㈠ PART 4 W1 卷积神经网络介绍
一个是图像分类:如猫脸识别等;一个是目标检测:如无人驾驶技术中的各种交通信号检测技术
1. 卷积操作及过滤器/卷积核的概念
如上图所示:最左侧矩阵是一个灰度图像,中间是一个3*3的小矩阵,称为“卷积核”或“过滤器”。
卷积:先把卷积核放到灰度图像左上角(绿色框),盖住灰度图像上一个3*3的矩阵区域,然后9对对应的元素相乘,然后求和(得到0),然后把卷积核逐渐移动一行一行的“扫描”,最终得到最右侧矩阵。上述操作叫做“卷积”,最右侧矩阵是卷积的输出。
2. 垂直边缘检测
仍以上图为例,可以看到3*3的卷积核具体的数值构成为“左边一列1,中间一列0,右边一列-1”,这种卷积核在“扫描”灰度图像时,可以检测到灰度图像的垂直边缘。分析如下:
1)假设正在扫描的灰度区域没有垂直边缘,意味着区域内的值在左右方向上分布差不多,与卷积核做完运算后,左边的乘1,右边的乘-1,相加正好有一定的抵消作用,其实计算出来的结果会接近0。即:卷积结果接近0代表没有边缘。
2)有垂直边缘分为两种情况:目标区域“左边值较大,右边值较小” 或“左边值较小,右边值较大”。前一种情况在卷积操作后会得到一个较大的正值,后一种情况卷积操作后会得到一个较大的负值。
可以看出,较大的正值代表着目标区域的变化趋势与卷积核相同,即检测到的是与卷积核相同的边缘,而较大的负值代表目标区域的变化趋势与卷积核相反,即检测到的是与卷积核相反的边缘。
3. 卷积应用在卷积神经网络中
卷积操作如何应用于神经网络中?简言之,卷积核本身就是网络要学习的参数。如上图所示,我们并不是事先设定好要检测垂直边缘或水平边缘或其它什么边缘,而是要网络去学习要检测什么东西。
1. padding的原因
在上节展示的卷积操作中,可以看出,假设输入图像的大小为n*n,而卷积核的大小为f*f,那么卷积核从输入图像的左上角扫描到右下角,最终得到的结果大小为(n-f+1)*(n-f+1),意味着如果一次次进行卷积,那么结果的尺寸会越来越小
另外,显然输入图像边缘的像素被使用的较少(最边缘的像素仅被使用一次),这显然会造成信息的丢失。
2. 如何进行padding
非常简单:把输入图像的四周补充p = (f-1)/2 圈的0,这样输入的图像尺寸变成了(n+2p)*(n+2p),因此卷积后的大小变成了(n+2p -f + 1)*(n+2p -f + 1)=n*n,即与原始的图像有了相同的大小,且原始图像边缘的像素也被较多的利用到。
3. 几点补充
(1)卷积核的尺寸设置为 奇数 :因为① 这样(f-1)/2就恰好是整数了,方便进行padding,② 有中心像素,便于表征卷积核的位置,等。
(2)根据是否进行padding,分为 普通卷积(valid) 和 同尺寸卷积(same)
1. 步长概念
在上文中讲到卷积,即使用一个卷积核对输入图像进行“扫描”并进行相应计算时,提到这个“扫描”是逐个像素逐个像素的迈进的。但是,并不一定非得这样,也可以每次跨越两个或更多个像素,这就是“步长”的概念,一般用s表示
2. 卷积结果尺寸与步长的关系
前文提到,若输入图像尺寸为n*n,卷积核尺寸为f*f,则卷积结果尺寸为(n+f-1)*(n+f-1),若算上padding操作,则结果为(n+2p -f + 1)*(n+2p -f + 1)。这是在步长s=1的前提下成立。若步长不为1,则结果为floor((n+2p-f)/s+1)**2
3. 其它:数学中的卷积和神经网络中的卷积
需要说明的是,神经网络中所说的卷积和数学中说的卷积不是一回事,但数学中的卷积是啥就不追究了。
神经网络中的卷积操作,在数学的描述上,更像是一种“交叉相关性”的计算,可以看出,若目标区域与卷积核有类似的分布,则会计算出较大的正值(正相关),若有相反的分布,则会计算出较大的负值(负相关),若没什么关系,则会计算出接近0的值(不相关)。卷积操作的确很像一种相关性的计算。
1. RGB图像的数学构成
灰度图像是一个n*n的二维矩阵,彩色图像则是n*n*3 的三维矩阵,最外围的三个维度分别代表了RGB三原色的值,其中数字“3”在卷积神经网络中被称为通道数或信道数
2. 对RGB图像进行卷积
在对灰度图像进行卷积时,使用的是f*f的二维卷积核。在对RGB图像进行卷积时,则卷积核的维度也+1,变成了f*f*3。一次卷积的结果仍然是把所有的值加起来输出一个值。即: 一个三维的图像,和一个三维的卷积核,在进行完卷积操作后,输出的是一个二维的矩阵(如上图) 。
3. 当使用多个卷积核时的输出
如上图所示,可以使用多个卷积核(一个亮黄色,一个屎黄色)。根据前文描述,一个立体的卷积核在一个立体的矩阵上扫描完,结果是一个二维的。但当使用多个卷积核时,则输出了多个二维矩阵,这些二维矩阵沿着第三个维度排列到一起,使得结果重新变成了三维。此时,第三个维度的尺寸,反应的是卷积核数,也就是说 卷积核数就是信道数 。直观理解,每一个卷积核代表着检测了某一种特征,多个卷积核就是同时检测了多种特征,传递了多种信息。
1. 一个卷积层的数据的基本流
如上图所示,由于卷积核本身就是一堆待学参数w,所以卷积操作本质还是“加权求和”,之后会加入偏置值,然后进行非线性变换,然后输出(到下一层),可见还是那一套。
需要提一下的是,卷积的输入不一定是原始图像构成的矩阵,还有可能是上一个卷积的结果。原始图像是彩色的,有多个通道。卷积时可以用多个卷积核,最终产生的结果也是立体的。因此原始的输入与中间卷积层的输出,在数学形式上是统一的。因此可以“输入->卷积层->卷积层->...”这样操作。
2. 卷积层的参数规模
一个卷积层总的参数规模(包括w,不包括b)为: ,即:卷积核的大小的平方*上层输出的通道数)*本层所用的卷积核数。与上层输入的大小无关(但与通道数有关)
3. 一个卷积层涉及到的超参
卷积核的大小、是否padding、步长、卷积核数。
1. 一个示例
上图为一个简单的卷积神经网络示例: 一层一层的卷积,最后把所有的元素展开成一个一维向量,然后加一个全连接层。
2. 注意以下几点:
1⃣️ 实际上CNN会有卷积层、池化层、全连接层,而非仅有卷积和全连接;
2⃣️ 从数据的构成形式上看,按照网络从前往后的顺序,图片尺寸不断减小,信道数量不断增加。一般遵从这个趋势。
1. 池化
如上图所示,假设输入是一个4*4的矩阵,现在我们把它分割成2*2四个子矩阵(或者说使用一个2*2的核以2为步长扫描矩阵),对四个子区域分别求最大值,最终得到一个值为9、2、6、3的2*2的矩阵输出。这种操作就叫池化,具体为最大值池化。
2. 池化的作用
1⃣️ 一般来说,较大的值往往代表学到了一个重要或典型的特征,把原始输入以某种方式滤除掉一些不重要的值,只保留一些较大的值,相当于 强化了一些重要信息的表达 。2⃣️ 降低图片的尺寸,可以节省空间、加速运算等。
3. 池化的特点
并没有需要学习的参数(w、b之类的),也因此“池化层”一般并不被称为单独的一层。在卷积神经网络中,通常把一个卷积层+一个池化层的组合叫一层。
4. 池化的超参数及经验值
池化层没有要学习的参数,只有核心的两个超参:池化核的大小、池化步长。此外还有池化所用的rece操作:最大或者平均(没有其它选项)。
一般把池化核的大小设置为3或2,步长为2。注意:步长为2意味着把图片减小到原来的一半。
rece操作最常用最大池化,偶尔用平均池化,不会用其它操作。
上图为一个典型的卷积神经网络示例,描述如下:
输入层 :彩色的手写数字图片,数学构成为32*32*3的矩阵,其中3为通道数。
Layer 1-卷积层 :1)使用6个5*5*3的卷积核,以步长为1对输入层进行卷积,输出28*28*6的矩阵,2)然后使用2*2的最大池化,步长为2,最终输出14*14*6的矩阵。其中14为图片尺寸,6为信道数。
Layer2-卷积层 :1)使用16个5*5*3的卷积核以步长1对上层输出进行卷积,输出10*10*16的矩阵,2)然后使用2*2的最大池化,步长为2,最终输出5*5*16的矩阵。
Layer3-全连接层: 把上层输出的5*5*16矩阵展开成1*400的一维向量,以120*400的权重矩阵送入本层120个神经元,激活后输出。
Layer4-全连接层: 120->84,激活后输出
输出层 :84 -> 10,然后softmax后输出。
1. 参数少
假如原始图片尺寸为100*100*3,假设使用全连接,即使第二层仅用100个神经元,那也已经产生了100*100*3*100 = 300w个参数,难以想象。
假设使用卷积层,使用10个10*10*3的卷积核,那就是只有3000个参数,而能输出的矩阵规模是91*91*10=81000
2. 参数少的原因
1)稀疏连接:卷积核扫描矩阵产生输出,这个过程就从“神经元连接”的角度看,输入的左上角只连着输出的左上角,右上角只连右上角,而非“全连接”,参数就会少很多。2)参数共享:这么稀疏的连接,还是使用了同一套参数,进一步减少了参数的量。
3. 参数共享的其它好处
如果图片上有一只猫,那么不管这个猫在图片的什么位置,都不改变“这是一张猫的照片”。使用参数共享时,相当于用同样的特征提取作用到整个图片的各个区域,适应平移不变性,增强鲁棒性。
㈡ 卷积神经网络
关于花书中卷积网络的笔记记录于 https://www.jianshu.com/p/5a3c90ea0807 。
卷积神经网络(Convolutional Neural Network,CNN或ConvNet)是一种具有 局部连接、权重共享 等特性的深层前馈神经网络。卷积神经网络是受生物学上感受野的机制而提出。 感受野(Receptive Field) 主要是指听觉、视觉等神经系统中一些神经元的特性,即 神经元只接受其所支配的刺激区域内的信号 。
卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:
目前的卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络,使用反向传播算法进行训练。 卷积神经网络有三个结构上的特性:局部连接,权重共享以及汇聚 。这些特性使卷积神经网络具有一定程度上的平移、缩放和旋转不变性。
卷积(Convolution)是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维或二维卷积。
一维卷积经常用在信号处理中,用于计算信号的延迟累积。假设一个信号发生器每个时刻t 产生一个信号 ,其信息的衰减率为 ,即在 个时间步长后,信息为原来的 倍。假设 ,那么在时刻t收到的信号 为当前时刻产生的信息和以前时刻延迟信息的叠加:
我们把 称为 滤波器(Filter)或卷积核(Convolution Kernel) 。假设滤波器长度为 ,它和一个信号序列 的卷积为:
信号序列 和滤波器 的卷积定义为:
一般情况下滤波器的长度 远小于信号序列长度 ,下图给出一个一维卷积示例,滤波器为 :
二维卷积经常用在图像处理中。因为图像为一个两维结构,所以需要将一维卷积进行扩展。给定一个图像 和滤波器 ,其卷积为:
下图给出一个二维卷积示例:
注意这里的卷积运算并不是在图像中框定卷积核大小的方框并将各像素值与卷积核各个元素相乘并加和,而是先把卷积核旋转180度,再做上述运算。
在图像处理中,卷积经常作为特征提取的有效方法。一幅图像在经过卷积操作后得到结果称为 特征映射(Feature Map) 。
最上面的滤波器是常用的高斯滤波器,可以用来对图像进行 平滑去噪 ;中间和最下面的过滤器可以用来 提取边缘特征 。
在机器学习和图像处理领域,卷积的主要功能是在一个图像(或某种特征)上滑动一个卷积核(即滤波器),通过卷积操作得到一组新的特征。在计算卷积的过程中,需要进行卷积核翻转(即上文提到的旋转180度)。 在具体实现上,一般会以互相关操作来代替卷积,从而会减少一些不必要的操作或开销。
互相关(Cross-Correlation)是一个衡量两个序列相关性的函数,通常是用滑动窗口的点积计算来实现 。给定一个图像 和卷积核 ,它们的互相关为:
互相关和卷积的区别仅在于卷积核是否进行翻转。因此互相关也可以称为不翻转卷积 。当卷积核是可学习的参数时,卷积和互相关是等价的。因此,为了实现上(或描述上)的方便起见,我们用互相关来代替卷积。事实上,很多深度学习工具中卷积操作其实都是互相关操作。
在卷积的标准定义基础上,还可以引入滤波器的 滑动步长 和 零填充 来增加卷积多样性,更灵活地进行特征抽取。
滤波器的步长(Stride)是指滤波器在滑动时的时间间隔。
零填充(Zero Padding)是在输入向量两端进行补零。
假设卷积层的输入神经元个数为 ,卷积大小为 ,步长为 ,神经元两端各填补 个零,那么该卷积层的神经元数量为 。
一般常用的卷积有以下三类:
因为卷积网络的训练也是基于反向传播算法,因此我们重点关注卷积的导数性质:
假设 。
, , 。函数 为一个标量函数。
则由 有:
可以看出, 关于 的偏导数为 和 的卷积 :
同理得到:
当 或 时, ,即相当于对 进行 的零填充。从而 关于 的偏导数为 和 的宽卷积 。
用互相关的“卷积”表示,即为(注意 宽卷积运算具有交换性性质 ):
在全连接前馈神经网络中,如果第 层有 个神经元,第 层有 个神经元,连接边有 个,也就是权重矩阵有 个参数。当 和 都很大时,权重矩阵的参数非常多,训练的效率会非常低。
如果采用卷积来代替全连接,第 层的净输入 为第 层活性值 和滤波器 的卷积,即:
根据卷积的定义,卷积层有两个很重要的性质:
由于局部连接和权重共享,卷积层的参数只有一个m维的权重 和1维的偏置 ,共 个参数。参数个数和神经元的数量无关。此外,第 层的神经元个数不是任意选择的,而是满足 。
卷积层的作用是提取一个局部区域的特征,不同的卷积核相当于不同的特征提取器。
特征映射(Feature Map)为一幅图像(或其它特征映射)在经过卷积提取到的特征,每个特征映射可以作为一类抽取的图像特征。 为了提高卷积网络的表示能力,可以在每一层使用多个不同的特征映射,以更好地表示图像的特征。
在输入层,特征映射就是图像本身。如果是灰度图像,就是有一个特征映射,深度 ;如果是彩色图像,分别有RGB三个颜色通道的特征映射,深度 。
不失一般性,假设一个卷积层的结构如下:
为了计算输出特征映射 ,用卷积核 分别对输入特征映射 进行卷积,然后将卷积结果相加,并加上一个标量偏置 得到卷积层的净输入 再经过非线性激活函数后得到输出特征映射 。
在输入为 ,输出为 的卷积层中,每个输出特征映射都需要 个滤波器以及一个偏置。假设每个滤波器的大小为 ,那么共需要 个参数。
汇聚层(Pooling Layer)也叫子采样层(Subsampling Layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。
常用的汇聚函数有两种:
其中 为区域 内每个神经元的激活值。
可以看出,汇聚层不但可以有效地减少神经元的数量,还可以使得网络对一些小的局部形态改变保持不变性,并拥有更大的感受野。
典型的汇聚层是将每个特征映射划分为 大小的不重叠区域,然后使用最大汇聚的方式进行下采样。汇聚层也可以看做是一个特殊的卷积层,卷积核大小为 ,步长为 ,卷积核为 函数或 函数。过大的采样区域会急剧减少神经元的数量,会造成过多的信息损失。
一个典型的卷积网络是由卷积层、汇聚层、全连接层交叉堆叠而成。
目前常用卷积网络结构如图所示,一个卷积块为连续 个卷积层和 个汇聚层( 通常设置为 , 为 或 )。一个卷积网络中可以堆叠 个连续的卷积块,然后在后面接着 个全连接层( 的取值区间比较大,比如 或者更大; 一般为 )。
目前,整个网络结构 趋向于使用更小的卷积核(比如 和 )以及更深的结构(比如层数大于50) 。此外,由于卷积的操作性越来越灵活(比如不同的步长),汇聚层的作用变得也越来越小,因此目前比较流行的卷积网络中, 汇聚层的比例也逐渐降低,趋向于全卷积网络 。
在全连接前馈神经网络中,梯度主要通过每一层的误差项 进行反向传播,并进一步计算每层参数的梯度。在卷积神经网络中,主要有两种不同功能的神经层:卷积层和汇聚层。而参数为卷积核以及偏置,因此 只需要计算卷积层中参数的梯度。
不失一般性,第 层为卷积层,第 层的输入特征映射为 ,通过卷积计算得到第 层的特征映射净输入 ,第 层的第 个特征映射净输入
由 得:
同理可得,损失函数关于第 层的第 个偏置 的偏导数为:
在卷积网络中,每层参数的梯度依赖其所在层的误差项 。
卷积层和汇聚层中,误差项的计算有所不同,因此我们分别计算其误差项。
第 层的第 个特征映射的误差项 的具体推导过程如下:
其中 为第 层使用的激活函数导数, 为上采样函数(upsampling),与汇聚层中使用的下采样操作刚好相反。如果下采样是最大汇聚(max pooling),误差项 中每个值会直接传递到上一层对应区域中的最大值所对应的神经元,该区域中其它神经元的误差项的都设为0。如果下采样是平均汇聚(meanpooling),误差项 中每个值会被平均分配到上一层对应区域中的所有神经元上。
第 层的第 个特征映射的误差项 的具体推导过程如下:
其中 为宽卷积。
LeNet-5虽然提出的时间比较早,但是是一个非常成功的神经网络模型。基于LeNet-5 的手写数字识别系统在90年代被美国很多银行使用,用来识别支票上面的手写数字。LeNet-5 的网络结构如图:
不计输入层,LeNet-5共有7层,每一层的结构为:
AlexNet是第一个现代深度卷积网络模型,其首次使用了很多现代深度卷积网络的一些技术方法,比如采用了ReLU作为非线性激活函数,使用Dropout防止过拟合,使用数据增强来提高模型准确率等。AlexNet 赢得了2012 年ImageNet 图像分类竞赛的冠军。
AlexNet的结构如图,包括5个卷积层、3个全连接层和1个softmax层。因为网络规模超出了当时的单个GPU的内存限制,AlexNet 将网络拆为两半,分别放在两个GPU上,GPU间只在某些层(比如第3层)进行通讯。
AlexNet的具体结构如下:
在卷积网络中,如何设置卷积层的卷积核大小是一个十分关键的问题。 在Inception网络中,一个卷积层包含多个不同大小的卷积操作,称为Inception模块。Inception网络是由有多个inception模块和少量的汇聚层堆叠而成 。
v1版本的Inception模块,采用了4组平行的特征抽取方式,分别为1×1、3× 3、5×5的卷积和3×3的最大汇聚。同时,为了提高计算效率,减少参数数量,Inception模块在进行3×3、5×5的卷积之前、3×3的最大汇聚之后,进行一次1×1的卷积来减少特征映射的深度。如果输入特征映射之间存在冗余信息, 1×1的卷积相当于先进行一次特征抽取 。
㈢ 卷积神经网络(Convolutional Neural Networks, CNN)——更有效率地提取特征
卷积神经网络(Convolutional Neural Networks, CNN)——更有效率地提取特征
图像识别问题本质上就是分类问题,比如我们要区分猫和狗,那么我们就需要构建一个模型,将照片丢进去后,模型能输出猫或者狗的概率有多大。在做图像识别时首要的就是要提取图片的特征,那么如何提取图片的特征呢?前面讲到了前向全连接网络,我们可以尝试用前向全连接网络提取。假设图片的像素是100*100,如果如片是彩色的,每个像素都有RGB三种颜色的数值。因此,一张图片是有一个三维向量构成的,一维是长100,一维是宽100,还有一维是R、G、B 3个通道(channels)。把这个三维向量拉直作为一个一维向量,长度就是100*100*3。
我们在区分一张图片时,我们观察的往往是图片的局部的、最重要的特征。 比如图片上是一只鸟,我们可能通过嘴巴、眼睛、爪子等就可以判断出是一只鸟了。因此,输入层的每一个神经元没有必要看图片的全局,只需要看一个局部就行了。
在两张不同的图片上,同一个特征区域可能处于不同位置。 比如鸟嘴的局部特征区域在下面这两张图上就处在不同的位置上。那么如何才能让两个不同的神经元在看到这两个不同的感受野时,能产生一致的特征值呢?
对上面的内容进行一个总结:
(1)我们设置一个局部感受野,假设感受野的大小为W*H*C,其中W表示感受野的宽度,H表示感受野的高度,C表示感受野的通道数。那么对应的神经元的参数的个数就为:W*H*C个权值加1个偏置。在卷积神经网络中,我们称这样一个神经元为一个 滤波器(filter) 。
(3)我们通过滑动的方式让感受野铺满整个图片,假设图片的尺寸是W1*H1*C,滑动步长为S,零填充的数量为P。假设感受野的个数是W2*H2,其中,
(4)我们让所有感受野的观测滤波器参数进行共享,即相当于一个滤波器通过滑动扫描的方式扫描了所有感受野。
(5)我们设置多个滤波器,假设滤波器的个数为K,这K个滤波器都通过滑动扫描的方式扫过整个图片。此时参数的个数为:(W*H*C+1)*K。
(6)由于每个滤波器每经过一个感受野都会进行一次计算输出一个值,所以输出的维度为:W2*H2*K。我们将这个输出称为特征图,所以特征图宽度为W2,高度为H2,通道数C2=K。
举个例子: 假设某个图片的大小是100*100*3,设置滤波器的大小为3*3*3,滤波器的个数为64,设置步长S=1,设置零填充的数量为P=0。那么卷积神经网络的参数为, 相比前向全连接 个参数,参数的个数缩小了几个数量级。
输出特征图的宽度和高度均为, 输出特征图的通道数为, 所以输出特征图的维度为98*98*64。
如果在上面输出的基础上再叠加一层卷积神经网络,滤波器的设置宽和高可以不变,但是通道数不再是3了,而是变成64了,因为输入特征图的通道数已经变64了。假设滤波器的大小为3*3*64,滤波器的个数为32,设置步长S=1,设置零填充的数量为P=0。可以计算出来,新的输出特征图的维度是96*96*32。
以上就是卷积神经网络(CNN)的解析。但是CNN一般不是单独用的,因为一般提取图片的特征是为了分类,还需要进一步处理,常见的形式如下图所示。
㈣ CNN(卷积神经网络)算法
基础知识讲解:
卷积:通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。
前馈神经网络:各神经元分层排列,每个神经元只与前一层的神经元相连,接收前一层的输出,并输出给下一层.各层间没有反馈。
卷积神经网络:是一类包含卷积计算且具有深度结构的前馈神经网络
卷积核:就是图像处理时,给定输入图像,输入图像中一个小区域中像素加权平均后成为输出图像中的每个对应像素,其中权值由一个函数定义,这个函数称为卷积核。
下采样:对于一个样值序列间隔几个样值取样一次,这样得到新序列就是原序列的下采样。
结构介绍
输入层:用于数据输入
卷积层:利用卷积核进行特征提取和特征映射
激励层:非线性映射,卷积是线性映射,弥补不足
池化层:进行下采样,对特征图稀疏处理,减少数据运算量
全连接层:在CNN的尾部进行重新拟合,减少特征信息的损失
输入层:
在CNN的输入层中,(图片)数据输入的格式 与 全连接神经网络的输入格式(一维向量)不太一样。CNN的输入层的输入格式保留了图片本身的结构。
对于黑白的 28×28 的图片,CNN的输入是一个 28×28 的的二维神经元:
而对于RGB格式的28×28图片,CNN的输入则是一个 3×28×28 的三维神经元(RGB中的每一个颜色通道都有一个 28×28 的矩阵)
卷积层:
左边是输入,中间部分是两个不同的滤波器Filter w0、Filter w1,最右边则是两个不同的输出。
ai.j=f(∑m=02∑n=02wm,nxi+m,j+n+wb)
wm,n:filter的第m行第n列的值
xi,j: 表示图像的第i行第j列元素
wb:用表示filter的偏置项
ai,j:表示Feature Map的第i行第j列元素
f:表示Relu激活函数
激励层:
使用的激励函数一般为ReLu函数:
f(x)=max(x,0)
卷积层和激励层通常合并在一起称为“卷积层”。
池化层:
当输入经过卷积层时,若感受视野比较小,布长stride比较小,得到的feature map (特征图)还是比较大,可以通过池化层来对每一个 feature map 进行降维操作,输出的深度还是不变的,依然为 feature map 的个数。
池化层也有一个“池化视野(filter)”来对feature map矩阵进行扫描,对“池化视野”中的矩阵值进行计算,一般有两种计算方式:
Max pooling:取“池化视野”矩阵中的最大值
Average pooling:取“池化视野”矩阵中的平均值
训练过程:
1.前向计算每个神经元的输出值aj( 表示网络的第j个神经元,以下同);
2.反向计算每个神经元的误差项σj,σj在有的文献中也叫做敏感度(sensitivity)。它实际上是网络的损失函数Ed对神经元加权输入的偏导数
3.计算每个神经元连接权重wi,j的梯度( wi,j表示从神经元i连接到神经元j的权重)
1.最后,根据梯度下降法则更新每个权重即可。
参考: https://blog.csdn.net/love__live1/article/details/79481052
㈤ 【阅读笔记】改进卷积神经网络的14个小技巧
原文: https://mp.weixin.qq.com/s/Lh_lJNvV9BGhc6no2ln-_g
原题目误导性太大
1)架构要遵循应用
你也许会被 Google Brain 或者 DeepMind 这些奇特的实验室所发明的那些耀眼的新模型所吸引,但是其中许多在你的用例或者业务环境中要么是不可能实现,要么是实现起来非常不现实。你应该使用对你的特定应用最有意义的模型,这种模型或许比较简单,但是仍然很强大,例如 VGG。
2)网络路径的激增
每年的 ImageNet Challenge 的冠军都会使用比上一届冠军更加深层的网络。从 AlexNet 到 Inception,再到 ResNet,Smith 注意到了“网络中路径数量倍增”的趋势,并且“ResNet 可以是不同长度的网络的指数集合”。
3)争取简单
然而,更大的并不一定是更好的。在名为“Bigger is not necessarily better”的论文中,Springenberg 等人演示了如何用更少的单元实现最先进的结果。参考:https://arxiv.org/pdf/1412.6806.pdf
4)增加对称性
无论是在建筑上,还是在生物上,对称性被认为是质量和工艺的标志。Smith 将 FractalNet 的优雅归功于网络的对称性。
5)金字塔式的形状
你也许经常在表征能力和减少冗余或者无用信息之间权衡。卷积神经网络通常会降低激活函数的采样,并会增加从输入层到最终层之间的连接通道。
6)过度训练
另一个权衡是训练准确度和泛化能力。用类似 drop-out 或者 drop-path 的方法进行正则化可以提高泛化能力,这是神经网络的重要优势。请在比你的实际用例更加苛刻的问题下训练你的网络,以提高泛化性能。
7)全面覆盖问题空间
为了扩展你的训练数据和提升泛化能力,请使用噪声和数据增强,例如随机旋转、裁剪和一些图像操作。
8)递增的特征构造
随着网络结构越来越成功,它们进一部简化了每一层的“工作”。在非常深层的神经网络中,每一层仅仅会递增的修改输入。在 ResNets 中,每一层的输出和它的输入时很相似的,这意味着将两层加起来就是递增。实践中,请在 ResNet 中使用较短的跳变长度。
9)标准化层的输入
标准化是另一个可以使计算层的工作变得更加容易的方法,在实践中被证明可以提升训练和准确率。批量标准化(batch normalization)的发明者认为原因在于处理内部的协变量,但是 Smith 认为,“标准化把所有层的输入样本放在了一个平等的基础上(类似于一种单位转换),这允许反向传播可以更有效地训练”。
10)输入变换
研究表明,在 Wide ResNets 中,性能会随着连接通道的增加而增强,但是你需要权衡训练代价与准确度。AlexNet、VGG、Inception 和 ResNets 都在第一层使用了输入变换以让输入数据能够以多种方式被检查。
11)可用的资源决指引着层的宽度
然而,可供选择的输出数量并不是显而易见的,这依赖于你的硬件能力以及期望的准确度。
12)Summation Joining
Summation 是一种常用的合并分支的方式。在 ResNets 中,使用总和作为连接的机制可以让每一个分支都能计算残差和整体近似。如果输入跳跃连接一直存在,那么 summation 会让每一层学到正确地东西(例如与输入的差别)。在任何分支都可以被丢弃的网络(例如 FractalNet)中,你应该使用这种方式类保持输出的平滑。
13)下采样变换
在池化的时候,利用级联连接(concatenation joining)来增加输出的数量。当使用大于 1 的步长时,这会同时处理连接并增加连接通道的数量。
14)用于竞争的 Maxout
Maxout 被用在你只需要选择一个激活函数的局部竞争网络中。使用求和以及平均值会包含所有的激活函数,所以不同之处在于 maxout 只选择一个“胜出者”。Maxout 的一个明显的用例是每个分支具有不同大小的内核,而 Maxout 可以包含尺度不变性。
1)使用调优过的预训练网络
“如果你的视觉数据和 ImageNet 相似,那么使用预训练网络会帮助你学习得更快”,机器学习公司 Diffbot 的 CEO Mike Tung 解释说。低水平的卷积神经网络通常可以被重复使用,因为它们大多能够检测到像线条以及边缘这些模式。将分类层用你自己的层替换,并且用你特定的数据去训练最后的几个层。
2)使用 freeze-drop-path
Drop-path 会在训练的迭代过程中随机地删除一些分支。Smith 测试了一种相反的方法,它被称为 freeze-path,就是一些路径的权重是固定的、不可训练的,而不是整体删除。因为下一个分支比以前的分支包含更多的层,并且正确的内容更加容易近似得到,所以网络应该会得到更好的准确度。
3)使用循环的学习率
关于学习率的实验会消耗大量的时间,并且会让你遇到错误。自适应学习率在计算上可能是非常昂贵的,但是循环学习率不会这样。使用循环学习率(CLR)时,你可以设置一组最大最小边界,在边界范围内改变学习率。Smith 甚至还在论文《Cyclical Learning Rates for Training Neural Networks》中提供了计算学习率的最大值和最小值的方法。参考:https://arxiv.org/pdf/1506.01186.pdf
4)在有噪声的标签中使用 bootstrapping
在现实中,很多数据都是混乱的,标签都是主观性的或者是缺失的,而且预测的对象可能是训练的时候未曾遇到过的。Reed 等人在文章《TRAINING DEEP NEURAL NETWORKS ON NOISY LABELS WITH BOOTSTRAPPING》中描述了一种给网络预测目标注入一致性的方法。直观地讲,这可以奏效,通过使网络利用对环境的已知表示(隐含在参数中)来过滤可能具有不一致的训练标签的输入数据,并在训练时清理该数据。参考:https://arxiv.org/pdf/1412.6596
5)采用有 Maxout 的 ELU,而不是 ReLU
ELU 是 ReLU 的一个相对平滑的版本,它能加速收敛并提高准确度。与 ReLU 不同,ELU 拥有负值,允许它们以更低的计算复杂度将平均单位激活推向更加接近 0 的值,就像批量标准化一样参考论文《FAST AND ACCURATE DEEP NETWORK LEARNING BY EXPONENTIAL LINEAR UNITS (ELUS)》,https://arxiv.org/pdf/1511.07289.pdf。如果您使用具有全连接层的 Maxout,它们是特别有效的。
㈥ 卷积神经网络
1、二维互相关运算
二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。
2、二维卷积层
卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。
二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。
3、特征图与感受野
二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素x的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做x的感受野(receptive field)。
以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图中形状为2×2的输出记为Y,将Y与另一个形状为2×2的核数组做互相关运算,输出单个元素z。那么,z在Y上的感受野包括Y的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。
4、填充和步幅
我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。
4.1 填充(padding)
是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。
如果原输入的高和宽是 和 ,卷积核的高和宽是 和 ,在高的两侧一共填充 行,在宽的两侧一共填充 列,则输出形状为:
)
我们在卷积神经网络中使用奇数高宽的核,比如3×3,5×5的卷积核,对于高度(或宽度)为大小为2k+1的核,令步幅为1,在高(或宽)两侧选择大小为k的填充,便可保持输入与输出尺寸相同。
4.2 步幅(stride)
在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1,图3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。
一般来说,当高上步幅为 ,宽上步幅为 时,输出形状为:
如果 ,那么输出形状将简化为:
更进一步,如果输入的高和宽能分别被高和宽上的步幅整除,那么输出形状将是:(nh/sh)×(nw/sw)
当 时,我们称填充为p;当 时,我们称步幅为s。
5、多输入通道和多输出通道
之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是h和w(像素),那么它可以表示为一个3×h×w的多维数组,我们将大小为3的这一维称为通道(channel)维。
5.1 多输入通道
卷积层的输入可以包含多个通道,图4展示了一个含2个输入通道的二维互相关计算的例子。
5.2 多输出通道
卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为ci和co,高和宽分别为kh和kw。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为ci×kh×kw的核数组,将它们在输出通道维上连结,卷积核的形状即co×ci×kh×kw。
对于输出通道的卷积核,我们提供这样一种理解,一个ci×kh×kw的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,我们需要有多个这样的ci×kh×kw的核数组,不同的核数组提取的是不同的特征。
5.3 1x1卷积层
最后讨论形状为1×1的卷积核,我们通常称这样的卷积运算为1×1卷积,称包含这种卷积核的卷积层为1×1卷积层。图5展示了使用输入通道数为3、输出通道数为2的1×1卷积核的互相关计算。
1×1卷积核可在不改变高宽的情况下,调整通道数。1×1卷积核不识别高和宽维度上相邻元素构成的模式,其主要计算发生在通道维上。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价。
6、卷积层与全连接层的对比
二维卷积层经常用于处理图像,与此前的全连接层相比,它主要有两个优势:
一是全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。
二是卷积层的参数量更少。不考虑偏置的情况下,一个形状为(ci,co,h,w)的卷积核的参数量是ci×co×h×w,与输入图像的宽高无关。假如一个卷积层的输入和输出形状分别是(c1,h1,w1)和(c2,h2,w2),如果要用全连接层进行连接,参数数量就是c1×c2×h1×w1×h2×w2。使用卷积层可以以较少的参数数量来处理更大的图像。
X=torch.rand(4,2,3,5)
print(X.shape)
conv2d=nn.Conv2d(in_channels=2,out_channels=3,kernel_size=(3,5),stride=1,padding=(1,2))
Y=conv2d(X)
print('Y.shape: ',Y.shape)
print('weight.shape: ',conv2d.weight.shape)
print('bias.shape: ',conv2d.bias.shape)
输出:
torch.Size([4, 2, 3, 5])
Y.shape: torch.Size([4, 3, 3, 5])
weight.shape: torch.Size([3, 2, 3, 5])
bias.shape: torch.Size([3])
7、池化
7.1 二维池化层
池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。图6展示了池化窗口形状为2×2的最大池化。
二维平均池化的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为p×q的池化层称为p×q池化层,其中的池化运算叫作p×q池化。
池化层也可以在输入的高和宽两侧填充并调整窗口的移动步幅来改变输出形状。池化层填充和步幅与卷积层填充和步幅的工作机制一样。
在处理多通道输入数据时,池化层对每个输入通道分别池化,但不会像卷积层那样将各通道的结果按通道相加。这意味着池化层的输出通道数与输入通道数相等。
CNN网络中另外一个不可导的环节就是Pooling池化操作,因为Pooling操作使得feature map的尺寸变化,假如做2×2的池化,假设那么第l+1层的feature map有16个梯度,那么第l层就会有64个梯度,这使得梯度无法对位的进行传播下去。其实解决这个问题的思想也很简单,就是把1个像素的梯度传递给4个像素,但是需要保证传递的loss(或者梯度)总和不变。根据这条原则,mean pooling和max pooling的反向传播也是不同的。
7.2 mean pooling
mean pooling的前向传播就是把一个patch中的值求取平均来做pooling,那么反向传播的过程也就是把某个元素的梯度等分为n份分配给前一层,这样就保证池化前后的梯度(残差)之和保持不变,还是比较理解的,图示如下:
mean pooling比较容易让人理解错的地方就是会简单的认为直接把梯度复制N遍之后直接反向传播回去,但是这样会造成loss之和变为原来的N倍,网络是会产生梯度爆炸的。
7.3 max pooling
max pooling也要满足梯度之和不变的原则,max pooling的前向传播是把patch中最大的值传递给后一层,而其他像素的值直接被舍弃掉。那么反向传播也就是把梯度直接传给前一层某一个像素,而其他像素不接受梯度,也就是为0。所以max pooling操作和mean pooling操作不同点在于需要记录下池化操作时到底哪个像素的值是最大,也就是max id。
源码中有一个max_idx_的变量,这个变量就是记录最大值所在位置的,因为在反向传播中要用到,那么假设前向传播和反向传播的过程就如下图所示。
7.4 Pytorch 实现池化层
我们使用Pytorch中的nn.MaxPool2d实现最大池化层,关注以下构造函数参数:
kernel_size – the size of the window to take a max over
stride – the stride of the window. Default value is kernel_size
padding – implicit zero padding to be added on both sides
forward函数的参数为一个四维张量,形状为 ,返回值也是一个四维张量,形状为 ,其中N是批量大小,C,H,W分别表示通道数、高度、宽度。
X=torch.arange(32,dtype=torch.float32).view(1,2,4,4)
pool2d=nn.MaxPool2d(kernel_size=3,padding=1,stride=(2,1))
Y=pool2d(X)
print(X)
print(Y)
练习
1、假如你用全连接层处理一张256 \times 256256×256的彩色(RGB)图像,输出包含1000个神经元,在使用偏置的情况下,参数数量是:
答:图像展平后长度为3×256×256,权重参数和偏置参数的数量是3× 256× 256 × 1000 + 1000 =196609000。
2、假如你用全连接层处理一张256×256的彩色(RGB)图像,卷积核的高宽是3×3,输出包含10个通道,在使用偏置的情况下,这个卷积层共有多少个参数:
答:输入通道数是3,输出通道数是10,所以参数数量是10×3×3×3+10=280。
3、conv2d = nn.Conv2d(in_channels=3, out_channels=4, kernel_size=3, padding=2),输入一张形状为3×100×100的图像,输出的形状为:
答:输出通道数是4,上下两侧总共填充4行,卷积核高度是3,所以输出的高度是104 - 3 + 1=102104−3+1=102,宽度同理可得。
4、关于卷积层,以下哪种说法是错误的:
A.1×1卷积可以看作是通道维上的全连接
B.某个二维卷积层用于处理形状为3×100×100的输入,则该卷积层无法处理形状为3×256×256的输入
C.卷积层通过填充、步幅、输入通道数、输出通道数等调节输出的形状
D .两个连续的3×3卷积核的感受野与一个5×5卷积核的感受野相同
答:选B,对于高宽维度,只要输入的高宽(填充后的)大于或等于卷积核的高宽即可进行计算。
the first layer is a 3 × 3 convolution, the second is a fully connected layer on top of the 3 × 3 output grid of the first layer (see Figure 1). Sliding this small network over the input activation grid boils down to replacing the 5 × 5 convolution with two layers of 3 × 3 convolution.
我们假设图片是5*5的
我们使用5*5的卷积核对其卷积,步长为1,得到的结果是:(5-5)/1+1=1
然后我们使用2个卷积核为3*3的,这里的两个是指2层:
第一层3*3:
得到的结果是(5-3)/1+1=3
第二层3*3:
得到的结果是(3-3)/1+1=1
所以我们的最终得到结果感受野大小和用5*5的卷积核得到的结果大小是一样的!!!
5、关于池化层,以下哪种说法是错误的:
A.池化层不参与反向传播
B.池化层没有模型参数
C.池化层通常会减小特征图的高和宽
D.池化层的输入和输出具有相同的通道数
答:A
选项1:错误,池化层有参与模型的正向计算,同样也会参与反向传播
选项2:正确,池化层直接对窗口内的元素求最大值或平均值,并没有模型参数参与计算
选项3:正确
选项4:正确
参考文献:
https://www.boyuai.com/
https://blog.csdn.net/qq_21578849/article/details/94667699
https://www.hu.com/question/265791259/answer/298610437
https://blog.csdn.net/zouxiaolv/article/details/97366681
㈦ Lecture 9 卷积神经网络架构
首先回顾一下在数字识别领域有巨大成功的LeNet-5,该网络结构为 [CONV-POOL-CONV-POOL-FC-FC]。卷积层使用5x5的卷积核,步长为1;池化层使用2x2的区域,步长为2;后面是全连接层。如下图所示:
而2012年的 AlexNet 是第一个在ImageNet大赛上夺冠的大型CNN网络,它的结构和LeNet-5很相似,只是层数变多了——[CONV1-MAX POOL1-NORM1-CONV2-MAX POOL2-NORM2-CONV3-CONV4-CONV5-Max POOL3-FC6-FC7-FC8],共有5个卷积层、3个池化层、2个归一化层和三个全连接层。如下图所示:
之所以分成上下两个部分,是因为当时的GPU容量太小,只能用两个来完成。还有一些细节是:
AlexNet夺得ImageNet大赛2012的冠军时,将正确率几乎提高了10%,2013年的冠军是ZFNet,和AlexNet使用相同的网络架构,只是对超参数进一步调优:
这样将错误率从16.4%降低到11.7%
14年的冠亚军GoogLeNet和VGG分别有22层和19层,下面来分别介绍。
VGG 相对于AlexNet使用更小的卷积核,层数也更深。VGG有16层和19层两种。卷积核只使用3x3,步长为1,pad为1;池化区域2x2,步长为2。
那么为什么使用3x3的小卷积核呢?
下面看一下VGG-16的参数和内存使用情况:
VGG网络的一些细节是:
下面来看一下分类的第一名,GoogLeNet。
先说明 GoogLeNet 的一些细节:
“Inception”模块 是一种设计的比较好的局域网拓扑结构,然后将这些模块堆叠在一起。
这种拓扑结构对来自前一层的输入,并行应用多种不同的滤波操作,比如1x1卷积、3x3卷积、5x5卷积和3x3池化。然后将所有滤波器的输出在深度上串联在一起。如下图所示:
但是这种结构的一个问题是计算复杂度大大增加。比如考虑下面的网络设置:
输入为28x28x256,而串联后的输出为28x28x672。(假设每个滤波操作都通过零填充保持输入尺寸)并且运算花费也非常高:
由于池化操作会保持原输入的深度,所以网络的输出一定会增加深度。解决办法是在进行卷积操作前添加一个“瓶颈层”,该层使用1x1卷积,目的是保留原输入空间尺寸的同时,减小深度,只要卷积核的数量小于原输入的深度即可。
使用这种结构,同样的网络参数设置下,的确会减少计算量:
最终得到的输出为28x28x480。此时总运算量为:
Inception mole堆叠成垂直结构,这里方便描述,将模型水平放置:
所以含参数的层总计3+18+1 = 22层。此外,橙色部分的层不计入总层数,这两块的结构都是:AveragePool 5x5+3(V) - Conv 1x1+1(S) - FC - FC - SoftmaxActivation - Output。“该相对较浅的网络在此分类任务上的强大表现表明,网络中间层产生的特征应该是非常有区别性的。 通过添加连接到这些中间层的辅助分类器,我们期望在分类器的较低阶段中鼓励区分,增加回传的梯度信号,并提供额外的正则化。 这些辅助分类器采用较小的卷积核,置于第三和第六个Inception mole的输出之上。 在训练期间,它们的损失会加到折扣权重的网络总损失中(辅助分类的损失加权为0.3)。 在预测时,这些辅助网络被丢弃。”——引自原论文
从2015年开始,网络的层数爆发式的增长,15-17年的冠军都是有152层,开始了“深度革命”!
ResNet 是一种非常深的网络,使用了残差连接。细节是:
表现这么好的ResNet仅仅是因为深吗?答案是否定的,研究表明一个56层的卷积层堆叠网络训练误差和测试误差都比一个20层的网络要大,并且不是过拟合的原因,而是更深的网络优化更难。但是一个更深的模型至少能和一个较浅的模型表现一样好,如果想把一个较浅的层变成较深的层,可以用下面的方式来构建:将原来比较浅的层拷贝到较深的层中,然后添加一些等于本身的映射层。现在较深的模型可以更好的学习。
ResNet通过使用多个有参层来学习输入与输入输出之间的 残差映射( resial mapping ) ,而非像一般CNN网络(如AlexNet/VGG等)那样使用有参层来直接学习输入输出之间的 底层映射( underlying mapping) 。
若将输入设为X,将某一有参网络层映射设为H,那么以X为输入的该层的输出将为H(X)。通常的CNN网络会直接通过训练学习出参数函数H的表达式,从而直接得到 X 到 H(X) 的映射。而 残差学习 则是致力于使用多个有参网络层来学习输入到输入、输出间的残差(H(X) - X)的映射,即学习 X -> (H(X) - X) ,然后加上X的 自身映射(identity mapping) 。也就是说网络的输出仍然是 H(X) - X + X = H(X),只是学习的只是 (H(X) - X),X部分直接是本身映射。
残差学习单元通过本身映射的引入在输入、输出之间建立了一条直接的关联通道,从而使得强大的有参层集中精力学习输入、输出之间的残差。一般我们用 来表示残差映射,那么残差学习单元的输出即为: 。当输入、输出通道数相同时,自然可以直接使用 X 进行相加。而当它们之间的通道数目不同时,我们就需要考虑建立一种有效的自身映射函数从而可以使得处理后的输入 X 与输出 Y 的通道数目相同即 。
当X与Y通道数目不同时,有两种自身映射方式。一种是简单地将X相对Y缺失的通道直接补零从而使其能够相对齐,另一种则是通过使用1x1的卷积来表示 Ws 映射从而使得最终输入与输出的通道一致。
实验表明使用一般意义上的有参层来直接学习残差比直接学习输入、输出间映射要容易得多(收敛速度更快),也有效得多(可通过使用更多的层来达到更高的分类精度)。比如在极端情况下,如果自身映射是最优的,那么将残差设为零比通过使用一堆非线性层进行自身映射更容易。
完整的网络结构如下:
对于ResNet-50+的网络,为提高计算效率,使用类似GoogLeNet的“瓶颈层”。像Inception模块那样通过使用1x1卷积来巧妙地缩减或扩张特征图维度从而使得3x3 卷积的卷积核数目不受上一层输入的影响,它的输出也不会影响到下一层。不过它纯是为了节省计算时间进而缩小整个模型训练所需的时间而设计的,对最终的模型精度并无影响。
ResNet的实际训练如下:
实际的训练效果为可以堆叠很多的层而不使准确率下降:152在ImageNet上, 1202层在CIFAR上。现在和预想中的一致,网络越深,训练准确率越高。横扫了2015年所有的奖项,第一次超过人类的识别率。
下面左图通过Top1准确率来比较各种网络的准确性;右图是不同网络的运算复杂度,横轴为计算量,圆圈大小表示内存占用。其中 Inception-v4是 Resnet + Inception。
图中可以看出:
还可以比较前向传播时间和功率消耗:
㈧ 卷积神经网络CNN(Convolutional Neural Network)
上图计算过程为,首先我们可以将右边进行卷积的可以称为过滤器也可以叫做核,覆盖到左边第一个区域,然后分别按照对应位置相乘再相加,3*1+1*1+2*1+0*0+0*0+0*0+1*(-1)+8*(-1)+2*(-1)=-5;
按照上述的计算方法逐步按右移一个步长(步长可以设定为1,2,...等),然后按往下移,逐渐计算相应的值,得出最终的值。
如上图显示,对于第一个图像矩阵对应的图,一边是白色,一边是黑色,那么中间就会存在一个垂直的边缘,我们可以选择一个垂直边缘检测过滤器,如乘法右边的矩阵,那么两者做卷积后得出的图会显示如等号右边的结果矩阵对应的灰度图中间会有一个白色的中间带,也就是检测出来的边缘,那为什么感觉中间边缘带会比较宽呢?而不是很细的一个局域呢?原因是我们输入的图像只有6*6,过于小了,如果我们选择输出更大的尺寸的图,那么结果来说就是相对的一个细的边缘检测带,也就将我们的垂直边缘特征提取出来了。
上述都是人工选择过滤器的参数,随着神经网络的发展我们可以利用反向传播算法来学习过滤器的参数
我们可以将卷积的顾虑器的数值变成一个参数,通过反向传播算法去学习,这样学到的过滤器或者说卷积核就能够识别到很多的特征,而不是依靠手工选择过滤器。
- padding 操作,卷积经常会出现两个问题:
1.每经过一次卷积图像都会缩小,如果卷积层很多的话,后面的图像就缩的很小了;
2.边缘像素利用次数只有一次,很明显少于位于中间的像素,因此会损失边缘图像信息。
为了解决上述的问题,我们可以在图像边缘填充像素,也就是 padding 操作了。
如果我们设置在图像边缘填充的像素数为p,那么经过卷积后的图像是:(n+2p-f+1)x(n+2p-f+1).
如何去选择p呢
通常有两种选择:
-Valid:也就是说不填充操作(no padding),因此如果我们有nxn的图像,fxf的过滤器,那么我们进行卷积nxn fxf=(n-f+1)x(n-f+1)的输出图像;
-Same:也就是填充后是输出图像的大小的与输入相同,同样就有(n+2p)x(n+2p) fxf=nxn,那么可以算,n+2p-f+1=n,得到p=(f-1)/2。
通常对于过滤器的选择有一个默认的准则就是选择过滤器的尺寸是奇数的过滤器。
- 卷积步长设置(Strided COnvolution)
卷积步长也就是我们进行卷积操作时,过滤器每次移动的步长,上面我们介绍的卷积操作步长默认都是1,也就是说每次移动过滤器时我们是向右移动一格,或者向下移动一格。
但是我们可以对卷积进行步长的设置,也就是我们能够对卷积移动的格数进行设置。同样假如我们的图像是nxn,过滤器是fxf,padding设置是p,步长strided设置为s,那么我们进行卷积操作后输出的图像为((n+2p-f)/s+1)x((n+2p-f)/s+1),那么这样就会出现一个问题,如果计算结果不是整数怎么办?
一般是选择向下取整,也就是说明,只有当我们的过滤器完全在图像上能够覆盖时才对它进行计算,这是一个惯例。
实际上上述所述的操作在严格数学角度来说不是卷积的定义,卷积的定义上我们计算的时候在移动步长之前也就是对应元素相乘之前是需要对卷积核或者说我们的过滤器进行镜像操作的,经过镜像操作后再把对应元素进行相乘这才是严格意义上的卷积操作,在数学角度上来说这个操作不算严格的卷积操作应该是属于互相关操作,但是在深度学习领域中,大家按照惯例都省略了反转操作,也把这个操作叫做卷积操作
我们知道彩色图像有RGB三个通道,因此对于输入来说是一个三维的输入,那么对三维输入的图像如何进行卷积操作呢?
例子,如上图我们输入图像假设为6×6×3,3代表有RGB三个通道channel,或者可以叫depth深度,过滤器的选择为3×3×3,其中需要规定的是,顾虑器的channel必须与输入图像的channel相同,长宽没有限制,那么计算过程是,我们将过滤器的立体覆盖在输入,这样对应的27个数对应相乘后相加得到一个数,对应到我们的输出,因此这样的方式进行卷积后我们得出的输出层为4×4×1。如果我们有多个过滤器,比如我们分别用两个过滤器一个提取垂直特征,一个提取水平特征,那么输出图4×4×2 。也就是代表我们输出的深度或者说通道与过滤器的个数是相等的。
第l层的卷积标记如下:
加入我们的过滤器是3×3×3规格的,如果我们设定10个过滤器,那么需要学习的参数总数为每个过滤器为27个参数然后加上一个偏差bias那么每个过滤器的参数为28个,所以十个过滤器的参数为280个。从这里也就可以看出,不管我们输入的图片大小是多大,我们都只需要计算这些参数,因此参数共享也就很容易理解了。
为了缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性,我们经常会使用池化层。池化层的计算方式与卷积类似,只是我们需要对每一个通道都进行池化操作。
池化的方式一般有两种:Max Pooling和Average Pooling。
上面为Max Pooling,那么计算方法与卷积类似,首先设定超参数比如过滤器的大小与步长,然后覆盖到对应格子上面,用最大值取代其值作为输出的结果,例如上图为过滤器选择2×2,步长选择为2,因此输出就是2×2的维度,每个输出格子都是过滤器对应维度上输入的最大值。如果为平均池化,那么就是选择其间的平均值作为输出的值。
因此从上面的过程我们看到,通过池化操作能够缩小模型,同时能让特征值更加明显,也就提高了提取特征的鲁棒性。
㈨ 卷积神经网络标签怎么设置
标签颤谈设置是深度学习模型的重要组成部分,其目的茄梁碰是使模型能够准确地预测所给输入的标签。因此,设置卷积神经网络(CNN)标签时,需要考虑到训练数据中每个样本的标签,以及模型的任务等因素。首先,要确保标签与模型的任务相关,以确保模型可以正确预测标签。其次,要确保标签有意义,以便模型能够准确地将输入与正确的标签进行匹配。最后,标签必须是可量化的,以便模型能够更好地理渣扮解输入。