导航:首页 > 网络问题 > 感知神经网络的转移函数是什么

感知神经网络的转移函数是什么

发布时间:2023-06-01 00:59:15

① 人工神经网络综述

文章主要分为:
一、人工神经网络的概念;
二、人工神经网络的发展历史;
三、人工神经网络的特点;
四、人工神经网络的结构。
。。

人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。

神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激活函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智能、统计学、物理学、计算机科学以及工程科学的一门技术。

在介绍神经网络的发展历史之前,首先介绍一下神经网络的概念。神经网络主要是指一种仿造人脑设计的简化的计算模型,这种模型中包含了大量的用于计算的神经元,这些神经元之间会通过一些带有权重的连边以一种层次化的方式组织在一起。每一层的神经元之间可以进行大规模的并行计算,层与层之间进行消息的传递。

下图展示了整个神经网络的发展历程:

神经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。

(1)、M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。1943 年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了M-P模型,此模型比较简单,但是意义重大。在模型中,通过把神经元看作个功能逻辑器件来实现算法,从此开创了神经网络模型的理论研究。
(2)、Hebb规则:1949 年,心理学家赫布(Hebb)出版了《The Organization of Behavior》(行为组织学),他在书中提出了突触连接强度可变的假设。这个假设认为学习过程最终发生在神经元之间的突触部位,突触的连接强度随之突触前后神经元的活动而变化。这一假设发展成为后来神经网络中非常着名的Hebb规则。这一法则告诉人们,神经元之间突触的联系强度是可变的,这种可变性是学习和记忆的基础。Hebb法则为构造有学习功能的神经网络模型奠定了基础。
(3)、感知器模型:1957 年,罗森勃拉特(Rosenblatt)以M-P 模型为基础,提出了感知器(Perceptron)模型。感知器模型具有现代神经网络的基本原则,并且它的结构非常符合神经生理学。这是一个具有连续可调权值矢量的MP神经网络模型,经过训练可以达到对一定的输入矢量模式进行分类和识别的目的,它虽然比较简单,却是第一个真正意义上的神经网络。Rosenblatt 证明了两层感知器能够对输入进行分类,他还提出了带隐层处理元件的三层感知器这一重要的研究方向。Rosenblatt 的神经网络模型包含了一些现代神经计算机的基本原理,从而形成神经网络方法和技术的重大突破。
(4)、ADALINE网络模型: 1959年,美国着名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptive linear element,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法,并将其应用于实际工程,成为第一个用于解决实际问题的人工神经网络,促进了神经网络的研究应用和发展。ADALINE网络模型是一种连续取值的自适应线性神经元网络模型,可以用于自适应系统。

人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书,指出简单的线性感知器的功能是有限的,它无法解决线性不可分的两类样本的分类问题,如简单的线性感知器不可能实现“异或”的逻辑关系等。这一论断给当时人工神经元网络的研究带来沉重的打击。开始了神经网络发展史上长达10年的低潮期。
(1)、自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizing feature map)。后来的神经网络主要是根据KohonenT.的工作来实现的。SOM网络是一类无导师学习网络,主要用于模式识别﹑语音识别及分类问题。它采用一种“胜者为王”的竞争学习算法,与先前提出的感知器有很大的不同,同时它的学习训练方式是无指导训练,是一种自组织网络。这种学习训练方式往往是在不知道有哪些分类类型存在时,用作提取分类信息的一种训练。
(2)、自适应共振理论ART:1976年,美国Grossberg教授提出了着名的自适应共振理论ART(Adaptive Resonance Theory),其学习过程具有自组织和自稳定的特征。

(1)、Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。1984年,Hopfield 又提出了一种连续神经网络,将网络中神经元的激活函数由离散型改为连续型。1985 年,Hopfield和Tank利用Hopfield神经网络解决了着名的旅行推销商问题(Travelling Salesman Problem)。Hopfield神经网络是一组非线性微分方程。Hopfield的模型不仅对人工神经网络信息存储和提取功能进行了非线性数学概括,提出了动力方程和学习方程,还对网络算法提供了重要公式和参数,使人工神经网络的构造和学习有了理论指导,在Hopfield模型的影响下,大量学者又激发起研究神经网络的热情,积极投身于这一学术领域中。因为Hopfield 神经网络在众多方面具有巨大潜力,所以人们对神经网络的研究十分地重视,更多的人开始了研究神经网络,极大地推动了神经网络的发展。
(2)、Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。1984年,Hinton与年轻学者Sejnowski等合作提出了大规模并行网络学习机,并明确提出隐单元的概念,这种学习机后来被称为Boltzmann机。
Hinton和Sejnowsky利用统计物理学的感念和方法,首次提出的多层网络的学习算法,称为Boltzmann 机模型。
(3)、BP神经网络模型:1986年,儒默哈特(D.E.Ru melhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(Error Back-Propagation),解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。
(4)、并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,该书中,他们建立了并行分布处理理论,主要致力于认知的微观研究,同时对具有非线性连续转移函数的多层前馈网络的误差反向传播算法即BP算法进行了详尽的分析,解决了长期以来没有权值调整有效算法的难题。可以求解感知机所不能解决的问题,回答了《Perceptrons》一书中关于神经网络局限性的问题,从实践上证实了人工神经网络有很强的运算能力。
(5)、细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。Kosko建立了双向联想存储模型(BAM),它具有非监督学习能力。
(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。
(7)、1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。
(8)、1988年,Broomhead和Lowe用径向基函数(Radialbasis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。
(9)、1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。
(10)、1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。
(11)、90年代初,Vapnik等提出了支持向量机(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。
经过多年的发展,已有上百种的神经网络模型被提出。

深度学习(Deep Learning,DL)由Hinton等人于2006年提出,是机器学习的一个新领域。深度学习本质上是构建含有多隐层的机器学习架构模型,通过大规模数据进行训练,得到大量更具代表性的特征信息。深度学习算法打破了传统神经网络对层数的限制,可根据设计者需要选择网络层数。

突触是神经元之间相互连接的接口部分,即一个神经元的神经末梢与另一个神经元的树突相接触的交界面,位于神经元的神经末梢尾端。突触是轴突的终端。
大脑可视作为1000多亿神经元组成的神经网络。神经元的信息传递和处理是一种电化学活动.树突由于电化学作用接受外界的刺激,通过胞体内的活动体现为轴突电位,当轴突电位达到一定的值则形成神经脉冲或动作电位;再通过轴突末梢传递给其它的神经元.从控制论的观点来看;这一过程可以看作一个多输入单输出非线性系统的动态过程。
神经元的功能特性:(1)时空整合功能;(2)神经元的动态极化性;(3)兴奋与抑制状态;(4)结构的可塑性;(5)脉冲与电位信号的转换;(6)突触延期和不应期;(7)学习、遗忘和疲劳。

神经网络从两个方面模拟大脑:
(1)、神经网络获取的知识是从外界环境中学习得来的。
(2)、内部神经元的连接强度,即突触权值,用于储存获取的知识。
神经网络系统由能够处理人类大脑不同部分之间信息传递的由大量神经元连接形成的拓扑结构组成,依赖于这些庞大的神经元数目和它们之间的联系,人类的大脑能够收到输入的信息的刺激由分布式并行处理的神经元相互连接进行非线性映射处理,从而实现复杂的信息处理和推理任务。
对于某个处理单元(神经元)来说,假设来自其他处理单元(神经元)i的信息为Xi,它们与本处理单元的互相作用强度即连接权值为Wi, i=0,1,…,n-1,处理单元的内部阈值为θ。那么本处理单元(神经元)的输入为:

,而处理单元的输出为:

式中,xi为第i个元素的输入,wi为第i个处理单元与本处理单元的互联权重即神经元连接权值。f称为激活函数或作用函数,它决定节点(神经元)的输出。θ表示隐含层神经节点的阈值。

神经网络的主要工作是建立模型和确定权值,一般有前向型和反馈型两种网络结构。通常神经网络的学习和训练需要一组输入数据和输出数据对,选择网络模型和传递、训练函数后,神经网络计算得到输出结果,根据实际输出和期望输出之间的误差进行权值的修正,在网络进行判断的时候就只有输入数据而没有预期的输出结果。神经网络一个相当重要的能力是其网络能通过它的神经元权值和阈值的不断调整从环境中进行学习,直到网络的输出误差达到预期的结果,就认为网络训练结束。

对于这样一种多输入、单输出的基本单元可以进一步从生物化学、电生物学、数学等方面给出描述其功能的模型。利用大量神经元相互连接组成的人工神经网络,将显示出人脑的若干特征,人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重wij值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以至超过设计者原有的知识水平。通常,它的学习(或训练)方式可分为两种,一种是有监督(supervised)或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督(unsupervised)学习或称无导师学习,这时,只规定学习方式或某些规则,而具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似于人脑的功能。
在人工神经网络设计及应用研究中,通常需要考虑三个方面的内容,即神经元激活函数、神经元之间的连接形式和网络的学习(训练)。

② 在搭建神经网络的时候,如何选择合适的转移函数(

一般来说,神经网络的激励函数有以下几种:阶跃函数 ,准线性函数,双曲正切函数,Sigmoid函数等等,其中sigmoid函数就是你所说的S型函数。以我看来,在你训练神经网络时,激励函数是不轻易换的,通常设置为S型函数。如果你的神经网络训练效果不好,应从你所选择的算法上和你的数据上找原因。算法上BP神经网络主要有自适应学习速率动量梯度下降反向传播算法(traingdx),Levenberg-Marquardt反向传播算法(trainlm)等等,我列出的这两种是最常用的,其中BP默认的是后一种。数据上,看看是不是有误差数据,如果有及其剔除,否则也会影响预测或识别的效果。

③ 人工神经网络概述(更新中)

智能: 从感觉到记忆再到思维的过程称为“智慧”,智慧的结果是语言和行为。行为和语言予以表达称为“能力”。智慧和能力的总称为“智能”。感觉、记忆、思维、行为、语言的过程称为“智能过程”。

人工智能: 人工构建的智能系统。

人工智能是研究和开发用于模拟、延伸和扩展人类智能的理论、方法、技术及应用的技术学科,其主要研究内容可以归纳为以下四个方面。

人工神经网络是基于生物神经元网络机制提出的一种计算结构,是生物神经网络的某种模拟、简化和抽象。神经元是这一网络的“节点”,即“处理单元”。

人工神经网络可用于逼近非线性映射、分类识别、优化计算以及知识挖掘。近年来,人工神经网络在模式识别、信号处理、控制工程和优化计算领域得到了广泛的应用。

M-P模型由心理学家McCulloch和数学家W. Pitts在1943年提出。

M-P模型结构是一个多输入、单输出的非线性元件。其I/O关系可推述为

其中, 表示从其他神经元传来的输入信号; 表示从神经元 到神经元 的连接权值; 表示阈值; 表示激励函数或转移函数; 表示神经元 的输出信号。

作为一种最基本的神经元数学模型,M-P模型包括了加权、求和和激励(转移)三部分功能。

神经元的数据模型主要区别于采用了不同的激励函数。

概率型函数的输入和输出之间的关系是不确定的。分布律如下

其中, 被称为温度参数。

感知机(Perceptron)是美国学者Rosenblatt于1957年提出的一种用于模式分类的神经网络模型。

M-P模型通常叫做单输出的感知机。按照M-P模型的要求,该人工神经元的激活函数为阶跃函数。为了方便表示,M-P模型表示为下图所示的结构。

用多个这样的单输入感知机可以构成一个多输出的感知机,其结构如下

对于二维平面,当输入/输出为 线性可分 集合时,一定可以找到一条直线将模式分成两类。此时感知机的结构图3所示,显然通过调整感知机的权值及阈值可以修改两类模式的分界线:

线性可分: 这里的线性可分是指两类样本可以用直线、平面或超平面分开,否则称为线性不可分。

感知机的基本功能是对外部信号进行感知和识别,这就是当外部 个刺激信号或来自其它 个神经元(的信号)处于一定的状态时,感知机就处于兴奋状态,而外部 个信号或 个神经元的输出处于另一个状态时,感知机就呈现抑制状态。

如果 、 是 中两个互不相交的集合,且有如下方程成立

则称集合 为感知机的 学习目标 。根据感知机模型,学习算法实际上是要寻找权重 、 满足下述要求:

感知机的训练过程是感知机权值的逐步调整过程,为此,用 表示每一次调整的序号。 对应于学习开始前的初始状态,此时对应的权值为初始化值。

④ 神经网络算法

20 世纪五、六⼗年代,科学家 Frank Rosenblatt其受到 Warren McCulloch 和 Walter Pitts早期的⼯作的影响,发明了感知机(Perceptrons)。

⼀个感知器接受⼏个⼆进制输⼊, ,并产⽣⼀个⼆进制输出:

如上图所示的感知机有三个输⼊: 。通常可以有更多或更少输⼊。 我们再引⼊权重: ,衡量输入对输出的重要性。感知机的输出为0 或者 1,则由分配权重后的总和 ⼩于等于或者⼤于阈值决定。和权重⼀样,阈值(threshold)是⼀个实数,⼀个神经元的参数。⽤更精确的代数形式如下:

给三个因素设置权重来作出决定:

可以把这三个因素对应地⽤⼆进制变量 来表⽰。例如,如果天⽓好,我们把

,如果不好, 。类似地,如果你的朋友陪你去, ,否则 。 也类似。

这三个对于可能对你来说,“电影好不好看”对你来说最重要,而天气显得不是那么的重要。所以你会这样分配权值: ,然后定义阈值threshold=5。

现在,你可以使⽤感知器来给这种决策建⽴数学模型。

例如:

随着权重和阈值的变化,你可以得到不同的决策模型。很明显,感知机不是⼈做出决策使⽤的全部模型。但是这个例⼦说明了⼀个感知机如何能权衡不同的依据来决策。这看上去也可以⼤致解释⼀个感知机⽹络有时确实能够做出一些不错的决定。

现在我们队上面的结构做一点变化,令b=-threshold,即把阈值移到不等号左边,变成偏置, 那么感知器的规则可以重写为:

引⼊偏置只是我们描述感知器的⼀个很⼩的变动,但是我们后⾯会看到它引导更进⼀步的符号简化。因此,我们不再⽤阈值,⽽总是使⽤偏置。

感知机是首个可以学习的人工神经网络,它的出现引起的神经网络的第一层高潮。需要指出的是,感知机只能做简单的线性分类任务,而且Minsky在1969年出版的《Perceptron》书中,证明了感知机对XOR(异或)这样的问题都无法解决。但是感知机的提出,对神经网络的发展是具有重要意义的。

通过上面的感知机的观察我们发现一个问题,每个感知机的输出只有0和1,这就意味着有时我们只是在单个感知机上稍微修改了一点点权值w或者偏置b,就可能造成最终输出完全的反转。也就是说,感知机的输出是一个阶跃函数。如下图所示,在0附近的时候,输出的变化是非常明显的,而在远离0的地方,我们可能调整好久参数也不会发生输出的变化。

这样阶跃的跳变并不是我们想要的,我们需要的是当我们队权值w或者偏置b做出微小的调整后,输出也相应的发生微小的改变芹则禅。这同时也意味值我们的输出不再只是0和1,还可以输出小数。由此我们引入了S型神经元。

S型神经元使用 S 型函数,也叫Sigmoid function函数,我们用它作为激活函数。其表达式如下:

图像如下图所示:

利⽤实际的 σ 函数,我们得到⼀个,就像上⾯说明的,平滑的感知器。 σ 函数的平滑特性,正是关键因素,⽽不是其细部形式盯明。 σ 的平滑意味着权重和偏置的微⼩变化,即 ∆w 和 ∆b,会从神经元产⽣⼀个微⼩的输出变化 ∆output。实际上,微积分告诉我们

∆output 可以很好地近似表⽰为:

上面的式子是⼀个反映权重、偏置变化嫌尘和输出变化的线性函数。这⼀线性使得我们可以通过选择权重和偏置的微⼩变化来达到输出的微⼩变化。所以当 S 型神经元和感知器本质上是相同的,但S型神经元在计算处理如何变化权重和偏置来使输出变化的时候会更加容易。

有了对S型神经元的了解,我们就可以介绍神经网络的基本结构了。具体如下:

在⽹络中最左边的称为输⼊层,其中的神经元称为输⼊神经元。最右边的,即输出层包含有输出神经元,在图中,输出层只有⼀个神经元。中间层,既然这层中的神经元既不是输⼊也不是输出,则被称为隐藏层。

这就是神经网络的基本结构,随着后面的发展神经网络的层数也随之不断增加和复杂。

我们回顾一下神经网络发展的历程。神经网络的发展历史曲折荡漾,既有被人捧上天的时刻,也有摔落在街头无人问津的时段,中间经历了数次大起大落。

从单层神经网络(感知机)开始,到包含一个隐藏层的两层神经网络,再到多层的深度神经网络,一共有三次兴起过程。详见下图。

我们希望有⼀个算法,能让我们找到权重和偏置,以⾄于⽹络的输出 y(x) 能够拟合所有的 训练输⼊ x。为了量化我们如何实现这个⽬标,我们定义⼀个代价函数:

这⾥ w 表⽰所有的⽹络中权重的集合, b 是所有的偏置, n 是训练输⼊数据的个数,
a 是表⽰当输⼊为 x 时输出的向量,求和则是在总的训练输⼊ x 上进⾏的。当然,输出 a 取决于 x, w和 b,但是为了保持符号的简洁性,我没有明确地指出这种依赖关系。符号 ∥v∥ 是指向量 v 的模。我们把 C 称为⼆次代价函数;有时也称被称为均⽅误差或者 MSE。观察⼆次代价函数的形式我们可以看到 C(w, b) 是⾮负的,因为求和公式中的每⼀项都是⾮负的。此外,代价函数 C(w,b)的值相当⼩,即 C(w; b) ≈ 0,精确地说,是当对于所有的训练输⼊ x, y(x) 接近于输出 a 时。因

此如果我们的学习算法能找到合适的权重和偏置,使得 C(w; b) ≈ 0,它就能很好地⼯作。相反,当 C(w; b) 很⼤时就不怎么好了,那意味着对于⼤量地输⼊, y(x) 与输出 a 相差很⼤。因此我们的训练算法的⽬的,是最⼩化权重和偏置的代价函数 C(w; b)。换句话说,我们想要找到⼀系列能让代价尽可能⼩的权重和偏置。我们将采⽤称为梯度下降的算法来达到这个⽬的。

下面我们将代价函数简化为C(v)。它可以是任意的多元实值函数, 。
注意我们⽤ v 代替了 w 和 b 以强调它可能是任意的函数,我们现在先不局限于神经⽹络的环境。

为了使问题更加简单我们先考虑两个变量的情况,想象 C 是⼀个只有两个变量 和 的函数,我们的目的是找到 和 使得C最小。

如上图所示,我们的目的就是找到局部最小值。对于这样的一个问题,一种方法就是通过微积分的方法来解决,我们可以通过计算导数来求解C的极值点。但是对于神经网络来说,我们往往面对的是非常道的权值和偏置,也就是说v的维数不只是两维,有可能是亿万维的。对于一个高维的函数C(v)求导数几乎是不可能的。

在这种情况下,有人提出了一个有趣的算法。想象一下一个小球从山顶滚下山谷的过程, 我们的⽇常经验告诉我们这个球最终会滚到⾕底。我们先暂时忽略相关的物理定理, 对球体的⾁眼观察是为了激发我们的想象⽽不是束缚我们的思维。因此与其陷进物理学⾥凌乱的细节,不如我们就这样问⾃⼰:如果我们扮演⼀天的上帝,能够构造⾃⼰的物理定律,能够⽀配球体可以如何滚动,那么我们将会采取什么样的运动学定律来让球体能够总是滚落到⾕底呢?

为了更精确地描述这个问题,让我们思考⼀下,当我们在 和 ⽅向分别将球体移动⼀个很⼩的量,即 ∆ 和 ∆ 时,球体将会发⽣什么情况。微积分告诉我们 C 将会有如下变化:

也可以用向量表示为

现在我们的问题就转换为不断寻找一个小于0的∆C,使得C+∆C不断变小。

假设我们选取:

这⾥的 η 是个很⼩的正数(称为学习速率),于是

由于 ∥∇C∥2 ≥ 0,这保证了 ∆C ≤ 0,即,如果我们按照上述⽅程的规则去改变 v,那么 C
会⼀直减⼩,不会增加。

所以我们可以通过不断改变v来C的值不断下降,是小球滚到最低点。

总结⼀下,梯度下降算法⼯作的⽅式就是重复计算梯度 ∇C,然后沿着相反的⽅向移动,沿着⼭⾕“滚落”。我们可以想象它像这样:

为了使梯度下降能够正确地运⾏,我们需要选择合适的学习速率η,确保C不断减少,直到找到最小值。

知道了两个变量的函数 C 的梯度下降方法,我们可以很容易的把它推广到多维。我们假设 C 是⼀个有 m 个变量 的多元函数。 ∆C 将会变为:

其中, ∇C为

∆v为:

更新规则为:

在回到神经网络中,w和b的更新规则为:

前面提到神经⽹络如何使⽤梯度下降算法来学习他们⾃⾝的权重和偏置。但是,这⾥还留下了⼀个问题:我们并没有讨论如何计算代价函数的梯度。这里就需要用到一个非常重要的算法:反向传播算法(backpropagation)。

反向传播算法的启示是数学中的链式法则。

四个方程:

输出层误差方程:

当前层误差方程:

误差方程关于偏置的关系:

误差方程关于权值的关系

算法描述:

检视这个算法,你可以看到为何它被称作反向传播。我们从最后⼀层开始向后计算误差向量δ。这看起来有点奇怪,为何要从后⾯开始。但是如果你认真思考反向传播的证明,这种反向移动其实是代价函数是⽹络输出的函数的结果。为了理解代价随前⾯层的权重和偏置变化的规律,我们需要重复作⽤链式法则,反向地获得需要的表达式。

参考链接: http://neuralnetworksanddeeplearning.com/

⑤ MATLAB中一些函数,用于神经网络

一:minmax()

minmax(A) 即是求解A矩阵中每个 行向量 中的最小值和最大值

eg:A=[1 2 4 -6 ;

             3 -4 90 6;

             4 6 -23 -35];

         P=minmax(A)

         P = -6    4

              -4    90

              -35    6

二:hold on 和hold off

hold on 是当前轴及图像保持而不被刷新,准备接受此后将绘制的图形,多图共存.即,启动图形保持功能,当前坐标轴和图形都将保持,从此绘制的图形都将添加在这个图形的基础上,并自动调整坐标轴的范围。

hold off 使当前轴及图像不再具备被刷新的性质,新图出现时,取消原图。即,关闭图形保持功能。

hold on 和hold off,是相对使用的

前者的意思是,你在当前图的轴(坐标系)中画了一幅图,再画另一幅图时,原来的图还在,与新图共存,都看得到

后者表达的是,你在当前图的轴(坐标系)中画了一幅图,此时,状态是hold off,则再画另一幅图时,原来的图就看不到了,在轴上绘制的是新图,原图被替换了。

三:rand 和 randn

rand是0-1的均匀分布,randn是均值为0方差为1的正态分布;

rand(n)或randn(n)生成n*n的随机数矩阵。

rand(n,m)或randn(m,n)生成m*n的随机数矩阵。

四:gac、gca 和 gco

gcf 返回当前Figure对象的句柄值

gca 返回当前axes对象的句柄值

gco 返回当前鼠标单击的句柄值,该对象可以是除root对象外的任意图形对象,并且Matlab会把当前图形对象的句柄值存放在Figure的CurrentObject属性中。

五:compet

compet是神经网络的竞争传递函数,用于指出矩阵中每列的最大值。对应最大值的行的值为1,其他行的值都为0。

六:bar和barn

二维条形图:bar()

bar(Y) 如果Y为矢量,其每一个元素绘制一个条形;如果Y为矩阵,侧bar函数对每一行元素绘制的条形进行分组。

bar(x,Y) 按x中指定的位置绘制Y中每一元素的条形。

bar(…,width) 设置相邻条形的宽度并控制组内条形的分离,默认值为0.8,如果指定width=1,则组内的条形挨在一起。

bar(…,’style’) 指定绘制条形的类型,style有两个选项:(1) stacked 矩阵Y中每一行绘制一个条形,条形的高度为行元素中元素的和,每一个条形都用多种颜色表示,颜色对应不同种类的元素并表示每行元素对总和的相对贡献。(2) group 绘制n条形图组,每一个条形组中有m个垂直条形,其中n对应矩阵Y的行数,m对应列数,group为style的默认值。

bar(…,LineSpec) 用LineSpec指定的颜色绘制条形。

h=bar(…) 返回图形句柄。

barh(…) 绘制水平条形图。

h=barh(…) 返回水平条形图的图形句柄。

三维条形图:bar3()和barah()

bar3(Y) 绘制三维条形图,如果Y为矢量,其每一个元素绘制一个条形;如果Y为矩阵,侧bar函数对每一行元素绘制的条形进行分组。

bar3(x,Y) 按x中指定的位置绘制Y中每一元素的条形。

bar3(…,width) 设置相邻条形的宽度并控制组内条形的分离,默认值为0.8,如果指定width=1,则组内的条形挨在一起。

bar3(…,’style’) 指定绘制条形的类型,style有3个选项:(1) stacked 矩阵Y中每一行绘制一个条形,条形的高度为行元素中元素的和,每一个条形都用多种颜色表示,颜色对应不同种类的元素并表示每行元素对总和的相对贡献。(2) group 绘制n条形图组,每一个条形组中有m个垂直条形,其中n对应矩阵Y的行数,m对应列数,group为style的默认值。(3) detached 在x方向用单独的条形块绘制Y中的每一行元素,detached为style的默认值;

bar3(…,LineSpec) 用LineSpec指定的颜色绘制条形。

h=bar3(…) 返回三维条形图的图形句柄。

barh(…) 绘制三维水平条形图。

h=barh(…) 返回三维水平条形图的图形句柄。

三维条形图有两种显示形式:分组形式和行列形式。

未完待续

阅读全文

与感知神经网络的转移函数是什么相关的资料

热点内容
如何在网络提问 浏览:32
突然网络异常了 浏览:658
移动无线网络信号差怎么解决 浏览:328
南昌计算机网络职业学校有哪些 浏览:353
光猫里的无线网络 浏览:703
三大运营商的移动网络代码 浏览:618
安卓otg网线共享网络 浏览:751
win7家庭网络设置 浏览:526
家里网络共享有哪些功能 浏览:124
网络2共享的打印机网络3能用吗 浏览:348
ad的网络检测如何检测 浏览:247
QQ浏览器可以连无线网络吗 浏览:423
路由器能识别网络吗 浏览:913
高中网络安全黑板报版图 浏览:562
网络安全的路怎么走 浏览:480
网络安全渗透测试月薪多少 浏览:109
手机网络共享硬件加速有坏处吗 浏览:419
数据线网络电视无信号 浏览:144
联通手机怎么办理网络 浏览:846
浙江公务员考试网络课程哪个好 浏览:306

友情链接