导航:首页 > 无线网络 > 无线异构网络智能算法

无线异构网络智能算法

发布时间:2022-06-20 06:43:24

什么是异构网络,什么是同构网络具体的概述

随着传感器技术、 嵌入式技术、 分布式信息处理技术和无线通信技术的发展, 以大量的具有微处理能力的微型传感器节点组成的无线传感器网络(WSN)逐渐成为研究热点问题。

与传统无线通信网络Ad Hoc网络相比, WSN的自组织性、 动态性、 可靠性和以数据为中心等特点, 使其可以应用到人员无法到达的地方, 比如战场、 沙漠等。 因此, 可以断定未来无线传感器网络将有更为广泛的前景。

无线传感器网络

无线传感器网络(Wireless Sensor Networks, WSN)是一种分布式传感网络,由大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,以协作地感知、采集、处理和传输网络覆盖地理区域内被感知对象的信息,并最终把这些信息发送给网络的所有者。传感器、感知对象和观察者构成了无线传感器网络的三个要素。

无线传感器网络所具有的众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等周边环境中多种多样的现象。潜在的应用领域可以归纳为: 军事、航空、防爆、救灾、环境、医疗、保健、家居、工业、商业等领域。

与传统有线网络相比,无线传感器网络技术具有很明显的优势特点,主要的要求有: 低能耗、 低成本、 通用性、 网络拓扑、 安全、 实时性、 以数据为中心等。

无线传感器网络系统的典型结构

采用同构网络实现远程监测的无线传感器网络系统典型结构, 由传感器节点、 汇聚节点、 服务器端的PC和客户端的PC四大硬件环节组成, 各组成环节功能如下。

图1 远程监测无线传感器网络系统结构框图

传感器节点

部署在监测区域(A区), 通过自组织方式构成无线网络。 传感器节点监测的数据沿着其它节点逐跳进行无线传输, 经过多跳后达到汇聚节点(B区)。

汇聚节点

是一个网络协调器, 负责无线网络的组建, 再将传感器节点无线传输进来的信息与数据通过SCI( 串行通信接口)传送至服务器端PC。

服务器端PC

是一个位于B区的管理节点, 也是独立的Internet网关节点。 在LabVIEW软件平台上面有两个软件: 一是对传感器无线网络进行监测管理的软件平台VI, 即一个监测传感器无线网络的虚拟仪器VI; 二是Web Server软件模块和远程面板技术(Remote Panel), 可实现传感器无线网络与Internet的连接。

客户端PC

客户端PC上无需进行任何软件设计, 在浏览器中就可调用服务器PC中无线传感器网络监测虚拟仪器的前面板, 实现远程异地(C区)对传感器无线网络(A区)的监测与管理。

无线传感器网络中的传感器节点

1. 传感器及其调理电路

应根据无线传感器网络所在的地区环境特点来选择传感器, 以适应环境温度变化范围、 尺寸体积等特殊要求。 传感器所配接的调理电路将传感器输出的变化量转换成能与A/D转换器相适配的0~2.5 V或0~5 V的电压信号。 当处于无电网供电地区时, 传感器及其调理电路都应是低功耗的。

2. 数据采集及A/D转换器与微处理器系统

传感器节点中的计算机系统是低功耗的单片微处理器系统, 可以适应远离测试中心、 偏远地区恶劣环境的工作条件。 如美国德克萨斯州仪器(TI)公司生产的MSP430-F149A超低功耗混合信号处理器(Mixed Signal Processor), 它内部自带采样/保持器和12位A/D转换器, 可对信号进行采集、 转换以及对全节点系统进行指令控制和数据处理。

3. 射频模块

射频模块接收外部无线指令并将传感器检测到的被测参量数据信息无线发送出去, 如TI公司的CC2420无线收发芯片。

② 什么是异构网络

异构网络(Heterogeneous Network)是一种类型的网络,其是由不同制造商生产的计算机,网络设备和系统组成的,大部分情况下运行在不同的协议上支持不同的功能或应用。

所谓异构是指两个或以上的无线通信系统采用了不同的接入技术,或者是采用相同的无线接入技术但属于不同的无线运营商。利用现有的多种无线通信系统,通过系统间融合的方式,使多系统之间取长补短是满足未来移动通信业务需求一种有效手段,能够综合发挥各自的优势。由于现有的各种无线接入系统在很多区域内都是重叠覆盖的,所以可以将这些相互重叠的不同类型的无线接入系统智能地结合在一起,利用多模终端智能化的接入手段,使多种不同类型的网络共同为用户提供随时随地的无线接入,从而构成了如图所示的异构无线网络。

③ 大连理工大学软件学院的学院简介

中文:大连理工大学软件学院
英文:School of Software Technology, Dalian University of Technology (缩写 SSDUT) 软件学院有全日制本科生、硕士研究生、博士研究生等培养层次。截止2014年4月,共有在籍学生5468人,其中全日制本科生2993人。
本科生面向全国由大连理工大学统一招生,年计划招生720人。其中软件工程日语强化专业单独招生,年招生240人。学制均为四年。全日制硕士研究生年计划招生200人左右。
学院从2002年至今共招收培养各类学生15000余人,毕业生平均就业率高于97%,工程硕士(全日制)就业率达98.5%以上,毕业生分布北京、上海、大连、深圳、广州等城市以及美国、英国、日本、新加坡等国家。主要就业于IBM、博涵前锋科技有限公司、花旗软件有限公司、东软软件股份有限公司、中国计算机软件与技术服务总公司、毕博信息技术有限公司、SAP公司、中国惠普有限公司、甲骨文科技有限公司、大连华信计算机技术有限公司、埃森哲、松下公司、北京用友软件股份有限公司、长春径点科技有限公司等国内外知名企业。 软件工程及软件工程(日语强化)
主要专业方向:软件开发与测试、电子商务与电子政务、嵌入式技术、数字媒体技术、金融信息管理。
核心课程:计算机组织与结构、C程序设计、算法与数据结构、操作系统、编译技术、数据库系统、软件工程等。
网络工程
主要专业方向:网络技术方向、网络安全方向
核心课程:计算机组织与结构、C程序设计、数据结构与算法、计算机网络、网络信息安全、操作系统等。
软件工程(中外合作)(部分省份招生)
主要方向:软件开发与测试、电子商务与电子政务、嵌入式技术、数字媒体技术、金融信息管理。
核心课程:计算机组织与结构、C程序设计、算法与数据结构、操作系统、编译技术、数据库系统、软件工程等。 计算机科学与技术
主要研究方向:
1、信息安全与网络理论:包括网络安全;信息隐藏与密码学;网络挖掘技术与信息物理系统;无线网络与通信技术
2、计算技术与理论:包括计算(离散)曲面及CAG/CAD;科学/高性能/网格/云/计算理论与应用; 可信计算理论与应用
3、系统理论与智能处理技术:包括图像处理技术; 嵌入式系统理论;IT服务科学与数据处理技术。
软件工程
主要研究方向:软件工程理论、软件工程管理、软件服务工程、软件工程工具和方法、软件项目管理、嵌入式系统与图像处理、网络技术与信息安全
核心课程:算法分析与设计、高级计算机网络、软件项目管理、面向对象技术、分布式数据库、网络安全等。 (1)几何计算与数字媒体方向: 重点研究几何计算与计算机图形学,计算机视觉与图像处理,多媒体技术与虚拟现实,数字内容生成与管理等。
(2)大数据科学与工程方向:重点研究大数据科学基础理论,大数据工程(包括大数据感知与获取,大数据存储与管理等),云存储,网络数据科学(互联网,社交网络)等。
(3)计算智能方向:重点研究智能计算方法,机器学习与数据挖掘,搜索引擎,海量数据检索及各类算法在云计算模式下的实现等。
(4)信息系统与服务科学方向:重点研究服务科学(服务方法体系,服务需求工程,服务生命周期管理),面向国家重大需求的信息系统建设,智慧城市,智慧物流,教育信息化,金融信息化等。 (1)高性能计算:重点研究新型计算机体系结构、分布式并行计算、多核和众核技术、动态可重构计算机系统、云计算等。
(2)可信计算:重点研究高可信嵌入式软件(嵌入式软件形式化分析与验证、可信软件环境构造与验证、可信软件开发工具和运行支撑平台及环境)、嵌入式系统容错技术、网络嵌入式系统的可信技术等。
(3)嵌入式计算:重点研究嵌入式处理器设计、嵌入式系统软硬件协同设计方法、嵌入式系统资源管理与调度、嵌入式操作系统设计、低功耗与系统节能技术等。
(4)嵌入式系统应用:重点开展面向领域(无线传感器网络、生物医学、汽车电子、移动终端等)的嵌入式系统设计应用。 (1)信息安全理论与技术:其研究内容包括互联网安全技术和基于特征的身份认别技术,信息隐藏、系统安全、安全协议、高可信无线通信协议、硬安全机制(数字签名、信息认证、数据加密、隐私保护、授权模型、秘密共享等)、软安全机制(信任模型与信誉系统、合作理论、主体(社区)行为演化机制等)、安全测评技术、云安全。
(2)软件安全:软件安全是使软件在收到恶意攻击的情形下依然能够继续正确运行及确保软件被在授权范围内合法使用。其研究内容包括防止软件盗版技术、软件逆向工程技术、授权加密技术、防篡改技术、软件水印技术(静态水印及动态水印)、代码混淆技术以及虚拟机保护技术等。
(3)社交网络和无线网络及其应用: 其研究内容包括社交网络及其安全性、社会计算及情报分析,云计算、社交智能系统及其安全性、无线网络及其安全性。
(4) 高端软件:高端软件是软件技术的关键和核心, 本研究所开展面向领域和产业(如:医疗、手机与通信、网络安全、重大工程、物联网、云计算、无线传感网络等)的各种高端软件(包括安全软件)的开发与应用。 (1)网络科学:利用网络来描述物理、生物和社会等一些自然现象,研究这些现象的规律和预测模型的科学理论与方法;研究大规模复杂网络中的数据处理理论与算法;研究复杂网络,社会网络分析与挖掘,生物网络等。
(2)物联网与云计算:研究物联网感知与识别技术,物联网跨层协议与路由理论算法与技术,物联网中基于云计算的数据分析与算法,高效、大规模、完全自组网算法和相关智能化算法,多种接入方式兼容技术,异构网络发现、识别、网际语义理解技术等。
(3)移动互联网:研究移动互联网的理论和技术,移动媒体,移动感知,移动自组网,移动云计算,社会计算等。
(4)智能系统与应用:研究仿生算法,智能化事件监控与反应技术,设备间隐私保护技术,针对物联网开发的智能隔离技术,研究面向具体行业应用的智能专家系统。 (1)软件体系结构:重点研究体系结构设计与软件质量,软件变更与体系结构维护,体系结构重构,模型驱动的方法和工具,软件系统的质量评估,软件产品线工程等。
(2)软件仓库挖掘:重点研究软件仓库挖掘的方法、应用和工具,包括软件系统分析,大型软件的社会与开发过程模型,项目演化,缺陷预测,软件数据结构挖掘、软件数据获取与存储等。
(3)基于搜索的软件工程:重点研究应用优化方法求解软件工程问题,其中领域方面包括项目管理与组织,需求工程,测试数据生成,回归测试优化;方法方面包括面向软件工程问题的随机算法、近似算法和超启发式方法等的设计。
(4)软件自动生成与演化:重点研究领域软件自动生成的方法、应用和工具,基于表格形式化描述的数据建模软件自动生成、自动维护与演化;基于语义描述和定制式数据查询程序自动生成与演化。 (1)语料库语言学:研究语料的自动辅码、信息自动筛选以及提取、统计等技术,筹建学习者文本语料库以及目标语多媒体语料库,开展基于语料库的语言学以及语言习得等实证研究,探讨语料库语言学研究的方法论。
(2)计算机辅助外语教学:利用计算机、多媒体、网络等现代信息等多元技术,创建语言的教授、学习、训练、测试以及语言研究的辅助环境;设计网络信息技术环境下的计算机辅助外语教学的评估体系。
(3)情感分析与观点挖掘:根据计算机观察、理解和生成各种情感的能力,进行文本的情感识别和情感迁移的研究,并将其应用在意见挖掘、教学反馈、产品评论和舆情监控等方面的自然语言分析处理。
(4)软件外语教学与研究:基于软件学术外语写作语料以及软件职场口语语料,分析影响软件外语应用的语用因素;探讨ESP理论指导下的软件专业学生口语能力发展的规律与特点;开展CBI理论指导下、学科内容为核心的职场以及面试的外语教学与研究;开展零起点软件日语强化课程评估体系的研究、设计。

④ 异构网络的异构网络的背景介绍

图1.1中给出了移动通信技术的发展过程,可以看出随着技术的改进,数据传输速率有着显着的提高,为用户提供大数据量的多媒体通信业务提供了坚实基础。到目前为止,移动通信系统已经发展到第四代,下面将简单介绍这四代移动通信的发展历程。
第一代模拟蜂窝系统(1G)开始于上个世纪80年代被用于大规模民用,主要用于提供模拟语音业务,采用的是模拟语音调制技术和频分多址技术(Frequency Division Multiple Access,FDMA),数据传输速率约为2.4kbps。其中代表性的系统有北美的高级移动电话业务(Advanced Mobile Phone Service,AMPS)、英国的全入网通信系统技术(Total Access Communications System,TACS)和北欧的移动电话(Nordic Mobile Telephone,NMT)等等。由于受到传输带宽的限制,不能进行长途漫游,仅是一种区域性的移动通信系统。另外第一代的通信系统的缺点还包括制式太多而且互不兼容、容量有限、保密性差和通信质量不高等。因此促使了第二代数字移动通信系统(2G)的发展。
第二代数字移动通信系统完成了从模拟到数字的转变,从而为用户提供数字语音业务。第二代移动通信技术可以分成两种,第一种是基于时分多址接入(Time Division Multiple Access,TDMA)的全球数字移动通信系统(Global System for Mobile,GSM)和基于码分多址接入(Code Division Multiple Access,CDMA)的IS-95系统(例如CDMA one)。
第三代移动通信系统(3G)是由日益成熟的第二代移动通信系统发展而来,其目的是提供高速数据蜂窝移动通信技术。主要的3G技术标准有四个:欧洲电信标准协会(European Telecommunications Standard Institute,ETSI)提出的WCDMA(Wideband CDMA)、北美提出的从CDMA one演进而来的CDMA2000、具有中国知识产权的时分同步的码分多址技术(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA),和在2007年国际电信联盟(International Telecommunication Union,ITU)会议上通过的全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)。第三代移动通信的最高数据传输速率可以达到2Mbps,因此可以提供相当高速的数据传输业务,例如多媒体、视频和数据等。
长期演进(Long Term Evolution,LTE)项目是3G的演进,采用的主要技术是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)和MIMO(Multiple-Input Multiple-Out-put),能够在20MHz的带宽下提供上行50Mbps和下行100Mbps的峰值速率。LTE又被成为3.9G移动通信技术。LTE-Advanced是LTE的升级版,它被称为4G的标准,它有两种制式,一种是TDD,TD-SCDMA可以演化成TDD制式,并且HSPA+(High Speed Packet Access)直接进入LTE,另一种是FDD制式,WCDMA可以演进成FDD制式。
第四代移动通信系统(4G)除了要提供更高的带宽外,还要保证任何人在任何时间、任何地点以任何方式与任何人进行通信,用户无需考虑网络传输的实现细节。从GSM到第四代,所有的技术不可能一夜间都实现,这些技术将会同时存在为用户提供服务。为了实现第四代移动通信的目标,就需要将这些不同的无线通信系统融合在一起,形成一个异构无线网络(Heterogeneous Wireless Networks,HWNs)通信系统,从而为用户提供无缝切换和服务质量(Quality of Service,QoS)保证。因此下一代移动通信网络将是异构网络,异构网络的融合是下一代网络研究的热点,也是本文研究的主要内容。
宽带无线接入技术(Broadband Wireless Access,BWA)是继1990年便携式无线电话和2000年Wi-Fi(Wireless Fidelity)出现之后的第三次无线革命,宽带无线接入技术是在广域上提供高速无线互联网接入或者计算机网络接入的技术。宽带无线接入技术的数据速率大致相当于一些有线网络,如非对称数字用户环路(Asymmetric Digital Subscriber Line,ADSL)或者电缆调制解调器,因此它通常是有线接入网络的重要补充。几种重要的宽带无线接入技术包括WLAN(Wireless Local Area Network)、WiMAX技术和WiBro(Wireless Broadband)等。WLAN通过扩频或者OFDM等技术,来连接两个或多个终端设备,并通过接入点来连接到宽带互联网上,大部分的WLAN技术是基于IEEE802.11标准。WLAN的优势包括其费用很低和传输速度快。由于WLAN工作在非授权频段,因此WLAN的发射功率很小,它覆盖范围也只有百米左右,能提供用户在小范围内移动时可以连接到网络上。而WiMAX可以在大范围内提供高速数据业务,传输速率达到30至40兆比特每秒,2011年提高到了1Gbit/s,覆盖的半径最大可以达到50km。另外WiMAX可以支持一些低速移动的用户,而且能够提供多种多样的服务,其资费也较WLAN高。由于BWA具有建网快、运营成本低、维护方便等优势,因此它的发展速度非常迅速,为推动无处不在的互联网接入和加强公共服务奠定重要的基础。 表1.1给出了三种宽带无线接入技术的主要参数,即WLAN、WiMAX和WiBro ;表1.2给出了三种3G技术的主要参数,即UMTS(Universal Mobile Telecommunications System)、EV-DO(Evolution dataOnly)以及HSDPA(High Speed Dlink Packet Access) 。比较这两张表可以看出BWA与3G技术差别很大,例如BWA支持的数据传输速率几十兆比特每秒,而3G只有几兆比特每秒;从覆盖范围可以看出,3G网络的覆盖范围要大于BWA网络;从移动性还可以看出3G网络支持高速移动的用户。因此可以看出每个网络都有它的优点和缺陷。
表1.1宽带无线接入技术的主要参数 WLAN WiMAX WiBro 峰值速率 802.11a, g=54 Mbps DL:70 Mbps DL:18.4 Mbps 802.11b=11Mbps UL:70 Mbps UL:6.1 Mbps 带宽 20MHz 5-6GHz 9MHz 多址方式 CSMA/CA OFDM/OFDMA OFDMA 双工方式 TDD TDD TDD 移动性 低 低 低 覆盖区域 小 中等 大 协议标准 IEEE802.11x 802.16 TTA&802.16e 目标市场 家庭/企业 家庭/企业 家庭/企业 表1.2 3G技术的主要参数 UMTS EV-DO HSDPA 峰值速率 DL:2 Mbps DL:3.1 Mbps DL:14 Mbps UL:2 Mbps UL:1.2 Mbps UL:2 Mbps 带宽 5MHz 1.25GHz 5MHz 多址方式 CDMA CDMA CDMA 双工方式 FDD FDD FDD 移动性 高 高 高 覆盖区域 大 大 大 协议标准 3GPP 3GPP 3GPP 目标市场 公共 公共 公共 下一代无线网络是异构无线网络融合的重要原因是:基于异构网络融合,可以根据用户的特点(例如车载用户)、业务特点(例如实时性要求高)和网络的特点,来为用户选择合适的网络,提供更好的QoS。一般来说,广域网覆盖范围大,但是数据传输速率低,而局域网正好相反。因此在实际应用中,多模终端可以根据自身的业务特点和移动性,来选择合适的网络接入。与以往的同构网络不同,在异构网络环境下,用户可以选择服务代价小,同时又能满足自身需求的网络进行接入。这是由于这些异构网络之间具有互补的特点,才使异构网路的融合显得非常重要。因此一些组织提出了不同的网络融合标准,这些组织有3GPP(The 3rd Generation Partnership Project)、MIH(The IEEE 802.21 Media Independent Handover working group)和ETSI(The European Telecommunications Standards Institute)。
无线资源管理(Radio Resource Management,RRM)是异构网络中的一个重要研究课题,RRM的目标是高效利用受限的无线频谱、传输功率以及无线网络的基础设施。RRM技术包括呼叫接入控制(Call Admission Control,CAC)、水平或者垂直切换、负载均衡、信道分配和功率控制等。3GPP提出一种协同无线资源管理技术(Common Radio Resource Management,CRRM),它是通过利用CRRM服务器对不同接入网络信息进行监测,合理的调度异构网络中的无线资源。除了协同无线资源管理算法外,还有联合无线资源管理算法(Joint Radio Resource Management,JRRM)。这些技术实际上都是为异构网络提供统一的管理平台,以达到合理利用无线资源的目的。
网络选择算法是无线资源管理中一个研究热点,网络选择算法通常可以分为呼叫接入网络选择算法和垂直网络切换选择算法。同构网络的接入和切换主要考虑接收信号的强度,而在异构网络中需要考虑不同接入网络之间的差异,因此需要考虑的因素很多,接收信号的强度只是其中的一个影响因素,其他因素如数据传输速率、价格、覆盖范围、实时性和用户的移动性等。这些都是从用户角度考虑的,如果从网络端考虑,就会涉及到提高系统的吞吐量,降低阻塞率以及均衡负载。因此网络选择对于异构网络的融合起到了至关重要的影响。本文接下来部分将主要讨论异构网络系统模型、无线资源管理、网络性能优化以及网络选择算法。

⑤ 什么是异构型网络

异构网络环境,是由不同制造商生产的计算机,网络设备和系统组成的,这些计算机系统运行不同的操作系统和通信协议,想统一其计算机资源的机构通常会面临集成异种机系统的任务。

⑥ 异构网络的网络选择算法的研究

异构网络中无线资源管理的一个重要研究方向就是网络选择算法,网络选择算法的研究很广泛,这里给出了几个典型的无线网络选择算法的类别。 预切换可以有效的减少不必要的切换,并为是否需要执行切换做好准备。通常情况下可以通过当前接收信号强度来预测将来接收信号强度的变化趋势,来判断是否需要执行切换。
文献 中利用多项式回归算法对接收信号的强度进行预测,这种方法的计算复杂度较大。文献 中,利用模糊神经网络来对接收信号强度进行预测,模糊神经网络的算法最大的问题,收敛较慢,而且计算的复杂度高。文献 中,利用的是最小二乘算法(LMS)来预测接收的信号强度,通过迭代的方法,能够达到快收敛,得到较好的预测。还有在文献 中,直接采用接收信号强度的斜率来预测接收信号强度,用来估计终端在该网络中的生存时间,但是这种方法太简单,精度不是很高。 在垂直切换的过程中,对于相同的切换场景,通常会出现现在的已出现过的切换条件,对于其垂直切换的结果,可以应用到当前条件下,这样可以有效避免的重新执行切换决策所带来的时延。
文献[33]中,提出利用用户连接信息(User Connection Profile,UCP)数据库用来存储以前的网络选择事件。在终端需要执行垂直切换时,首先检查数据库中是否存在相同的网络选择记录,如果存在可以直接接入最合适的网络。在文献[34]中,提出了将切换到该网络的持续服务时间和距离该网络的最后一次阻塞时间间隔作为历史信息记录下来,根据这些信息,选择是否有必要进行切换。 由于用户对网络参数的判断往往是模糊的,而不是确切的概念,所以通常采用模糊逻辑对参数进行定量分析,将其应用到网络选择中显得更加合理。模糊系统组成通常有3个部分组成,分别是模糊化、模糊推理和去模糊化。对于去模糊化的方法通常采用中心平均去模糊化,最后得到网络性能的评价值,根据模糊系统所输出的结果,选择最适合的网络。
通常情况下,模糊逻辑与神经网络是相互结合起来应用的,通过模糊逻辑系统的推理规则,对神经网络进行训练,得到训练好的神经网络。在垂直切换的判决的时候,利用训练好的神经网络,输入相应网络的属性参数,选择最适合的网络接入。
基于模糊逻辑和神经网络的策略,可以对多种因素(尤其动态因素)进行动态地控制,并做出自适应的决策,可以有效提高网络选择的合理性,但该策略最大的缺点是,算法的实现较为复杂,在电池容量和处理能力均受限的移动设备上是不合适的。 在异构网络选择中,博弈论是一个重要的研究方向。在博弈论的模型中,博弈中的参与者在追求自身利益最大化的同时,保证自身付出的代价尽量小。参与者的这两种策略可以通过效用函数和代价函数来衡量。因此通过最大化效用函数和最小化代价函数,来追求利益的最大化。
文献[36]中提出一种基于博弈论的定价策略和网络选择方案,该方案中服务提供商(Service Providers,SPs)为了提高自己的利润需要面临竞争,它是通过用户间的合作或者非合作博弈来获得,在实际的异构网络场景下,用户和服务提供商SPs之间可以利用博弈模型来表示。Dusit Niyato在文献[37]中,通过竞价机制来进行异构网络资源的管理,这里将业务分成两种类型,一种是基本业务,另一种类似高质量业务,基本业务的价格是固定的,而高质量业务的价格是动态变化的,它是随着服务提供商的竞争和合作而变化的。因此这里从合作博弈和非合作博弈两方面来讨论定价机制。Dusit Niyato在文献[38]中基于进化博弈理论,来解决在带宽受限情况下,用户如何在重叠区域进行网络选择。 网络选择的目标通常是通过合理分配无线资源来最大化系统的吞吐量,或者最小化接入阻塞概率等,这样就会涉及网络优化问题。
网络选择算法往往是一种多目标决策,用户希望得到好的服务质量、价格便宜的网络、低的电池功率消耗等。对于多目标决策算法,通常是不可能使得每个目标同时达到最优,通常的有三种做法:其一,把一些目标函数转化为限制条件,从而减少目标函数数目;其二,将不同的目标函数规范化后,将规范化后的目标函数相加,得到一个目标函数,这样就可以利用最优化的方法,得到最优问题的解;其三,将两者结合起来使用。例如文献[39]中,采用的是让系统的带宽受限,最大化网络内的所有用户的手机使用时间,即将部分目标函数转化为限制条件。文献[40]中,采用的是让用户的使用的费用受限,最大化用户的利益和最小化用户的代价,这里采用的是上面介绍的第三种方法。 基于策略的网络选择指的是按照预先规定好的策略进行相应的网络操作。在网络选择中,通常需要考虑网络负荷、终端的移动性和业务特性等因素。如对于车载用户通常选择覆盖范围大的无线网络,如WCDMA、WiMAX等;对于实时性要求不高的业务,并且非车载用户通常选择WLAN接入。这些均是通过策略来进行网络选择。
文献[41, 42]提出了基于业务类型的网络选择算法,根据用户的业务类型为用户选择合适的网络。文献[35]提出基于负载均衡的网络选择算法,用户选择接入或切换到最小负载因子的网络。[43]提出了一种考虑用户移动性和业务类型的网络选择算法。 多属性判决策略(Multiple Attribute Decision Making,MADM)是目前垂直切换方面研究最多的领域。多属性判决策略主要分为基于代价函数的方法和其他方法。
基于代价函数的方法
代价函数一般有两种构造形式,一种是多属性参数值的线性组合,如(2.1)式所示;另一种是多属性参数值的权重指数乘积或者是属性参数值的对数线性组合,如(2.2)式所示。
(2.1)
(2.2)
其中代表规范化的第个网络的第个属性值,代表第个属性的权值。对于属性的规范化,首先对属性进行分类,分为效益型、成本型等,然后根据不同的类型的,对参数进行归一化,采用最多的是线性规范化、极差规范化和向量变换法。关于权值的确定可以分为简单赋权法(Simple Additive Weighting,SAW)、层次分析法(Analytic Hierarchy Process,AHP)、熵权法、基于方差和均值赋权法。
(1) SAW:用户根据自己的偏好,确定每个属性的重要性,通常给出每个参数取值的具体参数值。
(2) AHP:首先分析评价系统中各要素之间关系,建立递阶层次结构;其次对同一层次的各要素之间的重要性进行两两比较,构造判断矩阵;接着由每层判断矩阵计算相对权重;最后计算系统总目标的合成总权重。
(3) 熵权法:通过求解候选网络中的同一属性的熵值,熵值的大小表明网络同一属性的参数值的差异,差别越大,说明该属性对决策影响越大,相应权值的取值就越大。
(4) 基于方差和均值赋权法:通过求解候选网络中同一属性参数的均值和方差,结合这两个参数确定该属性的重要性程度值,然后再对其进行归一化,得到每个属性的参数值。
其他方法
(1) 基于方差和均值赋权法:通过求解候选网络中同一属性参数的均值和方差,结合这两个参数确定该属性的重要性程度值,然后再对其进行归一化,得到每个属性的参数值。
(2) 逼近理想解排序法(TOPSIS):首先对参数进行归一化,从网络的每组属性参数值里选择最好的参数组成最优的一组属性参数,同样也可以得到最差的一组属性参数。将每个网络与这两组参数比较,距离最优参数组越近,并且与最差组越远,该网络为最合适的网络。
(3) 灰度关联分析法(GRA):首先对参数进行归一化,再利用GRA方法,求得每个网络的每个属性的关联系数,然后求出每个网络总的关联系数。根据每个网络总的关联系数,选择最适合的网络。
(4) 消去和选择转换法(ELECTRE):首先对参数进行归一化,构造加权的规范化矩阵,确定属性一致集和不一致集。然后计算一致指数矩阵和劣势矩阵,最后得到一致指数矩阵和不一致指数矩阵。根据这两个矩阵,确定网络的优劣关系,选择最适合的网络。
VIKOR:首先对参数进行归一化,首先确定最优和最差属性参数组,然后计算得到每个网络属性的加权和属性中最大的参数值,然后利用极差规范化对网络的加权和以及最大属性值进行归一化,最后利用归一化的参数进行加权求和,依据这个值,选择最合适的网络。

⑦ 异构网络的介绍

异构网络(Heterogeneous Network)是一种类型的网络,其是由不同制造商生产的计算机,网络设备和系统组成的,大部分情况下运行在不同的协议上支持不同的功能或应用。关于异构网络的研究最早追溯到1995的美国加州大学伯克利分校发起的BARWAN(Bay Area Research Wireless Access Network)项目,该项目负责人R.H. Katz在文献1中首次将相互重叠的不同类型网络融合起来以构成异构网络,从而满足未来终端的业务多样性需求。为了可以同时接入到多个网络,移动终端应当具备可以接入多个网络的接口,这种移动终端被称为多模终端。由于多模终端可以接入到多个网络中,因此肯定会涉及到不同网络之间的切换,与同构网络(Homogeneous Wireless Networks)中的水平切换(Horizontal Handoff, HHO)不同,这里称不同通信系统之间的切换为垂直切换(Vertical Handoff,VHO)。在此后的十几年中,异构网络在无线通信领域引起了普遍的关注,也成为下一代无线网络的发展方向。很多组织和研究机构都对异构网络进行了深入广泛的研究,如3GPP、MIH、ETSI、Lucent实验室、Ericsson研究所、美国的Georgia理工大学和芬兰的Oulu大学等。下一代无线网络将是无线个域网(如Bluetooth)、无线局域网(如Wi-Fi)、无线城域网(如WiMAX)、公众移动通信网(如2G、3G)以及Ad Hoc网络等多种接入网共存的异构无线网络2。

⑧ 如和用python构建异构网络

异构网络(Heterogeneous Network)是一种类型的网络,其是由不同制造商生产的计算机,网络设备和系统组成的,大部分情况下运行在不同的协议上支持不同的功能或应用。

所谓异构是指两个或以上的无线通信系统采用了不同的接入技术,或者是采用相同的无线接入技术但属于不同的无线运营商。利用现有的多种无线通信系统,通过系统间融合的方式,使多系统之间取长补短是满足未来移动通信业务需求一种有效手段,能够综合发挥各自的优势。

python其实是一种开发语言,他可以开发运行在这些异构网络硬件上的软件。爬虫什么的就是现成的例子。

⑨ 异构网络的异构网络模型

图2.1给出了一种异构网络模型。不同类型的网络,通过网关连接到核心网,最后连接到Internet网络上,最终融合成为一个整体。异构网路融合的一个重要问题是这些网络以何种方式来进行互连,为异构无线网络资源提供统一的管理平台。为了说明异构网络的融合结构,这里给出一种特定的异构网络场景,它是由无线广域网(Wireless Wide Area Network,WWAN)(例如CDMA2000)和WLAN(例如IEEE802.11)组成的异构网络系统,如图2.2所示。
一个CDMA2000网络可以分成无线接入网(Radio Access Network,RAN)和核心网络(Core Network,CN)两部分。RAN包括一些无线技术实体,如基站控制器(Base Station Controller,BSC)和基站收发设备(Base Transceiver Station,BTS),来负责无线资源的管理。CN通常包括移动交换中心(Mobile Switching Center,MSC)来实现电路交换方式、分组数据服务节点(Packet Data Serving Node,PDSN)来实现包交换方式和网络交互功能(Inter-working Function,IWF)来为包交换和电路交换提供连接。CN负责呼叫管理和建立连接。在WLAN中,移动终端(Mobile Terminals,MTs)和接入点(Access Point,AP)之间进行通信。AP在WLAN中实现物理和数据链路层的功能,也充当无线路由器来执行网络层的功能,为WLAN与其他网络提供连接。
在如图2.2中异构网络的融合结构中,通常有三种类型的融合方案,分别是松耦合结构、紧耦合结构、超紧耦合结构。接下来分别介绍这三种耦合结构。
超紧耦合是通过连接到相同的BSC上与不同的无线接入技术(Radio Access Technology,RAT)进行融合。网络的状态信息是局部的,不需要通过额外的请求来获得信息,可以应用在当网络之间是重叠覆盖的情况下。与其他的耦合方案相比,超紧耦合方案的切换时延很短,因为中间涉及到的网络实体少。但是由于这两种RAT完全不同,因此实现超紧耦合方式就需要对应用在BSC上的处理过程进行很多修改。
在紧耦合结构中,不同的RATs通过CN进行融合,耦合结点可以是MSC或者PDSN。在图2.2中,MSC或者PDSN都是负责WWAN和WLAN的连接管理、认证和定价,因此WLAN路由器需要实现相关的WWAN协议。与超紧耦合相比,这个系统仅需要对现有接入网络进行很小的修改,因此它非常容易实现。与超紧耦合相比,在切换过程中,由于涉及到很多网络的实体,因此这种方案的VHO时延增加了。
在松耦合的异构网络中,MSC与WLAN都经过通用接口与公共的Internet进行交互信息,来保持服务的连续性。但是由于每个网络需要执行网络的连接和会话的激活过程,因此这种方案执行切换时会导致时延很大。
对于超紧耦合和紧耦合方式的异构网络融合结构中,网络选择算法通常可以安排在耦合节点上,即分别是BSC和CN。但是对于松耦合方式,网络选择算法可以应用在移动终端。

⑩ 异构计算的异构计算

在异构计算系统上进行的并行计算通常称为异构计算。人们已从不同角度对异构计算进行定义,综合起来我们给出如下定义:异构计算是一种特殊形式的并行和分布式计算,它或是用能同时支持simd方式和mimd方式的单个独立计算机,或是用由高速网络互连的一组独立计算机来完成计算任务。它能协调地使用性能、结构各异地机器以满足不同的计算需求,并使代码(或代码段)能以获取最大总体性能方式来执行。
概括来说,理想的异构计算具有如下的一些要素:
(1)它所使用的计算资源具有多种类型的计算能力,如simd、mimd、向量、标量、专用等;(2)它需要识别计算任务中各子任务的并行性需求类型;(3)它需要使具有不同计算类型的计算资源能相互协调运行;(4)它既要开发应用问题中的并行性,更要开发应用问题中的异构性,即追求计算资源所具有的计算类型与它所执行的任务(或子任务)类型之间的匹配性;(5)它追求的最终目标是使计算任务的执行具有最短时间。
可见,异构计算技术是一种使计算任务的并行性类型(代码类型)与机器能有效支持的计算类型(即机器能力)最相匹配、最能充分利用各种计算资源的并行和分布计算技术。 1、异构计算系统。
它主要由以下三部分组成:(1)一组异构机器。(2)将各异构机器连接起来的高速网络。它可以是商品化网络,也可以是用户专门设计的。(3)相应的异构计算支撑软件。
2、异构计算的基本工作原理。
异构计算需求在析取计算任务并行性类型基础上,将具有相同类型的代码段划分到同一子任务中,然后根据不同并行性类型将各子任务分配到最适合执行它的计算资源上加以执行,达到使计算任务总的执行时间为最小。下面通过一个简单例子来说明异构计算的基本工作原理。
假设在某一基准串行计算机上执行某一给定计算任务的时间为ts,其中向量、mimd、simd以及sisd各类子任务所占执行时间的百分比分别为30%、36%、24%和10%。假设某向量机执行上述各类子任务相对于基准串行机的加速比分别为30、2、8和1.25,则在该向量机上执行此任务所需的总时间为
tv=30%ts/30+36%ts/2+24%ts/8+10%ts/1.25=0.30ts,
故相应的加速比为sv=ts/tv=ts/0.3ts=3.33
若上述向量机与其他的mimd机、simd机以及一台高性能工作站(sisd型)构成一个异构计算系统,并假设mimd机、simd机以及工作站执行相匹配子任务的加速比分别为36、24和10,则在该异构计算系统上执行同样任务所需时间就变为
thet=30%ts/30+36%ts/36+24%ts/24+10%ts/10+tc
其中tc为机器间交互开销时间,假设需2%ts时间,则thet=0.06ts,从而相应的加速比为shet=ts/0.06ts=16.67。
由上例可见,异构计算系统可比同构计算系统获取高得多的加速比。这主要是因为同构计算系统中的加速比只是靠并行性开发获取的,而异构计算系统中的加速比除了并行性之外,更主要的是靠开发异构性获得的(即不同类型子任务与相应类型的计算资源相匹配),尽管此时会有相应的交互开销。交互开销越小,异构计算的优越性就越加明显。 异构计算按以何种形式来提供计算类型多样性,可分为系统异构计算(shc-system heterogeneous computing)和网络异构计算(nhc-network heterogeneous computing)两大类。shc以单机多处理器形式提供多种计算类型,而nhc则以网络连接的多计算机形式提供多种计算类型。
根据异构性实现方式不同,即是空间异构性还是时间异构性,shc和nhc各自又可进一步分为两类。shc分为单机多计算方式和单机混合计算方式两大类,前者在同一时刻允许以多种计算方式执行任务,后者在同一时刻只允许以一种计算方式执行任务,但在不同时刻计算可从一种方式自动切换到另一种方式,如simd和mimd方式间的切换。前者的实例有美国hughes研究实验室和mit共同研制的图像理解系统结构(iua),它是多层异构系统结构,按图像理解层次要求设计每一层,低层是simd位串网络(4096),用来处理像素级操作(如图像增强),中层是由64个数字信号处理(dsp)芯片构成的,以spmd或mimd(中粒度)方式执行模式分类等操作,顶层是一个通用mimd(粗粒度)机器,完成场景和动作分析等知识处理操作。后者的实例为美国普渡大学研制的pasm系统原型,由16个pe(处理单元)组成的系统,它们可动态地加以划分以形成各种大小的独立的混合方式子机器,执行方式可按需要在simd和mimd之间自动切换。
nhc可进一步分为同类异型多机方式和异类混合多机方式两类。同类异型多机方式中所使用的多机,它们的结构属同一类,即支持同一种并行性类型(如simd、mimd、向量等类型之一),但型号可能不同,因此性能可以各有差异。通常的now或cow为同类同型多机方式,因此可看成是同类异型多机方式中的特例。异类混合多机方式中所使用的多机,它们的结构则属不同类型。 网络异构计算系统主要由一组异构计算机、一个连接所有机器的高速网络和一个并行编程环境所组成。逻辑上这种系统可分为三个层次:网络层、通信层和处理层。如图1所示。
网络层主要用来连接在不同地点的计算机,如图1中的计算站a和计算站b,并考虑其中消息传递的路由选择、网络流优化和网络排队理论等问题,这与传统的计算机网络设计类似。
通信层工作于网络层之上,主要为系统中各种不同的计算机提供能够相互通信的机制。通信工具软件应提供使众多异构计算机集合可视为是一个单一的系统映像、单个虚拟异构并行机的机制。这将方便用户编程。这种通信工具通常提供一组原语来提供各种通信。典型流行的通信工具是pvm(并行虚拟机)和mpi(消息传递标准接口)。
处理层主要用来管理异构机器组并保证任务的高效执行。它所提供的主要服务包括编程环境和语言支持、应用任务的类型分析和任务划分、任务的映射与调度以及负载平衡等。 异构计算处理过程本质上可分为三个阶段:并行性检测阶段、并行性特征(类型)析取阶段以及任务的映射和调度阶段。并行性检测不是异构计算特有的,同构计算也需要经历这一阶段。可用并行和分布计算中的常规方法加以处理。并行性特征析取阶段是异构计算特有的,这一阶段的主要工作是估计应用中每个任务的计算类型参数,包括映射及对任务间通信代价的考虑。任务映射和调度阶段(也称为资源分配阶段)主要确定每个任务(或子任务)应映射哪台机器上执行以及何时开始执行。
从用户来看,上述的异步计算处理过程可用两种方法来实现。第一种是用户指导法,即由用户用显式的编译器命令指导编译器完成对应用代码类型分析及有关任务的分解等工作,这是一种显式开发异构性和并行性方法,较易于实现,但对用户有一定要求,需将异构计算思想融入用户程序中。另一种是编译器指导法,需将异构思想融入编译器中,然后由具有“异构智力”的编译器自动完成应用代码类型分析、任务分解、任务映射及调度等工作,即实现自动异构计算。这是一种隐式开发异构性和并行性方法,是异构计算追求的终极目标,但难度很大,对编译器要求很高。
自动异构计算的概念性模型如图2所示。首先对两个对象进行分析,一是异构计算系统中的机器集,二是求解的应用程序。为了获取最好的执行效果,对它们不但进行定性分析,还需进行相应的定量分析。
整个异构计算处理过程可分为以下四个阶段:第一阶段主要是对各台机器进行计算特征的分类,得出异构计算系统所能完成的计算类型;按代码块统计应用对计算特征的需求并加以分类;用基准程序测试各机器的性能参数,包括速度参数及机器间通信性能参数,生成对应的两个机器速度性能矩阵和通信带宽矩阵。将程序按计算类型分类划分;估算各子任务的计算量和子任务间通信量,生成相应的任务dag图。dag图中结点上的数值表示子任务计算量,弧上的数值表示两结点间通信量。
第二阶段主要是根据dag和速度性能矩阵计算出每个子任务在各台机器上的执行时间,生成时间性能矩阵;根据通信性能矩阵和子任务的通信量计算各子任务间的通信时间,生成通信时间矩阵。
第三阶段根据前两个阶段结果,给出各子任务到各机器的映射和符合任务dag图偏序关系的调度。映射和调度可以是静态或动态的,动态调度需根据机器负载和网络状态信息进行。
第四阶段为执行。 异构计算的应用范围很广,几乎所有涉及巨大挑战性问题的求解都可用异构计算进行经济有效的求解。典型的应用包括图像理解、质点示踪、声束形成、气候建模、湍流对流混合模拟以及多媒体查询等。这些应用中通常都含有多种不同的计算类型的需求,因此很适合于用异构计算来进行求解。
1、未来应重点开展异构混合多机方式的网络异构计算的研究,它代表着发展趋向,且较经济有效;2、自动异构计算是长期追求目标,在现阶段宜采用用户指导方法来进行研究和开发;3、应尽量利用现有成熟工具如pvm和mpi来开展异构计算的研究和开发;4、应注意开展异构计算的理论分析和建模、性能估计模型、有关软件工具以及异构计算中任务映射和调度算法等方面的研究;5、应研究如何使异构计算系统具有良好的单一系统映像。

阅读全文

与无线异构网络智能算法相关的资料

热点内容
网络安全手抄报有颜色有字 浏览:480
光猫如何连接后如何设置电脑网络 浏览:878
如何看待网络上发展现状 浏览:10
网络密码是怎么设置的 浏览:676
好玩的单机不用网络的游戏软件 浏览:892
长征网络不能用tp路由器吗 浏览:269
公司装网络移动联通电信哪个好 浏览:357
网络电视观看直播哪个软件好 浏览:510
共建共享网络安全 浏览:881
6swifi不停选取网络 浏览:679
苹果手机只有淘宝登录网络失败 浏览:264
电话连接网线老是显示网络电缆 浏览:581
亿联网络下跌了多少 浏览:672
网络工程初级怎么考 浏览:924
极路由手机接入家里网络 浏览:715
一个wifi可以连两个网络机顶盒吗 浏览:243
小杜网络设置方法 浏览:777
可以换网络密码的应用 浏览:332
wifi怎么会无法连接网络 浏览:177
网络共享的打印机怎么添加 浏览:587

友情链接