导航:首页 > 网络安全 > 如何限制一个高并发的闪电网络

如何限制一个高并发的闪电网络

发布时间:2022-05-11 14:31:03

‘壹’ 区块链3.0是什么有4.0吗

区块链技术目前发展阶段:金融价值期、信用价值期和治理价值期。其中区块链3.0与4.0都在飞速发展中,预测区块链技术将有一波大变革。

生态令主链侧链

ECOL生态令团队对待侧链面临的困境,通过数据隔离和跨链审计的方式,让侧链的业务数据保密性和安全性得到保障,解决数据透明与商业保密的平衡问题。

并支持多侧链,主侧链通讯,资产转移,既融合又分工,既具安全性又有便利性。主链主要负责安全及共识,侧链将提供智能合约、代币发行、资产交易、跨链互通、主侧链结构,通过瘦身、修剪技术能有效防止区块肿胀、垃圾推积、缩短同步时间。为高并发、闪电网络的实施扫清障碍。

ECOL生态令通过侧链技术,能够将不同区块链连接起来的技术,就是区块链拓展外在结构的解决传输速度慢,效率低下的关键。简单地说,侧链就像是一条条通路,将不同的区块链相连接在一起,以实现区块链的扩展。从长远来看,生态令在开发侧链、应用侧链、提出解决方案的情形下,逐步构建起属于侧链的高速价值互联网。

‘贰’ 如何打造一个高性能,高并发的消息推送系统

看是自己开发还是使用第三方系统,如果是自己开发的,就必须拥有一个强大的团队来进行研发;如果是使用第三方系统,推荐使用深圳极光的消息推送系统。
消息推送系统是一款手机通信软件,通过手机网络和wifi即时接收服务端发送的消息,支持图片和文字推送,即时性好,操作简单,使用方便,支持服务端通过c2dm对手机终端进行消息提示,让用户及时了解世界的变化。支持ios,Android等多种平台手机。
深圳极光是面向移动开发领域与产品运营领域的线下研讨会,旨在打造一个新技术与运营思维的聚集地,致力于解决 开发、产品、运营在工作中遇到的各类问题,并为大家提供一个思维碰撞、共同提升的互动平台。提供行业大数据标准化产品和服务,全面满足您的业务场景和数据需求。

‘叁’ 什么是DAG区块链技术

DAG全称是“有向无环图”,没有区块概念,不是把所有数据打包成区块,再用区块链接区块,而是每个用户都可以提交一个数据单元,这个数据单元里可以有很多东西,比如交易、消息等等。数据单元间通过引用关系链接起来,从而形成具有半序关系的DAG(有向无环图)。DAG的特点是把数据单元的写入操作异步化,大量的钱包客户端可以自主异步地把交易数据写入DAG,从而可以支持极大的并发量和极高的速度。同时,使用DAG技术的TrustNote还支持声明式智能合约,声明式的智能合约要表达的意思是可以直接按照用户想要的结果去写、去描述,以很简单的语言,让大家都能看懂的语言去描述他要干的事情。

截止到2017年年底,“高流量应用”越来越多,除了主流电商平台外,还有直播平台、P2P理财、今日头条、陌陌等崭露头角,如果“高流量应用”与DAG区块链技术结合,将会给行业带来哪些变革呢?除区块链自身的特点去中心化、分布式账本、不可篡改之外,DAG区块链技术不但可以支持高并发,结合双层共识机制,使用工作量证明共识算法,还能够防止“双花”问题。

那么,DAG如何支持高并发的呢?第一,数据不像比特币和以太坊一样强同步,而是弱同步,允许节点在同一时刻数据不一样,数据可以有一些微小的差别。第二,可以通过数据单元之间的引用来完成交易的确认,就是后面发生的单元去引用前面的单元,这样不需要我们把数据传给矿工,整个过程都是由自己去完成的,这个过程很快。DAG是解决高并发比较优美的方法,比起之前的闪电网络,还有其他一些方面,DAG有其先天优势。

再来看看DAG是如何防止“双花”?在有向图里如果能选出一个MainChain,这个时候会发现所有图里面的节点都可以用一种方法来给它做排序,把这个序号连接起来在一排,这张图将会变成跟区块链一样的序列结构,就是排完序的节点,而且每个节点是一个交易,而不是一个区块。所以,确定了主链,通过主链,可以形成全序。最后达到的结局就是在某一个逻辑状态里,交易还是被排序了,这是DAG最关键核心的部分。

“高流量应用”是随着节点数和交易数的增加平滑扩展,当这个节点数超过1亿或交易数超过并发100万时,DAG的特性刚好是交易越多越快,节点越多越快。

‘肆’ php怎么处理高并发

以下内容转载自徐汉彬大牛的博客亿级Web系统搭建——单机到分布式集群

当一个Web系统从日访问量10万逐步增长到1000万,甚至超过1亿的过程中,Web系统承受的压力会越来越大,在这个过程中,我们会遇到很多的问题。为了解决这些性能压力带来问题,我们需要在Web系统架构层面搭建多个层次的缓存机制。在不同的压力阶段,我们会遇到不同的问题,通过搭建不同的服务和架构来解决。

Web负载均衡

Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配“工作任务”,而采用恰当的分配方式,对于保护处于后端的Web服务器来说,非常重要。

负载均衡的策略有很多,我们从简单的讲起哈。

1.HTTP重定向

当用户发来请求的时候,Web服务器通过修改HTTP响应头中的Location标记来返回一个新的url,然后浏览器再继续请求这个新url,实际上就是页面重定向。通过重定向,来达到“负载均衡”的目标。例如,我们在下载PHP源码包的时候,点击下载链接时,为了解决不同国家和地域下载速度的问题,它会返回一个离我们近的下载地址。重定向的HTTP返回码是302

这个重定向非常容易实现,并且可以自定义各种策略。但是,它在大规模访问量下,性能不佳。而且,给用户的体验也不好,实际请求发生重定向,增加了网络延时。

2. 反向代理负载均衡

反向代理服务的核心工作主要是转发HTTP请求,扮演了浏览器端和后台Web服务器中转的角色。因为它工作在HTTP层(应用层),也就是网络七层结构中的第七层,因此也被称为“七层负载均衡”。可以做反向代理的软件很多,比较常见的一种是Nginx。

Nginx是一种非常灵活的反向代理软件,可以自由定制化转发策略,分配服务器流量的权重等。反向代理中,常见的一个问题,就是Web服务器存储的session数据,因为一般负载均衡的策略都是随机分配请求的。同一个登录用户的请求,无法保证一定分配到相同的Web机器上,会导致无法找到session的问题。

解决方案主要有两种:

1.配置反向代理的转发规则,让同一个用户的请求一定落到同一台机器上(通过分析cookie),复杂的转发规则将会消耗更多的CPU,也增加了代理服务器的负担。

2.将session这类的信息,专门用某个独立服务来存储,例如redis/memchache,这个方案是比较推荐的。

反向代理服务,也是可以开启缓存的,如果开启了,会增加反向代理的负担,需要谨慎使用。这种负载均衡策略实现和部署非常简单,而且性能表现也比较好。但是,它有“单点故障”的问题,如果挂了,会带来很多的麻烦。而且,到了后期Web服务器继续增加,它本身可能成为系统的瓶颈。

3. IP负载均衡

IP负载均衡服务是工作在网络层(修改IP)和传输层(修改端口,第四层),比起工作在应用层(第七层)性能要高出非常多。原理是,他是对IP层的数据包的IP地址和端口信息进行修改,达到负载均衡的目的。这种方式,也被称为“四层负载均衡”。常见的负载均衡方式,是LVS(Linux Virtual Server,Linux虚拟服务),通过IPVS(IP Virtual Server,IP虚拟服务)来实现。

在负载均衡服务器收到客户端的IP包的时候,会修改IP包的目标IP地址或端口,然后原封不动地投递到内部网络中,数据包会流入到实际Web服务器。实际服务器处理完成后,又会将数据包投递回给负载均衡服务器,它再修改目标IP地址为用户IP地址,最终回到客户端。

上述的方式叫LVS-NAT,除此之外,还有LVS-RD(直接路由),LVS-TUN(IP隧道),三者之间都属于LVS的方式,但是有一定的区别,篇幅问题,不赘叙。

IP负载均衡的性能要高出Nginx的反向代理很多,它只处理到传输层为止的数据包,并不做进一步的组包,然后直接转发给实际服务器。不过,它的配置和搭建比较复杂。

4. DNS负载均衡

DNS(Domain Name System)负责域名解析的服务,域名url实际上是服务器的别名,实际映射是一个IP地址,解析过程,就是DNS完成域名到IP的映射。而一个域名是可以配置成对应多个IP的。因此,DNS也就可以作为负载均衡服务。

这种负载均衡策略,配置简单,性能极佳。但是,不能自由定义规则,而且,变更被映射的IP或者机器故障时很麻烦,还存在DNS生效延迟的问题。

5. DNS/GSLB负载均衡

我们常用的CDN(Content Delivery Network,内容分发网络)实现方式,其实就是在同一个域名映射为多IP的基础上更进一步,通过GSLB(Global Server Load Balance,全局负载均衡)按照指定规则映射域名的IP。一般情况下都是按照地理位置,将离用户近的IP返回给用户,减少网络传输中的路由节点之间的跳跃消耗。

“向上寻找”,实际过程是LDNS(Local DNS)先向根域名服务(Root Name Server)获取到顶级根的Name Server(例如.com的),然后得到指定域名的授权DNS,然后再获得实际服务器IP。

CDN在Web系统中,一般情况下是用来解决大小较大的静态资源(html/Js/Css/图片等)的加载问题,让这些比较依赖网络下载的内容,尽可能离用户更近,提升用户体验。

例如,我访问了一张imgcache.gtimg.cn上的图片(腾讯的自建CDN,不使用qq.com域名的原因是防止http请求的时候,带上了多余的cookie信息),我获得的IP是183.60.217.90。

这种方式,和前面的DNS负载均衡一样,不仅性能极佳,而且支持配置多种策略。但是,搭建和维护成本非常高。互联网一线公司,会自建CDN服务,中小型公司一般使用第三方提供的CDN。

Web系统的缓存机制的建立和优化

刚刚我们讲完了Web系统的外部网络环境,现在我们开始关注我们Web系统自身的性能问题。我们的Web站点随着访问量的上升,会遇到很多的挑战,解决这些问题不仅仅是扩容机器这么简单,建立和使用合适的缓存机制才是根本。

最开始,我们的Web系统架构可能是这样的,每个环节,都可能只有1台机器。

我们从最根本的数据存储开始看哈。

一、 MySQL数据库内部缓存使用

MySQL的缓存机制,就从先从MySQL内部开始,下面的内容将以最常见的InnoDB存储引擎为主。

1. 建立恰当的索引

最简单的是建立索引,索引在表数据比较大的时候,起到快速检索数据的作用,但是成本也是有的。首先,占用了一定的磁盘空间,其中组合索引最突出,使用需要谨慎,它产生的索引甚至会比源数据更大。其次,建立索引之后的数据insert/update/delete等操作,因为需要更新原来的索引,耗时会增加。当然,实际上我们的系统从总体来说,是以select查询操作居多,因此,索引的使用仍然对系统性能有大幅提升的作用。

2. 数据库连接线程池缓存

如果,每一个数据库操作请求都需要创建和销毁连接的话,对数据库来说,无疑也是一种巨大的开销。为了减少这类型的开销,可以在MySQL中配置thread_cache_size来表示保留多少线程用于复用。线程不够的时候,再创建,空闲过多的时候,则销毁。

其实,还有更为激进一点的做法,使用pconnect(数据库长连接),线程一旦创建在很长时间内都保持着。但是,在访问量比较大,机器比较多的情况下,这种用法很可能会导致“数据库连接数耗尽”,因为建立连接并不回收,最终达到数据库的max_connections(最大连接数)。因此,长连接的用法通常需要在CGI和MySQL之间实现一个“连接池”服务,控制CGI机器“盲目”创建连接数。

建立数据库连接池服务,有很多实现的方式,PHP的话,我推荐使用swoole(PHP的一个网络通讯拓展)来实现。

3. Innodb缓存设置(innodb_buffer_pool_size)

innodb_buffer_pool_size这是个用来保存索引和数据的内存缓存区,如果机器是MySQL独占的机器,一般推荐为机器物理内存的80%。在取表数据的场景中,它可以减少磁盘IO。一般来说,这个值设置越大,cache命中率会越高。

4. 分库/分表/分区。

MySQL数据库表一般承受数据量在百万级别,再往上增长,各项性能将会出现大幅度下降,因此,当我们预见数据量会超过这个量级的时候,建议进行分库/分表/分区等操作。最好的做法,是服务在搭建之初就设计为分库分表的存储模式,从根本上杜绝中后期的风险。不过,会牺牲一些便利性,例如列表式的查询,同时,也增加了维护的复杂度。不过,到了数据量千万级别或者以上的时候,我们会发现,它们都是值得的。

二、 MySQL数据库多台服务搭建

1台MySQL机器,实际上是高风险的单点,因为如果它挂了,我们Web服务就不可用了。而且,随着Web系统访问量继续增加,终于有一天,我们发现1台MySQL服务器无法支撑下去,我们开始需要使用更多的MySQL机器。当引入多台MySQL机器的时候,很多新的问题又将产生。

1. 建立MySQL主从,从库作为备份

这种做法纯粹为了解决“单点故障”的问题,在主库出故障的时候,切换到从库。不过,这种做法实际上有点浪费资源,因为从库实际上被闲着了。

2. MySQL读写分离,主库写,从库读。

两台数据库做读写分离,主库负责写入类的操作,从库负责读的操作。并且,如果主库发生故障,仍然不影响读的操作,同时也可以将全部读写都临时切换到从库中(需要注意流量,可能会因为流量过大,把从库也拖垮)。

3. 主主互备。

两台MySQL之间互为彼此的从库,同时又是主库。这种方案,既做到了访问量的压力分流,同时也解决了“单点故障”问题。任何一台故障,都还有另外一套可供使用的服务。

不过,这种方案,只能用在两台机器的场景。如果业务拓展还是很快的话,可以选择将业务分离,建立多个主主互备。

三、 MySQL数据库机器之间的数据同步

每当我们解决一个问题,新的问题必然诞生在旧的解决方案上。当我们有多台MySQL,在业务高峰期,很可能出现两个库之间的数据有延迟的场景。并且,网络和机器负载等,也会影响数据同步的延迟。我们曾经遇到过,在日访问量接近1亿的特殊场景下,出现,从库数据需要很多天才能同步追上主库的数据。这种场景下,从库基本失去效用了。

于是,解决同步问题,就是我们下一步需要关注的点。

1. MySQL自带多线程同步

MySQL5.6开始支持主库和从库数据同步,走多线程。但是,限制也是比较明显的,只能以库为单位。MySQL数据同步是通过binlog日志,主库写入到binlog日志的操作,是具有顺序的,尤其当SQL操作中含有对于表结构的修改等操作,对于后续的SQL语句操作是有影响的。因此,从库同步数据,必须走单进程。

2. 自己实现解析binlog,多线程写入。

以数据库的表为单位,解析binlog多张表同时做数据同步。这样做的话,的确能够加快数据同步的效率,但是,如果表和表之间存在结构关系或者数据依赖的话,则同样存在写入顺序的问题。这种方式,可用于一些比较稳定并且相对独立的数据表。

国内一线互联网公司,大部分都是通过这种方式,来加快数据同步效率。还有更为激进的做法,是直接解析binlog,忽略以表为单位,直接写入。但是这种做法,实现复杂,使用范围就更受到限制,只能用于一些场景特殊的数据库中(没有表结构变更,表和表之间没有数据依赖等特殊表)。

四、 在Web服务器和数据库之间建立缓存

实际上,解决大访问量的问题,不能仅仅着眼于数据库层面。根据“二八定律”,80%的请求只关注在20%的热点数据上。因此,我们应该建立Web服务器和数据库之间的缓存机制。这种机制,可以用磁盘作为缓存,也可以用内存缓存的方式。通过它们,将大部分的热点数据查询,阻挡在数据库之前。

1. 页面静态化

用户访问网站的某个页面,页面上的大部分内容在很长一段时间内,可能都是没有变化的。例如一篇新闻报道,一旦发布几乎是不会修改内容的。这样的话,通过CGI生成的静态html页面缓存到Web服务器的磁盘本地。除了第一次,是通过动态CGI查询数据库获取之外,之后都直接将本地磁盘文件返回给用户。

在Web系统规模比较小的时候,这种做法看似完美。但是,一旦Web系统规模变大,例如当我有100台的Web服务器的时候。那样这些磁盘文件,将会有100份,这个是资源浪费,也不好维护。这个时候有人会想,可以集中一台服务器存起来,呵呵,不如看看下面一种缓存方式吧,它就是这样做的。

2. 单台内存缓存

通过页面静态化的例子中,我们可以知道将“缓存”搭建在Web机器本机是不好维护的,会带来更多问题(实际上,通过PHP的apc拓展,可通过Key/value操作Web服务器的本机内存)。因此,我们选择搭建的内存缓存服务,也必须是一个独立的服务。

内存缓存的选择,主要有redis/memcache。从性能上说,两者差别不大,从功能丰富程度上说,Redis更胜一筹。

3. 内存缓存集群

当我们搭建单台内存缓存完毕,我们又会面临单点故障的问题,因此,我们必须将它变成一个集群。简单的做法,是给他增加一个slave作为备份机器。但是,如果请求量真的很多,我们发现cache命中率不高,需要更多的机器内存呢?因此,我们更建议将它配置成一个集群。例如,类似redis cluster。

Redis cluster集群内的Redis互为多组主从,同时每个节点都可以接受请求,在拓展集群的时候比较方便。客户端可以向任意一个节点发送请求,如果是它的“负责”的内容,则直接返回内容。否则,查找实际负责Redis节点,然后将地址告知客户端,客户端重新请求。

对于使用缓存服务的客户端来说,这一切是透明的。

内存缓存服务在切换的时候,是有一定风险的。从A集群切换到B集群的过程中,必须保证B集群提前做好“预热”(B集群的内存中的热点数据,应该尽量与A集群相同,否则,切换的一瞬间大量请求内容,在B集群的内存缓存中查找不到,流量直接冲击后端的数据库服务,很可能导致数据库宕机)。

4. 减少数据库“写”

上面的机制,都实现减少数据库的“读”的操作,但是,写的操作也是一个大的压力。写的操作,虽然无法减少,但是可以通过合并请求,来起到减轻压力的效果。这个时候,我们就需要在内存缓存集群和数据库集群之间,建立一个修改同步机制。

先将修改请求生效在cache中,让外界查询显示正常,然后将这些sql修改放入到一个队列中存储起来,队列满或者每隔一段时间,合并为一个请求到数据库中更新数据库。

除了上述通过改变系统架构的方式提升写的性能外,MySQL本身也可以通过配置参数innodb_flush_log_at_trx_commit来调整写入磁盘的策略。如果机器成本允许,从硬件层面解决问题,可以选择老一点的RAID(Rendant Arrays of independent Disks,磁盘列阵)或者比较新的SSD(Solid State Drives,固态硬盘)。

5. NoSQL存储

不管数据库的读还是写,当流量再进一步上涨,终会达到“人力有穷时”的场景。继续加机器的成本比较高,并且不一定可以真正解决问题的时候。这个时候,部分核心数据,就可以考虑使用NoSQL的数据库。NoSQL存储,大部分都是采用key-value的方式,这里比较推荐使用上面介绍过Redis,Redis本身是一个内存cache,同时也可以当做一个存储来使用,让它直接将数据落地到磁盘。

这样的话,我们就将数据库中某些被频繁读写的数据,分离出来,放在我们新搭建的Redis存储集群中,又进一步减轻原来MySQL数据库的压力,同时因为Redis本身是个内存级别的Cache,读写的性能都会大幅度提升。

国内一线互联网公司,架构上采用的解决方案很多是类似于上述方案,不过,使用的cache服务却不一定是Redis,他们会有更丰富的其他选择,甚至根据自身业务特点开发出自己的NoSQL服务。

6. 空节点查询问题

当我们搭建完前面所说的全部服务,认为Web系统已经很强的时候。我们还是那句话,新的问题还是会来的。空节点查询,是指那些数据库中根本不存在的数据请求。例如,我请求查询一个不存在人员信息,系统会从各级缓存逐级查找,最后查到到数据库本身,然后才得出查找不到的结论,返回给前端。因为各级cache对它无效,这个请求是非常消耗系统资源的,而如果大量的空节点查询,是可以冲击到系统服务的。

在我曾经的工作经历中,曾深受其害。因此,为了维护Web系统的稳定性,设计适当的空节点过滤机制,非常有必要。

我们当时采用的方式,就是设计一张简单的记录映射表。将存在的记录存储起来,放入到一台内存cache中,这样的话,如果还有空节点查询,则在缓存这一层就被阻挡了。

异地部署(地理分布式)

完成了上述架构建设之后,我们的系统是否就已经足够强大了呢?答案当然是否定的哈,优化是无极限的。Web系统虽然表面上看,似乎比较强大了,但是给予用户的体验却不一定是最好的。因为东北的同学,访问深圳的一个网站服务,他还是会感到一些网络距离上的慢。这个时候,我们就需要做异地部署,让Web系统离用户更近。

一、 核心集中与节点分散

有玩过大型网游的同学都会知道,网游是有很多个区的,一般都是按照地域来分,例如广东专区,北京专区。如果一个在广东的玩家,去北京专区玩,那么他会感觉明显比在广东专区卡。实际上,这些大区的名称就已经说明了,它的服务器所在地,所以,广东的玩家去连接地处北京的服务器,网络当然会比较慢。

当一个系统和服务足够大的时候,就必须开始考虑异地部署的问题了。让你的服务,尽可能离用户更近。我们前面已经提到了Web的静态资源,可以存放在CDN上,然后通过DNS/GSLB的方式,让静态资源的分散“全国各地”。但是,CDN只解决的静态资源的问题,没有解决后端庞大的系统服务还只集中在某个固定城市的问题。

这个时候,异地部署就开始了。异地部署一般遵循:核心集中,节点分散。

·核心集中:实际部署过程中,总有一部分的数据和服务存在不可部署多套,或者部署多套成本巨大。而对于这些服务和数据,就仍然维持一套,而部署地点选择一个地域比较中心的地方,通过网络内部专线来和各个节点通讯。

·节点分散:将一些服务部署为多套,分布在各个城市节点,让用户请求尽可能选择近的节点访问服务。

例如,我们选择在上海部署为核心节点,北京,深圳,武汉,上海为分散节点(上海自己本身也是一个分散节点)。我们的服务架构如图:

需要补充一下的是,上图中上海节点和核心节点是同处于一个机房的,其他分散节点各自独立机房。
国内有很多大型网游,都是大致遵循上述架构。它们会把数据量不大的用户核心账号等放在核心节点,而大部分的网游数据,例如装备、任务等数据和服务放在地区节点里。当然,核心节点和地域节点之间,也有缓存机制。

二、 节点容灾和过载保护

节点容灾是指,某个节点如果发生故障时,我们需要建立一个机制去保证服务仍然可用。毫无疑问,这里比较常见的容灾方式,是切换到附近城市节点。假如系统的天津节点发生故障,那么我们就将网络流量切换到附近的北京节点上。考虑到负载均衡,可能需要同时将流量切换到附近的几个地域节点。另一方面,核心节点自身也是需要自己做好容灾和备份的,核心节点一旦故障,就会影响全国服务。

过载保护,指的是一个节点已经达到最大容量,无法继续接接受更多请求了,系统必须有一个保护的机制。一个服务已经满负载,还继续接受新的请求,结果很可能就是宕机,影响整个节点的服务,为了至少保障大部分用户的正常使用,过载保护是必要的。

解决过载保护,一般2个方向:

·拒绝服务,检测到满负载之后,就不再接受新的连接请求。例如网游登入中的排队。

·分流到其他节点。这种的话,系统实现更为复杂,又涉及到负载均衡的问题。

小结

Web系统会随着访问规模的增长,渐渐地从1台服务器可以满足需求,一直成长为“庞然大物”的大集群。而这个Web系统变大的过程,实际上就是我们解决问题的过程。在不同的阶段,解决不同的问题,而新的问题又诞生在旧的解决方案之上。

系统的优化是没有极限的,软件和系统架构也一直在快速发展,新的方案解决了老的问题,同时也带来新的挑战。

‘伍’ 用Java做一个大流量,高并发的网站应该怎么样进行底层构架

JVM
JEE容器中运行的JVM参数配置参数的正确使用直接关系到整个系统的性能和处理能力,JVM的调优主要是对内存管理方面的调优,优化的方向分为以下4点:
1.HeapSize 堆的大小,也可以说Java虚拟机使用内存的策略,这点是非常关键的。
2.GarbageCollector 通过配置相关的参数进行Java中的垃圾收集器的4个算法(策略)进行使用。
3.StackSize 栈是JVM的内存指令区,每个线程都有他自己的Stack,Stack的大小限制着线程的数量。
4.DeBug/Log 在JVM中还可以设置对JVM运行时的日志和JVM挂掉后的日志输出,这点非常的关键,根据各类JVM的日志输出才能配置合适的参数。
网上随处可见JVM的配置技巧,但是我还是推荐阅读Sun官方的2篇文章,可以对配置参数的其所依然有一个了解
1.Java HotSpot VM Options
Java HotSpot VM Options
2.Troubleshooting Guide for Java SE 6 with HotSpot VMTroubleshooting Guide for Java SE 6 with HotSpot VM
另外,我相信不是每个人攻城师都是天天对着这些JVM参数的,如果你忘记了那些关键的参数你可以输入Java -X(大写X)进行提示。
JDBC
针对MySQL的JDBC的参数在之前的文章中也有介绍过,在单台机器或者集群的环境下合理的使用JDBC中的配置参数对操作数据库也有很大的影响。
一些所谓高性能的 Java ORM开源框架也就是打开了很多JDBC中的默认参数:
1.例如:autoReconnect、prepStmtCacheSize、cachePrepStmts、useNewIO、blobSendChunkSize 等,
2.例如集群环境下:roundRobinLoadBalance、failOverReadOnly、autoReconnectForPools、secondsBeforeRetryMaster。
具体内容可以参阅MySQL的JDBC官方使用手册:
http://dev.mysql.com/doc/refman/5.1/zh/connectors.html#cj-jdbc-reference
数据库连接池(DataSource)

用程序与数据库连接频繁的交互会给系统带来瓶颈和大量的开销会影响到系统的性能,JDBC连接池负责分配、管理和释放数据库连接,它允许应用程序重复使用
一个现有的数据库连接,而再不是重新建立一个连接,因此应用程序不需要频繁的与数据库开关连接,并且可以释放空闲时间超过最大空闲时间的数据库连接来避免
因为没有释放数据库连接而引起的数据库连接遗漏。这项技术能明显提高对数据库操作的性能。
在此我认为有一点需要说明:
连接池的使用也是需
要关闭,因为在数据库连接池启动的时候就预先和数据库获得了相应的连接,之后不再需要应用程序直接的和数据库打交道,因为应用程序使用数据库连接池是一个
“借”的概念,应用程序从数据库连接池中获得资源是“借出”,还需要还回去,就好比有20个水桶放在这里,需要拿水的人都可以使用这些木桶从水池里面拿
水,如果20个人都拿完水,不将水桶还回原地,那么后面来的人再需要拿水,只能在旁边等待有人将木桶还回去,之前的人用完后需要放回去,不然后面的人就会
一直等待,造成资源堵塞,同理,应用程序获取数据库连接的时候Connection连接对象的时候是从“池”中分配一个数据库连接出去,在使用完毕后,归
还这个数据库连接,这样才能保持数据库的连接“有借有还”准则。
参考资料:
http://dev.mysql.com/doc/refman/5.1/zh/connectors.html#cj-connection-pooling
数据存取

据库服务器的优化和数据的存取,什么类型的数据放在什么地方更好是值得去思考的问题,将来的存储很可能是混用
的,Cache,NOSQL,DFS,DataBase
在一个系统中都会有,生活的餐具和平日里穿衣服需要摆放在家里,但是不会用同一种类型的家具存放,貌似没有那个人家把餐具和衣服放在同一个柜子里面的。这
就像是系统中不同类型的数据一样,对不同类型的数据需要使用合适的存储环境。文件和图片的存储,首先按照访问的热度分类,或者按照文件的大小。强关系类型
并且需要事务支持的采用传统的数据库,弱关系型不需要事务支持的可以考虑NOSQL,海量文件存储可以考虑一下支持网络存储的DFS,至于缓存要看你单个
数据存储的大小和读写的比例。
还有一点值得注意就是数据读写分离,无论在DataBase还是NOSQL的环境中大部分都是读大于写,因此在设计
时还需考虑
不仅仅需要让数据的读分散在多台机器上,还需要考虑多台机器之间的数据一致性,MySQL的一主多从,在加上MySQL-Proxy或者借用JDBC中的
一些参数(roundRobinLoadBalance、failOverReadOnly、autoReconnectForPools、
secondsBeforeRetryMaster)对后续应用程序开发,可以将读和写分离,将大量读的压力分散在多台机器上,并且还保证了数据的一致
性。
缓存
在宏观上看缓存一般分为2种:本地缓存和分布式缓存
1.本地缓存,对于
Java的本地缓存而言就是讲数据放入静态(static)的数据结合中,然后需要用的时候就从静态数据结合中拿出来,对于高并发的环境建议使用
ConcurrentHashMap或者CopyOnWriteArrayList作为本地缓存。缓存的使用更具体点说就是对系统内存的使用,使用多少内
存的资源需要有一个适当比例,如果超过适当的使用存储访问,将会适得其反,导致整个系统的运行效率低下。
2. 分布式缓存,一般用于分布式的环境,将每台机器上的缓存进行集中化的存储,并且不仅仅用于缓存的使用范畴,还可以作为分布式系统数据同步/传输的一种手段,一般被使用最多的就是Memcached和Redis。
数据存储在不同的介质上读/写得到的效率是不同的,在系统中如何善用缓存,让你的数据更靠近cpu,下面有一张图你需要永远牢记在心里,来自Google的技术大牛Jeff Dean(Ref)的杰作,如图所示:

并发/多线程

高并发环境下建议开发者使用JDK中自带的并发包(java.util.concurrent),在JDK1.5以后使用
java.util.concurrent下的工具类可以简化多线程开发,在java.util.concurrent的工具中主要分为以下几个主要部
分:
1.线程池,线程池的接口(Executor、ExecutorService)与实现类(ThreadPoolExecutor、
ScheledThreadPoolExecutor),利用jdk自带的线程池框架可以管理任务的排队和安排,并允许受控制的关闭。因为运行一个线
程需要消耗系统CPU资源,而创建、结束一个线程也对系统CPU资源有开销,使用线程池不仅仅可以有效的管理多线程的使用,还是可以提高线程的运行效率。
2.
本地队列,提供了高效的、可伸缩的、线程安全的非阻塞 FIFO 队列。java.util.concurrent 中的五个实现都支持扩展的
BlockingQueue 接口,该接口定义了 put 和 take
的阻塞版本:LinkedBlockingQueue、ArrayBlockingQueue、SynchronousQueue、
PriorityBlockingQueue 和
DelayQueue。这些不同的类覆盖了生产者-使用者、消息传递、并行任务执行和相关并发设计的大多数常见使用的上下文。

‘陆’ mysql数据库怎么解决高并发问题

限流算法目前程序开发过程常用的限流算法有两个:漏桶算法和令牌桶算法。

漏桶算法

漏桶算法的原理比较简单,请求进入到漏桶中,漏桶以一定的速率漏水。当请求过多时,水直接溢出。可以看出,漏桶算法可以强制限制数据的传输速度。如图所示,把请求比作是水滴,水先滴到桶里,通过漏洞并以限定的速度出水,当水来得过猛而出水不够快时就会导致水直接溢出,即拒绝服务。

图片来自网络

漏桶算法和令牌桶算法的选择

两者的主要区别漏桶算法能够强行限制处理数据的速率,不论系统是否空闲。而令牌桶算法能够在限制数据的平均处理速率的同时还允许某种程度的突发流量。如何理解上面的含义呢?漏桶算法,比如系统吞吐量是 120/s,业务请求 130/s,使用漏斗限流 100/s,起到限流的作用,多余的请求将产生等待或者丢弃。对于令牌桶算法,每秒产生 100 个令牌,系统容量 200 个令牌。正常情况下,业务请求 100/s 时,请求能被正常被处理。当有突发流量过来比如 200 个请求时,因为系统容量有 200 个令牌可以同一时刻处理掉这 200 个请求。如果是漏桶算法,则只能处理 100 个请求,其他的请求等待或者被丢弃。

‘柒’ 区块链中闪电网络是指什么

比特币的交易网络最为人诟病的一点便是交易性能:全网每秒 7 笔的交易速度,远低于传统的金融交易系统;同时,等待 6 个块的可信确认导致约 1 个小时的最终确认时间。
闪电网络的主要思路十分简单 -- 将大量交易放到比特币区块链之外进行。
RSMC 保障了两个人之间的直接交易可以在链下完成,HTLC 保障了任意两个人之间的转账都可以通过一条"支付"通道来完成。整合这两种机制,就可以实现任意两个人之间的交易都可以在链下完成了。
在整个交易中,智能合约起到了中介的重要角色,而区块链则确保最终的交易结果被确认。

‘捌’ 如何设计一个支持高并发的高可用服务

服务程序最为关键的设计是并发服务模型,当前有以下几种典型的模型:-单进程服务,使用非阻塞IO使用一个进程服务多个客户,通常与客户通信的套接字设置为非阻塞的,阻塞只发生在select()、poll()、epoll_wait()等系统调用上面。这是一种行之有效的单进程状态机式服务方式,已被广泛采用。缺点是它无法利用SMP(对称多处理器)的优势,除非启动多个进程。此外,它尝试就绪的IO文件描述符后,立即从系统调用返回,这会导致大量的系统调用发生,尤其是在较慢的字节传输时。select()本身的实现也是有局限的:能打开的文件描述符最多不能超过FD_SETSIZE,很容易耗尽;每次从select()返回的描述符组中扫描就绪的描述符需要时间,如果就绪的描述符在末尾时更是如此(epoll特别彻底修复了这个问题)。-多进程服务,使用阻塞IO也称作accept/fork模型,每当有客户连线时产生一个新的进程为之服务。这种方式有时是必要的,比如可以通过操作系统获得良好的内存保护,可以以不同的用户身份运行程序,可以让服务运行在不同的目录下面。但是它的缺点也很明显:进程比较占资源,进程切换开销太大,共享某些信息比较麻烦。Apache1.3就使用了这种模型,MaxClients数很容易就可以达到。-多线程服务,使用阻塞IO也称之accept/pthread_create模型,有新客户来时创建一个服务线程而不是服务进程。这解决了多进程服务的一些问题,比如它占用资源少,信息共享方便。但是麻烦在于线程仍有可能消耗光,线程切换也需要开销。-混合服务方式所谓的混合服务方式,以打破服务方和客户方之间严格的1:1关系。基本做法是:新客户到来时创建新的工作线程,当该工作线程检测到网络IO会有延迟时停止处理过程,返回给Server一个延迟处理状态,同时告诉Server被延迟的文件描述符,延迟超时时间。Server会在合适的时候返回工作线程继续处理。注意这里的工作线程不是通过pthread_create()创建的,而是被包装在专门用于处理延迟工作的函数里。这里还有一个问题,工作线程如何检测网络IO会有延迟?方法有很多,比如设置较短的超时时间调用poll(),或者甚至使用非阻塞IO。如果是套接字,可以设置SO_RCVTIMEO和SO_SNDTIMEO选项,这样更有效率。除了延迟线程,Server还应提供了未完成线程的支持。如有有特别耗费时间的操作,你可以在完成部分工作后停止处理,返回给Server一个未完成状态。这样Server会检查工作队列是否有别的线程,如果有则让它们运行,否则让该工作线程继续处理,这可以防止某些线程挨饿。典型的一个混合服务模型开源实现ServerKitServerkit的这些线程支持功能可简化我们的服务程序设计,效率上应该也是有保证的。2.队列(queue)ServerKit提供的队列是一个单向链表,队列的存取是原子操作,如果只有一个执行单元建议不要用,因为原子操作的开销较大。3.堆(heap)malloc()分配内存有一定的局限,比如在多线程的环境里,需要序列化内存分配操作。ServerKit提供的堆管理函数,可快速分配内存,可有效减少分配内存的序列化操作,堆的大小可动态增长,堆有引用计数,这些特征比较适合多线程环境。目前ServerKit堆的最大局限是分配单元必须是固定大小。4.日志记录日志被保存在队列,有一个专门的线程处理队列中的日志记录:它或者调用syslog()写进系统日志,或者通过UDP直接写到远程机器。后者更有效。5.读写锁GNUlibc也在pthreads库里实现了读写锁,如果定义了__USE_UNIX98就可以使用。不过ServerKit还提供了读写锁互相转换的函数,这使得锁的应用更为弹性。比如拥有读锁的若干个线程对同一个hash表进行检索,其中一个线程检索到了数据,此时需要修改它,一种法是获取写锁,但这会导致释放读锁和获取写锁之间存在时间窗,另一种法是使用ServerKit提供的函数把读锁转换成写锁,无疑这种方式更有效率。除了以上这些功能,ServerKit还提供了数据库连接池的管理(当前只支持MySQL)和序列化(Sequences),如感兴趣可参见相关的API文档。二、ServerKit服务模块编写ServerKit由3部分组成:server程序,负责加载服务模块、解析配置文件、建立数据库连接池;libserver,动态链接库,提供所有功能的库支持,包括server本身也是调用这个库写的;API,编程接口,你编写的服务模块和ServerKit框架进行对话的接口。ServerKit需要libConfuse解析配置文件,所以出了安装ServerKit,还需要安装libConfuse。关于libConfuse可参考。下面我们看一个简单的服务模块FOO:#include#includestaticlongintsleep_ration;staticintFOO_construct(){fprintf(stderr,"FOO_construct\n");return1;}staticintFOO_prestart(cfg_t*configuration){fprintf(stderr,"FOO_prestart\n");return1;}staticvoid*FOO_operator(void*foobar){fprintf(stderr,"FOO_operator\n");for(;;)sleep(sleep_ration);returnNULL;}staticvoidFOO_report(void){fprintf(stderr,"FOO_report\n");}staticcfg_opt_tFOO_config[]={CFG_SIMPLE_INT("sleep_ration",&sleep_ration),CFG_END()};staticchar*FOO_authors[]={"VitoCaputo",NULL};SERVER_MODULE(FOO,0,0,1,"")按以下方法编译:$gcc-c-fPIC-pthread-D_REENTRANT-gFOO.c$gcc-shared-lserver-lconfuse-lpthread-g-e__server_mole_main-oFOO.soFOO.o-e选项指定程序运行入口,这使得你可以直接在命令行敲./FOO.so运行模块。server程序根据环境变量SERVER_PERSONALITY_PATH定位主目录,并查找主目录下的c11n作为配置文件,动态加载的模块需放在主目录下的moles目录。$exportSERVER_PERSONALITY_PATH=`pwd`$mkdirmoles$cpFOO.somoles$vic11nc11n的内容:identity="any_id"FOO{sleep_ration=1;}identity标识server实例,用ps可看到程序名称形如server.identity,本例为server.any_id。执行server启动服务程序。三、ServerKit其他功能缺陷缺乏daemon模式;只能运行在Linuxbox;DBpool只支持MySQL;Heap管理内存的功力有限

‘玖’ DAGT区块链是要解决什么

DAG全称是“有向无环图”,没有区块概念,不是把所有数据打包成区块,再用区块链接区块,而是每个用户都可以提交一个数据单元,这个数据单元里可以有很多东西,比如交易、消息等等。数据单元间通过引用关系链接起来,从而形成具有半序关系的DAG(有向无环图)。DAG的特点是把数据单元的写入操作异步化,大量的钱包客户端可以自主异步地把交易数据写入DAG,从而可以支持极大的并发量和极高的速度。同时,使用DAG技术的TrustNote还支持声明式智能合约,声明式的智能合约要表达的意思是可以直接按照用户想要的结果去写、去描述,以很简单的语言,让大家都能看懂的语言去描述他要干的事情。

截止到2017年年底,“高流量应用”越来越多,除了主流电商平台外,还有直播平台、P2P理财、今日头条、陌陌等崭露头角,如果“高流量应用”与DAG区块链技术结合,将会给行业带来哪些变革呢?除区块链自身的特点去中心化、分布式账本、不可篡改之外,DAG区块链技术不但可以支持高并发,结合双层共识机制,使用工作量证明共识算法,还能够防止“双花”问题。

那么,DAG如何支持高并发的呢?第一,数据不像比特币和以太坊一样强同步,而是弱同步,允许节点在同一时刻数据不一样,数据可以有一些微小的差别。第二,可以通过数据单元之间的引用来完成交易的确认,就是后面发生的单元去引用前面的单元,这样不需要我们把数据传给矿工,整个过程都是由自己去完成的,这个过程很快。DAG是解决高并发比较优美的方法,比起之前的闪电网络,还有其他一些方面,DAG有其先天优势。

再来看看DAG是如何防止“双花”?在有向图里如果能选出一个MainChain,这个时候会发现所有图里面的节点都可以用一种方法来给它做排序,把这个序号连接起来在一排,这张图将会变成跟区块链一样的序列结构,就是排完序的节点,而且每个节点是一个交易,而不是一个区块。所以,确定了主链,通过主链,可以形成全序。最后达到的结局就是在某一个逻辑状态里,交易还是被排序了,这是DAG最关键核心的部分。

“高流量应用”是随着节点数和交易数的增加平滑扩展,当这个节点数超过1亿或交易数超过并发100万时,DAG的特性刚好是交易越多越快,节点越多越快。

‘拾’ 比特币闪电网络是如何运行的

首先,需要进行交易各方建立了一个多签名钱包(需要一个以上的签名才能进行交易)。这个钱包里装有一些比特币。然后将钱包地址保存到比特币区块链中。这样就建立了支付渠道。双方现在可以进行无限数量的交易,而无需接触存储在区块链上的信息。对于每一笔交易,双方都签署了更新的资产负债表,以始终反映出钱包中存储的比特币归属,以及每一笔的交易的数量。

双方完成交易并关闭通道后,将产生的余额记录在区块链上。发生债务争议时,双方都可以使用最近签署的资产负债表来收回他们在钱包中的份额。无需建立直接的渠道进行闪电交易,用户可以通过与之有联系的人的渠道将付款发送给某人。网络会自动找到最快的交易渠道。

随着 SegWit 在比特币和莱特币网络上的采用,该技术的发展得到了极大的推动。因为如果没有升级的交易可扩展性的修补程序,闪电网络上的交易风险便会太大,难以实施。如果没有背后的区块链安全性,闪电网络将不会那么安全,这意味着它将被广泛用于风险较小的小型甚至微型交易。

btc

链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。

阅读全文

与如何限制一个高并发的闪电网络相关的资料

热点内容
米家打印机连接无线网络 浏览:232
网络安全宣传周小知识 浏览:684
网络经济运行所遵循的基本特征有哪些 浏览:510
红米手机在哪里设置网络 浏览:219
网络电视正版软件下载 浏览:37
怎么样把自己的网络给其他手机用 浏览:715
公用网络怎么设置信号 浏览:181
日版苹果官换机能不能解网络锁 浏览:357
电脑网络波动断网是路由器问题吗 浏览:336
深度还原网络营销号 浏览:102
美版带锁的苹果手机能还原网络吗 浏览:778
移动初始网络密码一般是什么 浏览:301
美版xsmax怎么关闭某个软件的网络 浏览:622
开发者模式设置网络 浏览:708
家用网络ip地址设置多少 浏览:300
电脑登录qq一直显示检查网络情况 浏览:41
张家湾移动网络复盖哪些村 浏览:969
苹果怎么开共享网络 浏览:33
手机怎么回事没显示4g网络 浏览:177
水星路由器插上找不到网络 浏览:729

友情链接