导航:首页 > 网络安全 > bp神经网络如何提取特征

bp神经网络如何提取特征

发布时间:2022-02-17 18:50:39

① 卷积神经网络的卷积层如何提取特征

提取特征不一定是分三层,觉得特征值不够好,可以增加卷积层。用于图片识别只是一种,其根本理念是通过卷积神经网络提取特征,图片只是数据的一种,人脸识别根本也是一种图片的比对,基本理念是对数据提取特征进行学习。数据可以是图片,声音,视屏等等

② BP神经网络模型各个参数的选取问题

样本变量不需要那么多,因为神经网络的信息存储能力有限,过多的样本会造成一些有用的信息被丢弃。如果样本数量过多,应增加隐层节点数或隐层数目,才能增强学习能力。

一、隐层数
一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数来获得较低的误差,其训练效果要比增加隐层数更容易实现。对于没有隐层的神经网络模型,实际上就是一个线性或非线性(取决于输出层采用线性或非线性转换函数型式)回归模型。因此,一般认为,应将不含隐层的网络模型归入回归分析中,技术已很成熟,没有必要在神经网络理论中再讨论之。
二、隐层节点数
在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。 目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。

③ 机器学习神经网络特征提取方法有哪些

这个得看你要解决什么问题了啊~是语音还是图像还是什么别的。一般图像中,或者语音转成语谱图之后,cnn可以替代特征提取。

④ 卷积神经网络每层提取的特征是什么样的

卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。

图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。这些映射图再进过滤波得到C3层。这个层级结构再和S2一样产生S4。最终,这些像素值被光栅化,并连接成一个向量输入到传统的神经网络,得到输出。


一般地,C层为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;S层是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。


此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度。卷积神经网络中的每一个特征提取层(C-层)都紧跟着一个用来求局部平均与二次提取的计算层(S-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变容忍能力。

⑤ 为什么浅层神经网络提取特征的能力不强

BP神经网络、离散Hopfield网络、LVQ神经网络等等都可以。


  1. BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

  2. 2.Hopfiled神经网络是一种递归神经网络,由约翰·霍普菲尔德在1982年发明。Hopfield网络是一种结合存储系统和二元系统的神经网络。它保证了向局部极小的收敛,但收敛到错误的局部极小值(local minimum),而非全局极小(global minimum)的情况也可能发生。Hopfiled网络也提供了模拟人类记忆的模型。

  3. 3.LVQ神经网络由三层组成,即输入层、隐含层和输出层,网络在输入层与隐含层间为完全连接,而在隐含层与输出层间为部分连接,每个输出层神经元与隐含层神经元的不同组相连接。隐含层和输出层神经元之间的连接权值固定为1。输入层和隐含层神经元间连接的权值建立参考矢量的分量(对每个隐含神经元指定一个参考矢量)。在网络训练过程中,这些权值被修改。隐含层神经元(又称为Kohnen神经元)和输出神经元都具有二进制输出值。当某个输入模式被送至网络时,参考矢量最接近输入模式的隐含神经元因获得激发而赢得竞争,因而允许它产生一个“1”,而其它隐含层神经元都被迫产生“0”。与包含获胜神经元的隐含层神经元组相连接的输出神经元也发出“1”,而其它输出神经元均发出“0”。产生“1”的输出神经元给出输入模式的类,由此可见,每个输出神经元被用于表示不同的类。

⑥ 训练模型 如何提取特征

特征是在模型中的中间层,有些需要手动提取,而神经网络可以自动提取

⑦ Matlab构建BP神经网络提取数字图像边缘

在加工每一针前根据设定轨迹、运动参数、物料材质、当前加工位置等先用BP神经网络得到加工点粗略的变形量,对加工轨迹进行预补偿。加工时动态采集加工点的局部图像,经数字图像处理得到加工点实际坐标与设定坐标的偏差值,一方面将所得值作为神经网络的输出样本,结合相关参数对神经网络进行在线培训,另一方面将此偏差值与加工点设定坐标之和(即加工点实际坐标)用神经网络的输出进行预补偿,求出其与针头实际位置的差值作为PID控制器的输入,从而提高控制系统的动态特性,实现快速精确绗缝的自动化加工。

⑧ 神经网络需要特征提取吗

需要,如果不做特征提取会影响神经网络判断的正确性。

⑨ 神经网络训练matlab程序详解 特征提取还是什么的 我看不懂了

这是BP神经网络的特征维和样本输入建立关系;
1 for hh=1:30
p((hh-1)*30+1:(hh-1)*30+30,pcolum+1)=p1(hh,1:30);
end
//总共有pcolum个样本,每个样本有30维特征值;依次循环送入记录特征值的矩阵p中,
2 switch pcolum 用于把样本的值送入教师矩阵t中;样本按0~49顺序输入;对应5组0~9,比方第一个case中告诉t在0~49中那些属于“数字0”;
总的来说t值对应不同的p取1~9

也就是说这段程序的中心目的是把p( 特征维,pcolum)与对应的输出t(pcolum)对应起来,之后再把p和t送入BP网络中训练

主要看你p1是怎么来的;估计是把原始手写体分成粗网格;即p1是一个30×30的矩阵,p是一个900×50的矩阵;其列为输入的50个手写体;行为900个网格的值;
for hh=1:30
p((hh-1)*30+1:(hh-1)*30+30,pcolum+1)=p1(hh,1:30);
end
这段程序其实就是把2维的p1放入到p的一行里面去;把30×30的矩阵换成900×1
的形式。
你去搜索下 粗网格/BP神经 ,具体看你前面的p1是怎么来的;可能你这30×30的矩阵就是30×30大小的手写体二值化图像每个像素上的值

⑩ 哪些神经网络可以用在图像特征提取上

BP神经网络、离散Hopfield网络、LVQ神经网络等等都可以。

1.BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
2.Hopfiled神经网络是一种递归神经网络,由约翰·霍普菲尔德在1982年发明。Hopfield网络是一种结合存储系统和二元系统的神经网络。它保证了向局部极小的收敛,但收敛到错误的局部极小值(local minimum),而非全局极小(global minimum)的情况也可能发生。Hopfiled网络也提供了模拟人类记忆的模型。
3.LVQ神经网络由三层组成,即输入层、隐含层和输出层,网络在输入层与隐含层间为完全连接,而在隐含层与输出层间为部分连接,每个输出层神经元与隐含层神经元的不同组相连接。隐含层和输出层神经元之间的连接权值固定为1。输入层和隐含层神经元间连接的权值建立参考矢量的分量(对每个隐含神经元指定一个参考矢量)。在网络训练过程中,这些权值被修改。隐含层神经元(又称为Kohnen神经元)和输出神经元都具有二进制输出值。当某个输入模式被送至网络时,参考矢量最接近输入模式的隐含神经元因获得激发而赢得竞争,因而允许它产生一个“1”,而其它隐含层神经元都被迫产生“0”。与包含获胜神经元的隐含层神经元组相连接的输出神经元也发出“1”,而其它输出神经元均发出“0”。产生“1”的输出神经元给出输入模式的类,由此可见,每个输出神经元被用于表示不同的类。

阅读全文

与bp神经网络如何提取特征相关的资料

热点内容
网络旁边的hd没了是什么 浏览:169
设置网关地址但是没有网络设备 浏览:886
网络安全主题漫画简易 浏览:480
网络给我们带来哪些影响利弊 浏览:258
计算机专业和网络安全哪个好 浏览:241
网络用语母后是什么意思 浏览:966
为什么无线桥接的网络很慢 浏览:97
iqoo手机怎样设置4g网络 浏览:823
学生网络授课用电脑吗 浏览:274
怎样查看电脑所需要几兆的网络 浏览:496
手机被拒绝使用周围网络 浏览:628
网络安全防范办公室 浏览:662
猫有网络无信号怎么回事 浏览:135
网络中的密码是什么 浏览:313
看关注列表视频时显示网络异常 浏览:415
oppo手机wifi和手机网络同时使用 浏览:903
笔记本电脑wifi连上了没网络 浏览:604
高碑店无线网络 浏览:959
立林19型网络主机初始密码 浏览:860
为什么我的电脑不显示网络连接 浏览:929

友情链接