂商都开发了内嵌RPR功能的MSTP设备,RPR技术得到了大量芯片制造商、设备制造商和运营商的支持和参与。
在标准化方面,IEEE802.17的RPR标准已经被整个业界认可,而国内的相关标准化工作还在进行中。未来RPR将主要应用于城域网骨干和接入方面,同时也可以在分散的政务网、企业网和校园网中应用,还可应用于IDC和ISP之中。

Ⅲ 光传输的发展趋势

商用系统:
光传输
–SDH系统155Mbps、622Mbps、2.5Gbps、10Gbps。 –DWDM系统32x10Gbps、 40x10Gbps
实验系统:DWDM
– NEC 10.9Tbps(273x40Gbps)
– Alcatel 10.2Tbps
大容量、宽带化以及全光网络技术的应用成为未来光通信技术的发展方向,现在世界上大约有85%的通信业务经光纤传输。
– 光传送网络技术、光因特网技术、宽带综合光接入技术是光通信发展的动力。
– 光交换是AON的关键节点技术
光通信器件的大致情况
光通信器件分有源器件和无源器件。
有源器件包括激光器及组件、光电检测器及组件和光放大器等。无源器件包括单芯和多芯光纤连接器、光衰减器、光耦合器、介质膜滤光片及光纤光栅组成的滤光器、波分复用器和光开关等系列器件。光通信的发展需要更高速率、更大容量的器件,同时成本要低,这就依赖光电集成(OEIC)和光子集成(PIC)。

Ⅳ 光纤通信技术的技术分类

光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及S波段窗口。其中特别重要的是无水峰的全波窗口。这些窗口开发成功的巨大意义就在于从1280nm到1625nm的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。这一技术成果将带来巨大的经济效益。另一方面是特种光纤的开发及其产业化,这是一个相当活跃的领域。
特种光纤具体有以下几种:
1. 有源光纤
这类光纤主要是指掺有稀土离子的光纤。如掺铒(Er3+)、掺钕(Nb3+)、掺镨(Pr3+)、掺镱(Yb3+)、掺铥(Tm3+)等,以此构成激光活性物质。这是制造光纤光放大器的核心物质。不同掺杂的光纤放大器应用于不同的工作波段,如掺饵光纤放大器(EDFA)应用于1550nm附近(C、L波段);掺镨光纤放大器(PDFA)主要应用于1310nm波段;掺铥光纤放大器(TDFA)主要应用于S波段等。这些掺杂光纤放大器与喇曼(Raman)光纤放大器一起给光纤通信技术带来了革命性的变化。它的显着作用是:直接放大光信号,延长传输距离;在光纤通信网和有线电视网(CATV网)中作分配损耗补偿;此外,在波分复用(WDM)系统中及光孤子通信系统中是不可缺少的关键元器件。正因为有了光纤放大器,才能实现无中继器的百万公里的光孤子传输。也正是有了光纤放大器,不仅能使WDM传输的距离大幅度延长,而且也使得传输的性能最佳化。
2.色散补偿光纤(Dispersion Compensation Fiber,DCF)
常规G.652光纤在1550nm波长附近的色散为17ps/nm×km。当速率超过2.5Gb/s时,随着传输距离的增加,会导致误码。若在CATV系统中使用,会使信号失真。其主要原因是正色散值的积累引起色散加剧,从而使传输特性变坏。为了克服这一问题,必须采用色散值为负的光纤,即将反色散光纤串接入系统中以抵消正色散值,从而控制整个系统的色散大小。这里的反色散光纤就是所谓的色散补偿光纤。在1550nm处,反色散光纤的色散值通常在-50~200ps/nm×km。为了得到如此高的负色散值,必须将其芯径做得很小,相对折射率差做得很大,而这种作法往往又会导致光纤的衰耗增加(0.5~1dB/km)。色散补偿光纤是利用基模波导色散来获得高的负色散值,通常将其色散与衰减之比称作质量因数,质量因数当然越大越好。为了能在整个波段均匀补偿常规单模光纤的色散,又开发出一种既补偿色散又能补偿色散斜率的双补偿光纤(DDCF)。该光纤的特点是色散斜率之比(RDE)与常规光纤相同,但符号相反,所以更适合在整个波形内的均衡补偿。
3. 光纤光栅(Fiber Grating)
光纤光栅是利用光纤材料的光敏性在紫外光的照射(通常称为紫外光写入)下,于光纤芯部产生周期性的折射率变化(即光栅)而制成的。使用的是掺锗光纤,在相位掩膜板的掩蔽下,用紫外光照射(在载氢气氛中),使纤芯的折射率产生周期性的变化,然后经退火处理后可长期保存。相位掩膜板实际上为一块特殊设计的光栅,其正负一级衍射光相交形成干涉条纹,这样就在纤芯逐渐产生成光栅。光栅周期模板周期的二分之一。众所周知,光栅本身是一种选频器件,利用光纤光栅可以制作成许多重要的光无源器件及光有源器件。例如:色散补偿器、增益均衡器、光分插复用器、光滤波器、光波复用器、光模或转换器、光脉冲压缩器、光纤传感器以及光纤激光器等。
4. 多芯单模光纤(Multi-Coremono-Mode Fiber,MCF)
多芯光纤是一个共用外包层、内含有多根纤芯、而每根纤芯又有自己的内包层的单模光纤。这种光纤的明显优势是成本较低,生产成本较普通的光纤约低50%。此外,这种光纤可以提高成缆的集成密度,同时也可降低施工成本。以上是光纤技术在近几年里所取得的主要成就。至于光缆方面的成就,我们认为主要表现在带状光缆的开发成功及批量化生产方面。这种光缆是光纤接入网及局域网中必备的一种光缆。光缆的含纤数量达千根以上,有力地保证了接入网的建设。 光有源器件的研究与开发本来是一个最为活跃的领域,但由于前几年已取得辉煌的成果,所以当今的活动空间已大大缩小。超晶格结构材料与量子阱器件,已完全成熟,而且可以大批量生产,已完全商品化,如多量子阱激光器(MQW-LD,MQW-DFBLD)。
除此之外,已在下列几方面取得重大成就。
1. 集成器件
这里主要指光电集成(OEIC)已开始商品化,如分布反馈激光器(DFB-LD)与电吸收调制器(EAMD)的集成,即DFB-EA,已开始商品化;其它发射器件的集成,如DFB-LD、MQW-LD分别与MESFET或HBT或HEMT的集成;接收器件的集成主要是PIN、金属、半导体、金属探测器分别与MESFET或HBT或HEMT的前置放大电路的集成。虽然这些集成都已获得成功,但还没有商品化。
2. 垂直腔面发射激光器(VCSEL)
由于便于集成和高密度应用,垂直腔面发射激光器受到广泛重视。这种结构的器件已在短波长(ALGaAs/GaAs)方面取得巨大的成功,并开始商品化;在长波长(InGaAsF/InP)方面的研制工作早已开始进行,也有少量商品。可以断言,垂直腔面发射激光器将在接入网、局域网中发挥重大作用。
3. 窄带响应可调谐集成光子探测器
由于DWDM光网络系统信道间隔越来越小,甚至到0.1nm。为此,探测器的响应谱半宽也应基本上达到这个要求。恰好窄带探测器有陡锐的响应谱特性,能够满足这一要求。集F-P腔滤波器和光吸收有源层于一体的共振腔增强(RCE)型探测器能提供一个重要的全面解决方案。
4. 基于硅基的异质材料的多量子阱器件与集成(SiGe/Si MQW)
这方面的研究是一大热点。众所周知,硅(Si)、锗(Ge)是间接带隙材料,发光效率很低,不适合作光电子器件,但是Si材料的半导体工艺非常成熟。于是人们设想,利用能带剪裁工程使物质改性,以达到在硅基基础上制作光电子器件及其集成(主要是实现光电集成,即OEIC)的目的,这方面已取得巨大成就。在理论上有众多的创新,在技术上有重大的突破,器件水平日趋完善。 光放大器的开发成功及其产业化是光纤通信技术中的一个非常重要的成果,它大大地促进了光复用技术、光孤子通信以及全光网络的发展。顾名思义,光放大器就是放大光信号。在此之前,传送信号的放大都是要实现光电变换及电光变换,即O/E/O变换。有了光放大器后就可直接实现光信号放大。光放大器主要有3种:光纤放大器、拉曼放大器以及半导体光放大器。光纤放大器就是在光纤中掺杂稀土离子(如铒、镨、铥等)作为激光活性物质。每一种掺杂剂的增益带宽是不同的。掺铒光纤放大器的增益带较宽,覆盖S、C、L频带; 掺铥光纤放大器的增益带是S波段;掺镨光纤放大器的增益带在1310nm附近。而喇曼光放大器则是利用喇曼散射效应制作成的光放大器,即大功率的激光注入光纤后,会发生非线性效应?喇曼散射。在不断发生散射的过程中,把能量转交给信号光,从而使信号光得到放大。由此不难理解,喇曼放大是一个分布式的放大过程,即沿整个线路逐渐放大的。其工作带宽可以说是很宽的,几乎不受限制。这种光放大器已开始商品化了,不过相当昂贵。半导体光放大器(S0A)一般是指行波光放大器,工作原理与半导体激光器相类似。其工作带宽是很宽的。但增益幅度稍小一些,制造难度较大。这种光放大器虽然已实用了,但产量很小。
到此,我们系统、全面地评论了光纤通信技术的重大进展,至于光纤通信技术的发展方向,可以概括为两个方面: 一是超大容量、超长距离的传输与交换技术; 二是全光网络技术。 随着通信网络逐渐向全光平台发展,网络的优化、路由、保护和自愈功能在光通信领域中越来越重要。采用光交换技术可以克服电子交换的容量瓶颈问题,实现网络的高速率和协议透明性,提高网络的重构灵活性和生存性,大量节省建网和网络升级成本。光交换技术可分成光的电路交换(OCS)和光分组交换(OPS)两种主要类型。光的电路交换类似于现存的电路交换技术,采用OXC、OADM等光器件设置光通路,中间节点不需要使用光缓存,对OCS的研究已经较为成熟。根据交换对象的不同OCS又可以分为:⑴ 光时分交换技术,时分复用是通信网中普遍采用的一种复用方式,时分光交换就是在时间轴上将复用的光信号的时间位置t1转换成另一个时间位置t2 ⑵ 光波分交换技术,是指光信号在网络节点中不经过光/电转换,直接将所携带的信息从一个波长转移到另一个波长上。⑶ 光空分交换技术,即根据需要在两个或多个点之间建立物理通道,这个通道可以是光波导也可以是自由空间的波束,信息交换通过改变传输路径来完成⑷ 光码分交换技术,光码分复用(OCDMA)是一种扩频通信技术,不同户的信号用互成正交的不同码序列填充,接受时只要用与发送方相同的法序列进行相关接受,即可恢复原用户信息。光码分交换的原理就是将某个正交码上的光信号交换到另一个正交码上,实现不同码子之间的交换。

Ⅳ 华三为什么不做全光网

据我所知,现在市面上做全光解决方案主流厂商华为、华三、烽火,还有锐捷。前三家是以POL协议为主的,捆绑着运营商,对于学校来说,成本较高,另外因为分光器地原因导致实际上带宽入室只有300M左右,不太满足现在教学地带宽需求,另外POL地一大弊端是不能东西走向,这就特别不适合局域网场景,类似A/B班同时教学比较麻烦,会有延时。
锐捷得呢比较另辟蹊径,采用的是以太网+光纤,一个是能做到1:1万兆带宽入室,不打折,另外它保留了以太网的架构,对于学校运维人员来说不用学习新协议(这个优势没得说),也不用换老设备,用SDN做全网管理就好了。它重点的市场主要在教育,也是因为教育是锐捷的大本营,已经有一些案例了。可以了解下一网万联全光纤网络校园解决方案
拓展:
"全光网"英文名称为:allopticalnetwork;all-opticalnetwork;all-opticalnetworks。随着Internet业务和多媒体应用的快速发展,网络的业务量正在以指数级的速度迅速膨胀,这就要求网络必须具有高比特率数据传输能力和大吞吐量的交叉能力。光纤通信技术出现以后,其近30THz的巨大潜在带宽容量给通信领域带来了蓬勃发展的机遇,特别是在提出信息高速公路以来,光技术开始渗透于整个通信网,光纤通信有向全光网推进的趋势。所谓全光网络,指的是网络传输和交换过程全部通过光纤实现,因为不必在其中实现电光和光电转换,因此能大大提高网速。数据显示,铜线接入带宽只有512Kbps,但全光网宽带的带宽可以达到50到100Mbps。

Ⅵ 计算机系网络工程专业考研需要考哪些内容

武汉大学计算机技术(专业学位)专业2015年考研招生简章招生目录

专业代码:085211

研究方向

01计算机图形图像处理
02知识工程
03生物信息
04自然语言处理技术
05仿真与决策技术
06计算机辅助技术
07多媒体技术
08协同计算技术
09空间信息技术
10物联网技术
11无线网络技术
12全光网络技术
13网络编码技术
14网络工程
15可信数据管理
16信息安全应用技术
17影视设计与技术

考试科目
①101思想政治理论
②204英语二
③302数学二
④933计算机基础
复试科目、复试参考书
复试科目:上机测试
同等学力加试科目:
①离散数学
②数据库原理

Ⅶ 光学工程包括哪些课程主要应用在哪些方面

网上资料,供参考

一、培养目标

1.较好地掌握马克思主义基本理论,树立爱国主义和集体主义思想,遵纪守法,具有较强的事业心和责任感,具有良好的道德品质和学术修养,身心健康。

2.在本学科内掌握坚实宽广的基础理论和系统深入的专门知识,具有良好的科学素养和独立从事科学研究工作的能力,在科学或专门技术上做出创造性的成果。

3.能熟练地运用一门外国语。

二、学科、专业及研究方向简介

光学工程是一门历史悠久而又年轻的学科。它的理论基础——光学,作为物理学的主干学科经历了漫长而曲折的发展道路,铸造了几何光学、波动光学、量子光学及非线性光学,揭示了光的产生和传播的规律以及与物质相互作用的关系。随着激光技术和光电子技术的崛起,光学工程已经发展为以光学为主,并与信息科学、能源科学、材料科学、生命科学、空间科学、精密机械与制造、计算机科学及微电子技术等学科紧密交叉和相互渗透的学科。它包含了许多重要的新兴学科分支,如激光技术、光通讯、光存储与记录、光学信息处理、光电显示、全息和三维成像、薄膜和集成光学、光电子和光子技术、激光材料处理和加工、弱光与红外成像技术、光电测量、光纤光学、现代光学和光电子仪器及器件、光学遥感技术以及综合光学工程技术等。这些分支不仅使光学工程产生质上的跃变,而且推动建立了一个规模迅速扩大的现代光学产业和光电子产业。

本专业1998年获得“光学工程”硕士点授予权,2005年获得博士点授予权。本学科专业依托《发光与光信息技术》和《全光网络与现代通讯网》两个教育部重点实验室,在徐叙瑢院士和简水生院士的指导下,形成如下研究方向:

1.平板显示技术与器件

平板显示是采用平板显示器件辅以逻辑电路来实现显示的。由于其电压低、重量轻、体积小、显示质量优异,无论在民用领域还是在军用领域都将获得广泛应用。该方向主要从事发光与信息显示前沿科学问题。既包括发光显示材料(有机材料、无机材料及其相关复合等材料),又包括诸多(场发射、等离子体、发光二极管、液晶及电致发光等)显示器件等方面的研究。

2.全光信号处理及网络应用技术

主要研究光通信网络、光纤传感及生物医学光子学领域的前沿课题——光分组交换全光网的网络技术及支撑光分组交换的全光信号处理技术,如光弹性分组环光纤通信网、全光缓存技术、光开关、光逻辑、光信头识别、分布式光纤传感系统、光纤性能在线检测、光纤技术在生物医学光子学中的应用等。

3.光电检测技术

主要研究先进制造技术、轨道交通等工程领域内各种几何及物理量的光电检测机理、方法、技术与实现途径,并采用各种信息与信号处理方法与技术来获得各种评价参数,最终实现对重要零部件与设备关键参数及缺陷的实时检测与故障诊断,确保其运行安全。

4.生物分子光探测技术

采用先进光电子学技术,以朊病毒、HIV等重要病毒为模型,开展病毒与细胞的相互作用机制、免疫保护机制研究,开展生物大分子的探测、分子相互作用识别等先进技术研究,发展快速检测技术。开展新型病毒载体、真核表达载体技术的研究。开发新型疫苗和药物。

5.光电子材料与器件

太阳能电池技术,主要研究先进的晶硅太阳电池工艺,以及单晶硅/非晶硅异质结(HIT)太阳电池技术、非晶硅薄膜太阳电池技术、有机薄膜太阳电池技术、染料敏化太阳电池技术、宽带吸收增强太阳电池技术等。

研究稀土发光、半导体发光、白光LED照明、无汞荧光灯、光学薄膜基本设计、光存储、光电探测等材料及光电器件,研究这些材料和器件的新技术和新工艺以及它们的应用。

三、培养方式及学习年限

1.培养方式

博士生的培养方式采取导师负责制,也可实行以导师为主的指导小组制。课程学习和科学研究可以相互交叉,课程学习采用学分制,在申请答辩之前应修满所要求的学分。

2.学习年限

全日制博士研究生在校学习年限一般为三至五年;硕博连读的研究生一般为四至六年。非全日制博士研究生在校学习年限一般不超过六年。

四、课程设置与学分

实行学分制,学分最低应修为12学分。课程设置分学位课和非学位课两大类,学位课分公共课、基础课、专业基础课、专业课,非学位课分必修环节和任选课。博士研究生在校期间,应修最低学分为12学分,其中学位课7学分,非学位课5学分。课程学习实行学分制,博士研究生应根据科学研究和学位论文的需要,在导师指导下选择适合的课程学习时间,在博士论文答辩前完成课程学分。

Ⅷ 光网络的技术特点是什么

光纤通信技术已渗透到了电信网的接人网、本地网(接人中继网)和长途干线网(骨干网)之中。由于价格和用户所需带宽的问题.短时间内完全实现全部光纤接人到户还不现实.但是长远来看,实现全部光纤入户是社会发展的必然性,而同时对光网络工程师的人才需求也将越来越大。 在这些典型的网络应用中,光纤只用来代替各类电缆,主要用做传输媒质连接业务节点,即实现了节点之间链路传输的光信号格式化,而节点对信号的处理、队列和交换等还是采用电子技术.这类网络称为第一代光网络,即光电混合网.典型的第一代光网络有SONET(同步光网络)和SDH(同步数字体系).还有各类企业网如光纤分布数据接口(FDDI)等. 当数据速率越来越高时.采用电子技术处理交换节点的数据速率是相当困难的。考虑到节点处理的数据不仅有到达自身的,还有通过该节点到达其他节点的,如果到达其他节 点的数据能在光域选路,则电子技术处理的数据速率就下降了,其负担就小得多了,这使得第二代光网络即全光网络诞生了。 第二代光网络以在光域完成节点数据的选路与交换为标志.实现了节点的部分光化。第二代光网络中的代表技术包括波分复用(WDM)、光时分复用(OTDM)和光码分复(OCDMA)等。

Ⅸ 介绍一下全光再生技术在国内外的研究现状

20世纪末出现的因特网标志着人类社会进入到一个崭新的时代--信息化时代,在这个时代人们对信息的需求急剧增加,信息量象原子裂变一样呈爆炸式增长,传统的通信技术已经很难满足不断增长的通信容量的要求。于是一些新兴的通信技术就应运而生了,例如CDPD技术、CDMA2000技术、GPRS技术以及光通信技术,在这些通信技术中,光通信技术凭借其巨大潜在带宽容量的特点,成为支撑通信业务量增长最重要的通信技术之一。但在目前的光纤通信系统中,存在着较多的光-电、电-光变换过程,而这些转换过程存在着时钟偏移、严重串话、高功耗等缺点,很容易产生通信中的“信息瓶颈”现象。为了解决这一问题,充分发挥光纤通信的极宽频带、抗电磁干扰、保密性强、传输损耗低等优点,于是全光通信技术就“隆重登场”了。

一、什么是全光通信
首先要声明一点的是,全光通信技术也是一种光纤通信技术,该技术是针对普通光纤系统中存在着较多的电子转换设备而进行改进的技术,该技术确保用户与用户之间的信号传输与交换全部采用光波技术,即数据从源节点到目的节点的传输过程都在光域内进行,而其在各网络节点的交换则采用全光网络交换技术。全光通信的实现,可以分为两个阶段来完成:首先是在点-点光纤传输系统中,整条线路中间不需要作任何光/电和电/光的转换,这样,网内光信号的流动就没有光电转换的障碍,信息传递过程无需面对电子器件速率难以提高的困难。这样的长距离传输完全靠光波沿光纤传播,称为发端与收端间点-点全光传输。那么整个光纤通信网任一用户地点应该可以设法做到与任一其它用户地点实现全光传输,这样就组成全光传送网;其次在完成上述用户间全程光传送网后,有不少的信号处理、储存、交换,以及多路复用/分接、进网/出网等功能都要由电子技术转变成光子技术完成,整个通信网将由光实现传输以外的许多重要功能,完成端到端的光传输、交换和处理等,这就形成了全光通信发展的第二阶段,将是更完整的全光通信。
全光通信网由全光内部部分和通用网络控制部分组成,内部全光网是透明的,能容纳多种业务格式,网络节点可以通过选择合适的波长进行透明的发送或从别的节点处接收。通过对波长路由的光交叉设备进行适当配置,透明光传输可以扩展到更大的距离。外部控制部分可实现网络的重构,使得波长和容量在整个网络内动态分配以满足通信量、业务和性能需求的变化,并提供一个生存性好、容错能力强的网络。
二、全光通信的实现技术
实现透明的、具有高度生存性的全光通信网是宽带通信网未来发展目标,而要实现这样的目标需要有先进的技术来支撑,下面就是实现准确、有效、可靠的全光通信应采用的技术:
1、光层开销处理技术:该技术是用信道开销等额外比特数据从外面包裹Och客户信号的一种数字包封技术,它能在光层具有管理光信道(Och)的OAM(操作、管理、维护)信息的能力和执行光信道性能监测的能力,该技术同时为光网络提供所有SONET/SDH网所具有的强大管理功能和高可靠性保证。
2、光监控技术:在全光通信系统中,必须对光放大器等器件进行监视和管理。一般技术采用额外波长监视技术,即在系统中再分插一个额外的信道传送监控信息。而光监控技术采用1510nm波长,并且对此监控信道提供ECC的保护路由,当光缆出现故障时,可继续通过数据通信网(DCN)传输监控信息。
3、信息再生技术:大家知道,信息在光纤通道中传输时,如果光纤损耗大和色散严重将会导致最后的通信质量很差,损耗导致光信号的幅度随传输距离按指数规律衰减,这可以通过全光放大器来提高光信号功率。色散会导致光脉冲发生展宽,发生码间干扰,使系统的误码率增大,严重影响了通信质量。因此,必须采取措施对光信号进行再生。目前,对光信号的再生都是利用光电中继器,即光信号首先由光电二极管转变为电信号,经电路整形放大后,再重新驱动一个光源,从而实现光信号的再生。这种光电中继器具有装置复杂、体积大、耗能多的缺点。而最近,出现了全光信息再生技术,即在光纤链路上每隔几个放大器的距离接入一个光调制器和滤波器,从链路传输的光信号中提取同步时钟信号输入到光调制器中,对光信号进行周期性同步调制,使光脉冲变窄、频谱展宽、频率漂移和系统噪声降低,光脉冲位置得到校准和重新定时。全光信息再生技术不仅能从根本上消除色散等不利因素的影响,而且克服了光电中继器的缺点,成为全光信息处理的基础技术之一。
4、动态路由和波长分配技术:给定一个网络的物理拓扑和一套需要在网络上建立的端到端光信道,而为每一个带宽请求决定路由和分配波长以建立光信道的问题也就是波长选路由和波长分配问题(RWA)。目前较成熟的技术有最短路径法、最少负荷法和交替固定选路法等。根据节点是否提供波长转换功能,光通路可以分为波长通道(WP)和虚波长通道(VWP)。WP可看作VMP的特例,当整个光路都采用同一波长时就称其为波长通道反之是虚波长通道。在波长通道网络中,由于给信号分配的波长通道是端到端的,每个通路与一个固定的波长关联,因而在动态路由和分配波长时一般必须获得整个网络的状态,因此其控制系统通常必须采用集中控制方式,即在掌握了整个网络所有波长复用段的占用情况后,才可能为新呼叫选一条合适的路由。这时网络动态路由和波长分配所需时间相对较长。而在虚波长通道网络中,波长是逐个链路进行分配的,因此可以进行分布式控制,这样可以大大降低光通路层选路的复杂性和选路所需的时间但却增加了节点操作的复杂性。由于波长选路所需的时间较长,近期提出了一种基于波长作为标记的多协议波长标记交换(MPLS)的方案,它将光交叉互联设备视为标记交换路由器进行网络控制和管理。在基于MPLS的光波长标记交换网络中的光路由器有两种:边界路由器和核心路由器。边界路由器用于与速率较低的网络进行业务接入,同时电子处理功能模块完成MPLS中较复杂的标记处理功能,而核心路由器利用光互联和波长变换技术实现波长标记交换和上下路等比较简单的光信号处理功能。它可以更灵活地管理和分配网络资源,并能较有效地实现业务管理及网络的保护、恢复。
5、光时分多址(OTDMA)技术:该技术是在同一光载波波长上,把时间分割成周期性的帧,每一个帧再分割成若干个时隙(无论帧或时隙都是互不重叠的),然后根据一定的时隙分配原则,使每个光网络单元(ONU)在每帧内只按指定的时隙发送信号,然后利用全光时分复用方法在光功率分配器中合成一路光时分脉冲信号,再经全光放大器放大后送入光纤中传输。在交换局,利用全光时分分解复用。为了实现准确,可靠的光时分多址通信,避免各ONU向上游发送的码流在光功率分配器合路时可能发生碰撞,光交换局必须测定它与各ONU的距离,井在下行信号中规定光网络单元(ONU)的严格发送定时。
6、光突发数据交换技术:该技术是针对目前光信号处理技术尚未足够成熟而提出的,在这种技术中有两种光分组技术:包含路由信息的控制分组技术和承载业务的数据分组技术。控制分组技术中的控制信息要通过路由器的电子处理,而数据分组技术不需光电/电光转换和电子路由器的转发,直接在端到端的透明传输信道中传输。
7、光波分多址(WDMA)技术:该技术是将多个不同波长且互不交叠的光载波分配给不同的光网络单元(ONU),用以实现上行信号的传输,即各ONU根据所分配的光载波对发送的信息脉冲进行调制,从而产生多路不同波长的光脉冲,然后利用波分复用方法经过合波器形成一路光脉冲信号来共享传输光纤并送入到光交换局。在WDMA系统中为了实现任何允许节点共享信道的多波长接入,必须建立一个防止或处理碰撞的协议,该协议包括固定分配协议、随机接入协议(包括预留机制、交换和碰撞预留技术)及仲裁规程和改装发送许可等。 8、光转发技术:在全光通信系统中,对光信号的波长、色散和功率等都有特殊的要求,为了满足ITU-T标准规范,必须采用光-电-光的光转发技术对输入的信号光进行规范,同时采用外调制技术克服长途传输系统中色散的影响。光纤传输系统所用的光转发模块主要有直接调制的光转发模块和外调制的光转发模块两种。外调制的光转发模块包括电吸收(EA)调制和LiNbO3调制等。在光纤传输系统中,选用那种光发模块要根据实际传输距离和光纤的色散情况而定。在全光通信系统中,可以采用多种调制类型的光转发模块,色散容限有1800/4000/7200/12800ps/nm等诸多选择,满足不同的传输距离的需求,为用户提供从1km至640km各种传输距离的最佳性能价格比解决方案,并且光转发单元发射部分的波长稳定度在0~60°C范围内小于±3GHz。
9、副载波多址(SCMA)技术:该技术的基本原理是将多路基带控制信号调制到不同频率的射频(超短波到微波频率)波上,然后将多路射频信号复用后再去调制一个光载波。在ONU端进行二次解调,首先利用光探测器从光信号中得到多路射频信号,并从中选出该单元需要接收的控制信号,再用电子学的方法从射频波中恢复出基带控制信号。在控制信道上使用SCMA接入,不仅可降低网络成本,还可解决控制信道的竞争。
10、空分光交换技术:该技术的基本原理是将光交换元件组成门阵列开关,并适当控制门阵列开关,即可在任一路输入光纤和任一输出光纤之间构成通路。因其交换元件的不同可分为机械型、光电转换型、复合波导型、全反射型和激光二极管门开关等,如耦合波导型交换元件钥酸钾,它是一种电光材料,具有折射率随外界电场的变化而发生变化的光学特性。以铌酸钾为基片,在基片上进行钛扩散,以形成折射率逐渐增加的光波导,即光通路,再焊上电极后即可将它作为光交换元件使用。当将两条很接近的波导进行适当的复合,通过这两条波导的光束将发生能量交换。能量交换的强弱随复合系数。平行波导的长度和两波导之间的相位差变化,只要所选取的参数适当,光束就在波导上完全交错,如果在电极上施加一定的电压,可改变折射率及相位差。由此可见,通过控制电极上的电压,可以得到平行和交叉两种交换状态。
11、光放大技术:为了克服光纤传输中的损耗,每传输一段距离,都要对信号进行电的“再生”。随着传输码率的提高,“再生”的难度也随之提高,成了信号传输容量扩大的“瓶颈”。于是一种新型的光放大技术就出现了,例如掺铒光纤放大器的实用化实现了直接光放大,节省了大量的再生中继器,使得传输中的光纤损耗不再成为主要问题,同时使传输链路“透明化”,简化了系统,成几倍或几十倍地扩大了传输容量,促进了真正意义上的密集波分复用技术的飞速发展,是光纤通讯领域上的一次革命。
12、时分光交换技术:该技术的原理与现行的电子程控交换中的时分交换系统完全相同,因此它能与采用全光时分多路复用方法的光传输系统匹配。在这种技术下,可以时分复用各个光器件,能够减少硬件设备,构成大容量的光交换机。该技术组成的通信技术网由时分型交换模块和空分型交换模块构成。它所采用的空分交换模块与上述的空分光交换功能块完全相同,而在时分型光交换模块中则需要有光存储器(如光纤延迟存储器、双稳态激光二极管存储器)、光选通器(如定向复合型阵列开关)以进行相应的交换。
13、无源光网技术(PON):无源光网技术多用于接入网部分。它以点对多点方式为光线路终端(OLT)和光网络单元(ONU)P这间提供光传输媒质,而这又必须使用多址接入技术。目前使用中的有时分多址接入(TDMA)、波分复用(WDM)、副载波多址接入(SCMA)3种方式。PON中使用的无源光器件有光纤光缆、光纤接头、光连接器、光分路器、波分复用器和光衰减器。拓扑结构可采用总线形、星形、树形等多种结构。

阅读全文

与全光网络技术哪里学习相关的资料

热点内容
网络连接好就是不可上网为什么 浏览:50
咋直接看网络密码 浏览:598
网络信号放大器怎么使 浏览:683
智能无线网络宽带路由器 浏览:474
网络版记帐软件 浏览:966
网络主播用哪个象棋 浏览:945
最好的手机网络测速 浏览:252
四川广电网络有多少m 浏览:286
逢良网络是什么 浏览:164
网络电视不通过wifi可以用吗 浏览:996
软件本地验证和网络验证哪个好 浏览:922
极佳是什么等级网络信号 浏览:456
如何投诉网络不良现象 浏览:952
网络安全视频正能量 浏览:70
手机网络不好怎么设置宽带密码 浏览:335
苹果手机连接网络为什么没办法用 浏览:232
网络安全动图讲解 浏览:589
小米手机如何添加自己的网络 浏览:659
上海网络研发软件 浏览:585
苹果6网络信号跟wf天线有关么 浏览:985

友情链接