导航:首页 > 网络问题 > 分类神经网络为什么经过多轮训练

分类神经网络为什么经过多轮训练

发布时间:2022-02-24 23:00:18

❶ 求助,神经网络分类器的训练问题

给你介绍一种方法吧:使用9个BP网络,每个BP网络对应一个分类器,用来判断一类问题。BP网络结构:每个BP网络输入层4个节点,隐含层n个(具体个数自己定),输出层1个节点。首先制作D类分类器--一个BP网络,当输入样本为D类样本时,BP网络的目标输出则为1,否则为0。使用者25组数据训练BP网络1之后,就可以作为D类样本分类器了。然后,依次类推分别制作EFGHIJKL分类器。使用时,一个新的输入到来时,依次输入给这几个分类器,假若结果是:0.1 ,0.12,0.85,0.08,0.2,0.4,0.5,0.21,0.06,显然,新的样本属于F类。每个神经网络的训练算法,低级的有梯度法,高级的有拟牛顿法、共轭梯度法,LM法

❷ 神经网络分类问题

神经网络是新技术领域中的一个时尚词汇。很多人听过这个词,但很少人真正明白它是什么。本文的目的是介绍所有关于神经网络的基本包括它的功能、一般结构、相关术语、类型及其应用。

“神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。在本文,我会同时使用这两个互换的术语。

一个真正的神经网络是由数个至数十亿个被称为神经元的细胞(组成我们大脑的微小细胞)所组成,它们以不同方式连接而型成网络。人工神经网络就是尝试模拟这种生物学上的体系结构及其操作。在这里有一个难题:我们对生物学上的神经网络知道的不多!因此,不同类型之间的神经网络体系结构有很大的不同,我们所知道的只是神经元基本的结构。

The neuron
--------------------------------------------------------------------------------

虽然已经确认在我们的大脑中有大约50至500种不同的神经元,但它们大部份都是基于基本神经元的特别细胞。基本神经元包含有synapses、soma、axon及dendrites。Synapses负责神经元之间的连接,它们不是直接物理上连接的,而是它们之间有一个很小的空隙允许电子讯号从一个神经元跳到另一个神经元。然后这些电子讯号会交给soma处理及以其内部电子讯号将处理结果传递给axon。而axon会将这些讯号分发给dendrites。最后,dendrites带着这些讯号再交给其它的synapses,再继续下一个循环。

如同生物学上的基本神经元,人工的神经网络也有基本的神经元。每个神经元有特定数量的输入,也会为每个神经元设定权重(weight)。权重是对所输入的资料的重要性的一个指标。然后,神经元会计算出权重合计值(net value),而权重合计值就是将所有输入乘以它们的权重的合计。每个神经元都有它们各自的临界值(threshold),而当权重合计值大于临界值时,神经元会输出1。相反,则输出0。最后,输出会被传送给与该神经元连接的其它神经元继续剩余的计算。

Learning
--------------------------------------------------------------------------------

正如上述所写,问题的核心是权重及临界值是该如何设定的呢?世界上有很多不同的训练方式,就如网络类型一样多。但有些比较出名的包括back-propagation, delta rule及Kohonen训练模式。

由于结构体系的不同,训练的规则也不相同,但大部份的规则可以被分为二大类别 - 监管的及非监管的。监管方式的训练规则需要“教师”告诉他们特定的输入应该作出怎样的输出。然后训练规则会调整所有需要的权重值(这是网络中是非常复杂的),而整个过程会重头开始直至数据可以被网络正确的分析出来。监管方式的训练模式包括有back-propagation及delta rule。非监管方式的规则无需教师,因为他们所产生的输出会被进一步评估。

Architecture
--------------------------------------------------------------------------------

在神经网络中,遵守明确的规则一词是最“模糊不清”的。因为有太多不同种类的网络,由简单的布尔网络(Perceptrons),至复杂的自我调整网络(Kohonen),至热动态性网络模型(Boltzmann machines)!而这些,都遵守一个网络体系结构的标准。

一个网络包括有多个神经元“层”,输入层、隐蔽层及输出层。输入层负责接收输入及分发到隐蔽层(因为用户看不见这些层,所以见做隐蔽层)。这些隐蔽层负责所需的计算及输出结果给输出层,而用户则可以看到最终结果。现在,为免混淆,不会在这里更深入的探讨体系结构这一话题。对于不同神经网络的更多详细资料可以看Generation5 essays

尽管我们讨论过神经元、训练及体系结构,但我们还不清楚神经网络实际做些什么。

The Function of ANNs
--------------------------------------------------------------------------------

神经网络被设计为与图案一起工作 - 它们可以被分为分类式或联想式。分类式网络可以接受一组数,然后将其分类。例如ONR程序接受一个数字的影象而输出这个数字。或者PPDA32程序接受一个坐标而将它分类成A类或B类(类别是由所提供的训练决定的)。更多实际用途可以看Applications in the Military中的军事雷达,该雷达可以分别出车辆或树。

联想模式接受一组数而输出另一组。例如HIR程序接受一个‘脏’图像而输出一个它所学过而最接近的一个图像。联想模式更可应用于复杂的应用程序,如签名、面部、指纹识别等。

The Ups and Downs of Neural Networks
--------------------------------------------------------------------------------

神经网络在这个领域中有很多优点,使得它越来越流行。它在类型分类/识别方面非常出色。神经网络可以处理例外及不正常的输入数据,这对于很多系统都很重要(例如雷达及声波定位系统)。很多神经网络都是模仿生物神经网络的,即是他们仿照大脑的运作方式工作。神经网络也得助于神经系统科学的发展,使它可以像人类一样准确地辨别物件而有电脑的速度!前途是光明的,但现在...

是的,神经网络也有些不好的地方。这通常都是因为缺乏足够强大的硬件。神经网络的力量源自于以并行方式处理资讯,即是同时处理多项数据。因此,要一个串行的机器模拟并行处理是非常耗时的。

神经网络的另一个问题是对某一个问题构建网络所定义的条件不足 - 有太多因素需要考虑:训练的算法、体系结构、每层的神经元个数、有多少层、数据的表现等,还有其它更多因素。因此,随着时间越来越重要,大部份公司不可能负担重复的开发神经网络去有效地解决问题。

Conclusion
--------------------------------------------------------------------------------

希望您可以通过本文对神经网络有基本的认识。Generation5现在有很多关于神经网络的资料可以查阅,包括文章及程序。我们有Hopfield、perceptrons(2个)网络的例子,及一些back-propagation个案研究。

Glossary
--------------------------------------------------------------------------------
NN 神经网络,Neural Network
ANNs 人工神经网络,Artificial Neural Networks
neurons 神经元
synapses 神经键
self-organizing networks 自我调整网络
networks modelling thermodynamic properties 热动态性网络模型

❸ 多分类神经网络训练问题

  1. 确定数据和代码没有问题

  2. 是否过拟合?

❹ 神经网络的分类应用的问题

是的,你数据维数高了,需要主成分之类降维处理

❺ 为什么要对训练好的神经网络进行测试目的是什么测试和训练过程区别是什么

训练得到拟合程度高的网络,测试样本的准确率未必高。一个好的网络应该具有很好的泛化能力。
可以这样理解,训练是根据你输入的数据通过修正权值来减小误差得到网络模型,测试是用另外的数据去测试网络的性能。

❻ 神经网络中的训练次数是指什么

神经网络中的训练次数是训练时,1个batch训练图像通过网络训练一次(一次前向传播+一次后向传播),每迭代一次权重更新一次;测试时,1个batch测试图像通过网络一次(一次前向传播)的次数。

在机器学习和相关领域,人工神经网络(人工神经网络)的计算模型灵感来自动物的中枢神经系统(尤其是脑),并且被用于估计或可以依赖于大量的输入和一般的未知近似函数。人工神经网络通常呈现为相互连接的“神经元”,它可以从输入的计算值,并且能够机器学习以及模式识别由于它们的自适应性质的系统。

例如,用于手写体识别的神经网络是由一组可能被输入图像的像素激活的输入神经元来限定。后进过加权,并通过一个函数(由网络的设计者确定的)转化,这些神经元的致动被上到其他神经元然后被传递。重复此过程,直到最后,一输出神经元被激活。这决定了哪些字符被读取。

(6)分类神经网络为什么经过多轮训练扩展阅读

神经网络分类:

1、选择模式:这将取决于数据的表示和应用。过于复杂的模型往往会导致问题的学习。

2、学习算法:在学习算法之间有无数的权衡。几乎所有的算法为了一个特定的数据集训练将会很好地与正确的超参数合作。然而,选择和调整的算法上看不见的数据训练需要显着量的实验。

3、稳健性:如果该模型中,成本函数和学习算法,适当地选择所得到的神经网络可以是非常健壮的。有了正确的实施,人工神经网络,可以自然地应用于在线学习和大型数据集的应用程序。其简单的实现和表现在结构上主要依赖本地的存在,使得在硬件快速,并行实现。

❼ 为什么利用BP神经网络设计的分类器训练完后 实际测试时其输出的分类值不变,就是分不出类别啊,急,谢谢了

有可能是训练样本,两类样本数量相差悬殊 ,你那神经网络什么结构,什么训练方式,你确信通过超曲面能把样本分开?因为BP神经网络分类器是在拟合一种超曲面分类器,如果样本不可分,或者特征变量没选好,训练神经网络是不可能达到目的的。

❽ 为什么在类别少时卷积神经网络识别率很高,类别多时识别率下降

神经网络也不是万能的。
问题太复杂,神经网络训练时的收敛压力也越大,效果自然没有之前好。另外可以选择调整下网络参数,对结果会有一些改进。

❾ 为什么要批量训练神经网络

神经网络每次迭代的时候使用小批量,有两个好处,一方面可以降低参数更新时候的方差,收敛更加稳定,另一方面可以高度利用矩阵操作进行有效的梯度计算。

阅读全文

与分类神经网络为什么经过多轮训练相关的资料

热点内容
p2p网络电视软件 浏览:3
服装店铺网络营销可行性分析 浏览:158
手机短时不用为何会断开网络 浏览:289
物流公司的物流网络规划是什么 浏览:683
2021贵州网络安全技能 浏览:182
手机连接笔记本电脑网络流量 浏览:603
怎么设置网络类型 浏览:237
花茶网络营销 浏览:360
网络层和数据连接层 浏览:895
杭州计算机网络服务推荐咨询 浏览:336
移动网络ip刷新 浏览:272
中兴v9如何设置网络 浏览:667
太原手机端网络推广价格价位 浏览:600
为什么wifi满格还显示网络不给力 浏览:317
华为畅享9连着wifi和数据网络错误 浏览:33
怎么判断家里网络是否为电信 浏览:428
佳能ts3180网络连接 浏览:795
网络游戏第一门户站电脑端 浏览:465
苹果没有网络的时候wifi自动断开 浏览:878
基督网络诗你在哪里 浏览:120

友情链接