A. 卷及神经网络中loss怎么计算
这个问题比较泛,因为网络的损失函数是由自己设计的,如果不特殊说明一般是有均方误差和交叉熵两种损失函数的。其中均方误差当然就是指的输出与标签的差的平方和的平均,计算方式如下:
B. 神经网络训练中误差值不变
既然神经网络的损失值维持不变,说明该训练数据下各参数反向传播梯度为0,所有参数不进行更新,考虑训练数据设计不合理,建议补充训练数据以确认。
C. 神经网络训练loss收敛的问题
这个问题比较泛,因为网络的损失函数是由自己设计的,如果不特殊说明一般是有均方误差和交叉熵两种损失函数的。其中均方误差当然就是指的输出与标签的差的平方和的平均,计算方式如下: 而交叉熵则是为了防止网络在训练后期迟缓而提出的一种损失函数,计算方式如下:
D. 神经网络中的梯度与损失值区别
层数比较多的神经网络模型在训练的时候会出现梯度消失(gradient vanishing problem)和梯度爆炸(gradient exploding problem)问题。
梯度消失问题和梯度爆炸问题一般会随着网络层数的增加变得越来越明显。
E. 神经网络训练一定次数后准确率突然下降怎么回事
经网络训练时准确度突然变得急剧下降,很有可能是你的休息不够睡眠不足导致注意力不集中,近段时间的心情也很影响训练时的准确度,心情烦躁准确度也就会下降。
F. 神经网络训练时准确度突然变得急剧下降,为啥
可能是因为太激进,设置太高的学习率,也可能是因为设置的参数的问题。
G. 神经网络激活函数与损失函数的作用
softmax输出了各种结果的可能性
H. 如何训练神经网络
1、先别着急写代码
训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。
Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。
由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。
一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。
2、设置端到端的训练评估框架
处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。
在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。获得准确度等衡量模型的标准,用模型进行预测。
这个阶段的技巧有:
· 固定随机种子
使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。
· 简单化
在此阶段不要有任何幻想,不要扩增数据。扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。
· 在评估中添加有效数字
在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。
· 在初始阶段验证损失函数
验证函数是否从正确的损失值开始。例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。
· 初始化
正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。
· 人类基线
监控除人为可解释和可检查的损失之外的指标。尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。
· 设置一个独立于输入的基线
最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。
· 过拟合一个batch
增加了模型的容量并验证我们可以达到的最低损失。
· 验证减少训练损失
尝试稍微增加数据容量。
I. 训练好的cnn网络的损失函数最后为多少
上世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究,提出了感受野这个概念,到80年代,Fukushima在感受野概念的基础之上提出了神经认知机的概念,可以看作是卷积神经网络的第一个实现网络,神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的时候,也能完成识别。
卷积神经网络(Convolutional Neural Networks, CNN)是多层感知机(MLP)的变种。由生物学家休博尔和维瑟尔在早期关于猫视觉皮层的研究发展而来。视觉皮层的细胞存在一个复杂的构造。这些细胞对视觉输入空间的子区域非常敏感,我们称之为感受野,以这种方式平铺覆盖到整个视野区域。这些细胞可以分为两种基本类型,简单细胞和复杂细胞。简单细胞最大程度响应来自感受野范围内的边缘刺激模式。复杂细胞有更大的接受域,它对来自确切位置的刺激具有局部不变性。
通常神经认知机包含两类神经元,即承担特征提取的采样元和抗变形的卷积元,采样元中涉及两个重要参数,即感受野与阈值参数,前者确定输入连接的数目,后者则控制对特征子模式的反应程度。卷积神经网络可以看作是神经认知机的推广形式,神经认知机是卷积神经网络的一种特例。
CNN由纽约大学的Yann LeCun于1998年提出。CNN本质上是一个多层感知机,其成功的原因关键在于它所采用的局部连接和共享权值的方式,一方面减少了的权值的数量使得网络易于优化,另一方面降低了过拟合的风险。CNN是神经网络中的一种,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。在二维图像处理上有众多优势,如网络能自行抽取图像特征包括颜色、纹理、形状及图像的拓扑结构;在处理二维图像问题上,特别是识别位移、缩放及其它形式扭曲不变性的应用上具有良好的鲁棒性和运算效率等。
CNN本身可以采用不同的神经元和学习规则的组合形式。
J. BP神经网络损失函数居高不下
1、模型结构和特征工程存在问题。
2、权重初始化方案有问题。
3、正则化过度。
4、选择合适的激活函数、损失函数。
5、选择合适的优化器和学习速率。
6、训练时间不足,模型训练遇到瓶颈。