⑴ 在中国移动通信出来前,移动电话用的是什么通信最早可以供移动电话通信的又是什么通信
1,移动的2G GSM网络出来前,那时候是用“大哥大”也就是无线模拟电话。
2,最早的移动电话通信是模拟移动通信。还是传说中的大哥大
第一代模拟移动电话
通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线,用户第一次能够在移动状态下无线接收和拨打电话。这时有三种主要的窄带模拟标准,它们是北美蜂窝系统AMPS、北欧移动电话系统NMT和全接入通信系统 TACS。
大哥大最早是美国企业巨头摩托罗拉公司发明。1973年4月3日,世界上第一部手机在位于纽约曼哈顿的摩 马丁.库帕 托罗拉实验室里诞生,研究团队的领导者是马丁.库帕(Martin Cooper)。这部手机的诞生意味着一个新时代的开始。
人们从封闭走向开放,仅仅只有激情和想法肯定是不够的,还得借助工具。1987年大哥大进入中国,它无疑成了加速人们信息沟通和社会交往的重要工具。移动电话刚刚进入大陆的时候,有一个奇怪的名称,叫“大哥大”。这其实是香港广东一带,称呼帮会头目的谐音。帮会一般管小头目叫大哥,而龙头老大自然叫“大哥大”了。
⑵ 网络连接的几种方式都是什么意思啊
目前家用网络连接线路入户线路类型主要有电话线、光纤和网线。
一、光纤入户,运营商提供的入户线路为光纤,需要配合光猫使用这也是目前最多的连接方式了。
二、电话线入户,运营商提供的入户线路为电话线,需要配合Modem(猫)使用,一般是中国电信的宽带线路。如果有电话线分离器,请将入户电话线连接到分离器后再连接猫。
三、网线入户,运营商(如电信宽带)或小区宽带通过网线直接给您提供宽带服务。这种又叫小区宽带,一般是非电信运营商提供的,通常比较便宜,但是网络稳定性。
(2)nmt属于无线网络通信技术吗扩展阅读:
其它连接方式
1、无线短距通信——Wi-Fi
Wi-Fi是一种无线局域网通信技术,全称Wireless-Fidelity。Wi-Fi终端指使用高频无线电信号发送和接收数据,使用以太网通信协议,通信距离通常在几十米。
2、无线短距通信——ZigBee
ZigBee是一种低速低功耗,短距,自组网的无线局域网通信技术,名称取自于蜜蜂,蜜蜂(bee)是靠飞翔和"嗡嗡"(zig)地抖动翅膀的"舞蹈"来与同伴传递花粉所在方位信息,依靠这样的方式构成了群体中的通信网络。
3、无线短距通信——LoRa
LoRa来源于Long Range这个单词,是一种长距离通信的通信技术。LoRa技术基于线性Chirp扩频调制,延续了移频键控调制的低功耗特性,但是大大增加了通信范围。Chirp扩频调制有长距离传输以及很好的抗干扰性,已经在军事和航天通信方面应用多年。
⑶ 现代移动通信技术的发展趋势
1.1无线数据——生机无限
当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的
移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的
承载数据业务以及GSM系统的HSCSD,另外一种是分组交换型的移动数据业务,比较着名的
有摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。
目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中
这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决
方案显露峥嵘,并成为数据应用的新的焦点,无线数据将成为运营商经营计划中越来越重
要的部分,它预示着未来大量的商业机遇。
应用驱动市场
无线数据业务的主要驱动力在于用户的应用。话音是单一的、容易理解、应用的市场。
然而无线数据则不同,无线数据最初的应用重点放在象运输管理这样的专业市场。近期无
线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中
积累无线数据的经验,并从中受益。随着速率的增长,其他更通用的应用将会出现,无线
数据业务将开始影响大众市场。
在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个
人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身
上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。
因特网的影响
和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最
近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将
高达300%。显然用户在运动中接入因特网的需求将会增长。
为了满足接人因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运
而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用
标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保
护运营商投资的标准,WM确保任何与WAP兼容的GSM手机都能工作。WAP是实现无线数据市
场快速发展的工具。
数据速率的发展
GSM承载业务所提供的GSM数据速率最高只能达到9.6kb/s。国际上1998年引入的高速
电路交换数据(HSCSD)技术将实现57kb/s的数据速率,对要求连续比特率和传输时延小
的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图象。1999年商
用化的GPRS是第一个GSM分组数据应用,将实现超过100kb/s的数据速率。对较短的“突发”
类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改
进模式)使用修改过的GSM调制方式来实现超过300kb/S的数据速率。EDGE会让GSM运营商
特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数
据业务。
1.2个人多媒体通信——网络演进的方向
对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市
场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据
乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。
个人移动多媒体通信将根据地点为人们提供无法想象的、完善的个人业务和无线信息,
将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被
传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话直呼叫将与
实时图象相结合,产生大量的可视移动电话。还将实现移动因特网和万维网浏览。象无线
会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地
的各种信箱和娱乐服务。
2网络技术的宽带化
在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三
者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据
化、分组化发展,移动网络必然走向宽带化。
通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AM
PS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模
拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第
一次能够在他们所在的任何地方无线接收和拨打电话。
第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密
性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、D
-AMPS、PDC(日本数字蜂窝系统)和IS-95CDMA等,均仍为窄带系统。
第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽
带综合业务并实现全球无缝覆盖。2000年以后,虽然窄带移动电话业务需求将依然很大,
但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增
长,而且就未来信息高速公路建设的无缝覆盖而言,宽带多媒体综合业务将逐步增长,而
且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集
将显得愈来愈重要。第三代系统预计在2002年投入商用。
从第二代到第三代系统的变化并不象从第一代模拟网络到第二代数字网络那样存在重
大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步平滑过渡到第三代
系统,在此演进过程中,移动网络所能实现的数据速率逐步升级;GSM承载业务所能提供的
数据速率为9.6Kb/s,1998年商用的HSCSD技术实现了57kb/s的数据速率,1999年引人的GP
RS将实现超过100WS的数据速率,将在2000年引入的EDGE技术可实现超过300kb/s的数据速
率。2001年后投入商用的第三代系统将能够在广域网上实现384kb/s的数据速率,在办公
室和家中还可以达到2Mkb/s。
3网络技术的智能化
移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了
迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移
动智能网由此而生。移动智能网是在移动网络中引入智能网功能实体,以完成对移动呼叫
的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、
经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方
便灵活地获得所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和
数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能
网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需求来设计业
务,向其他业务提供者开放网络,增加效益。
关于移动智能网的研究,早在1995年就已开始,刚开始时并没有具体的标准协议出现,
各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、
Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了
经验。
1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——
IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSM phase2+阶段引入了CAMEL
协议(移动通信高级逻辑的客户化应用程序),当时的版本是phase1。1998年4月,ITU-T
在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMELphase2标准。
伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及
其智能业务是构成未来个人通信的基本条件。
4更高的频段
从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系
统,网络使用的无线频段遵循一种由低到高的发展趋势。
1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年
NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900MHz。在第二代网络
中,GSM系统的开始使用频段为900MHz,IS-95CDMA系统为800MHz。为了从根本上提高GSM
系统的容量,1997年出现了1800MHz系统,GSM900/1800双频网络迅速普及。2000年将投入
商用的第三代系统IMT-2000则定在2GMHz频段。
5更有效利用频率
无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急
剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是
采用各种频率有效利用技术和开发新频段。
模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用
和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户
发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字
系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,
数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大
4-20倍。
CSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利
用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的
不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复
用的密集度逐步提升,频谱效率快速提高,GSM系统的容量得到逐步释放。
1995年开始投入商用的IS-95CDMA(窄带)系统,以无线技术的先进性和大容量等特
点着称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或
时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,
网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备较容量。
作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效
地利用无线电频率。它利用分层小区结构、自适应天线阵和相平解调(双向)等技术,网
络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。
6网络趋于融合,走向统一
6.1第三代移动通信系统的结构
第三代系统的主要目标是将包括卫星在内的所有网络融合为可以替代众多网络功能的
统一系统,它能够提供宽带业务并实现全球无缝覆盖。为了保护运营公司在现有网络设施
上的投资,第二代系统向第三代系统的演进遵循平滑过渡的原则,现有的GSM、D-AMPS、
IS-136等第二代系统均将演变成为第三代系统的核心网络,从而形成一个核心网家族,
核心网家族的不同成员之间通过NNI接口联结起来,成为一个整体,从而实现全球漫游。在
核心网络家族的外围,形成一个庞大的无线接入家族,现有的几乎所有的无线接入技术及
WCDMA等第三代无线接入技术均成为其成员。第三代系统充分显示了未来电信网络的融合特
征。
6.2未来的网络构架
技术的发展和市场需求的变化、市场竞争的加剧以及市场管理政策的放松将使计算机
网、电信网、电视网等加快融合为一体,宽带IP技术成为三网融合的支撑和结合点。未来
的网络将向宽带化、智能化、个人化方向发展,形成统一的综合宽带通信网,并逐步演进
为由核心骨干层和接入层组成、业务与网络分离的构架。
⑷ 所谓的3G、4G、5G通信技术当中的G是什么意思
我们所知道的1G、2G、3G、4G 和 5G 代表五代移动网络,其中 G 代表“世代”,数字 1、2、3、4 和 5 代表世代编号。自 1980 年代初以来,我们几乎每十年就会看到新一代移动网络。每一代移动网络都有一组要求,这些要求由支持这一代网络的蜂窝技术来满足。
从技术角度来看,5G 可以提供高达 10 Gbps 的峰值速度,而 LTE-Advanced Pro 可以实现 3 Gbps 的峰值速度。平均而言,5G 可以说是 4G LTE 的十倍。此外,随着几年前 LTE-Advanced 和 LTE-Advanced Pro 的推出,4G LTE 网络现在已经成熟.5GNR 网络仍然是新的,并且很可能会在未来几年看到增强功能,就像 LTE 网络一样。
⑸ 无线网络技术和移动通信技术有什么不同,有哪些相同。
其实这两种差不多,以下做分别介绍:
(一)、无线网络技术
1、所谓的无线网络,既包括允许用户建立远距离无线连接的全球语音和数据网络,也包括为近距离无线连接进行优化的红外线技术及射频技术,与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线,可以和有线网络互为备份。
2、采用无线传输媒体如无线电波、红外线等的网络。与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线。
3、无线网络技术涵盖的范围很广,既包括允许用户建立远距离无线连接的全球语音和数据网络,也包括为近距离无线连接进行优化的红外线技术及射频技术。通常用于无线网络的设备包括便携式计算机、台式计算机、手持计算机、个人数字助理(PDA)、移动电话、笔式计算机和寻呼机。无线技术用于多种实际用途。例如,手机用户可以使用移动电话查看电子邮件。
4、使用便携式计算机的旅客可以通过安装在机场、火车站和其他公共场所的基站连接到Internet。在家中,用户可以连接桌面设备来同步数据和发送文件目前主流应用的无线网络分为GPRS手机无线网络上网和无线局域网两种方式。
5、而GPRS手机上网方式,是一种借助移动电话网络接入Internet的无线上网方式,因此只要所在城市开通了GPRS上网业务,在任何一个角落都可以通过笔记本电脑来上网。
6、无线网络并不是何等神秘之物,可以说是相对于目前普遍使用的有线网络而言的一种全新的网络组建方式。无线网络在一定程度上扔掉了有线网络必须依赖的网线。
(二)、移动通信技术
第一代
第一代 移动通信系统(1G)是在20世纪80年代初提出的,它完成于20世纪90年代初,如NMT和AMPS,NMT于1981年投入运营。第一代移动通信系统是基于模拟传输的,其特点是业务量小、质量差、安全性差、没有加密和速度低。1G主要基于蜂窝结构组网,直接使用模拟语音调制技术,传输速率约2.4kbit/s。不同国家采用不同的工作系统。
第二代
第二代移动通信系统(2G)起源于90年代初期。欧洲电信标准协会在1996年提出了GSM Phase 2+,目的在于扩展和改进GSM Phase 1及Phase 2中原定的业务和性能。它主要包括CMAEL(客户化应用移动网络增强逻辑),S0(支持最佳路由)、立即计费,GSM 900/1800双频段工作等内容,也包含了与全速率完全兼容的增强型话音编解码技术,使得话音质量得到了质的改进;半速率编解码器可使GSM系统的容量提近一倍。在GSM Phase2+阶段中,采用更密集的频率复用、多复用、多重复用结构技术,引入智能天线技术、双频段等技术,有效地克服了随着业务量剧增所引发的GSM系统容量不足的缺陷;自适应语音编码(AMR)技术的应用,极大提高了系统通话质量;GPRs/EDGE技术的引入,使GSM与计算机通信/Internet有机相结合,数据传送速率可达115/384kbit/s,从而使GSM功能得到不断增强,初步具备了支持多媒体业务的能力。尽管2G技术在发展中不断得到完善,但随着用户规模和网络规模的不断扩大,频率资源己接近枯竭,语音质量不能达到用户满意的标准,数据通信速率太低,无法在真正意义上满足移动多媒体业务的需求。
第三代
3G技术
第三代移动通信系统(3G),也称IMT 2000,是正在全力开发的系统,其最基本的特征是智能信号处理技术,智能信号处理单元将成为基本功能模块,支持话音和多媒体数据通信,它可以提供前两代产品不能提供的各种宽带信息业务,例如高速数据、慢速图像与电视图像等。如WCDMA的传输速率在用户静止时最大为2Mbps,在用户高速移动是最大支持144Kbps,说占频带宽度5MHz左右。但是,第三代移动通信系统的通信标准共有WCDMA,CDMA2000和TD-SCDMA三大分支,共同组成一个IMT 2000家庭,成员间存在相互兼容的问题,因此已有的移动通信系统不是真正意义上的个人通信和全球通信;再者,3G的频谱利用率还比较低,不能充分地利用宝贵的频谱资源;第三,3G支持的速率还不够高,如单载波只支持最大2~fDps的业务,等等。这些不足点远远不能适应未来移动通信发展的需要,因此寻求一种既能解决现有问题,又能适应未来移动通信的需求的新技术(即新一代移动通信:next generation mobile communication)是必要的。
高速铁路移动通信和3G技术
一般来说,在高速移动的物体上,当速度超过时速150千米时,2G/3G的快速功率控制效果不佳,此时就要看哪种通信制式的抗衰落手段多,且衰落储备量大。TD-SCDMA对高速移动情况不太适应,主要是因为技术性能先进的只能天线没有在高铁上全面普及和覆盖,且系统的增益又不高,再加上使用终端的功率不大,使得在高铁上,对于覆盖边缘由于衰落储备不足而掉话;到目前为止,GSM制式在高铁系统中还没有启用功控装置,不过GSM制式只提供语音通话,信道编码纠错技术在这种情况下的作用显着,在通信基站功率达到40W,终端功率达到2W,且基站距离较短的情况下,衰落储备量发挥作用,高铁的应用效果还可以。GSM系统中的EDGE制式在高铁中的效果不好,主要是由于EDGE在高速数据时的编码效率为1,没有编码冗余度,对应的信道编码增益相对较低,此外,高阶的数据8PSK调制,会使得解调EDGE数据的信噪比较高,导致EDGE边缘的覆盖电压需要更高,其衰落储备要更大;但在实际的高铁系统中,两个基站覆盖区之间的衰落储备一般都不足,使得传输的数据率会迅速下降。所以,就要寻求新的技术体系来解决高铁中的移动通信问题。 3G通信技术在我国的发展是日新月异。2009年1月7日,我国同时发放了三张3G牌照,即:TD-SCDMA、WCDMA、CDMA200,标志着我国正式进入了3G时代。3G网络运行的两年多时间里,在拉动我国GDP增长的同时,还为国内创造了大量的就业机会。从技术角度来分析,3G移动通信网络相对于2G网络的优势在于更大的系统容量和更好的通信质量,且能够实现全球范围的无缝漫游,为通信用户提供包括语音、数据和多媒体等多种形式的通信服务。 在国际移动通信领域,国际电联对3G网络有其最低的要求和标准,即:在高速移动的地面物体上,3G网络所能提供的数据业务为64~144kb/s,要能够适应500km/h的移动环境。针对该标准,我国现行的3种3G网络中,WCDMA和CDMA2000主要采用“软切换”技术,能够实现移动终端在时速500km时的正常通信,即能够实现在与另一个新基站通信时,首先不中断跟原基站的联系,而是在跟新的基站连接好后,再中断跟原基站的连接,这也是3G网络优于2G网络的一个突出特点;WCDMA技术已经解决了高速运动物体的无缝覆盖问题;此外,TD-SCDMA也对高铁通信的覆盖方案进行了研究。 因此,3G移动通信网络在技术层面上已经具有为高铁提供通信保障的基本条件,为我国高铁发展过程中移动通信问题的完满解决奠定了坚实基础。
第四代
4G是第四代移动通信及其技术的简称,是集3G与WLAN于一体并能够传输高质量视频图像以及图像传输质量与高清晰度电视不相上下的技术产品。 4G系统能够以100Mbps的速度下载,比拨号上网快2000倍,上传的速度也能达到20Mbps,并能够满足几乎所有用户对于无线服务的要求。而在用户最为关注的价格方面,4G与固定宽带网络在价格方面不相上下,而且计费方式更加灵活机动,用户完全可以根据自身的需求确定所需的服务。此外,4G可以在DSL和有线电视调制解调器没有覆盖的地方部署,然后再扩展到整个地区。 很明显,4G有着不可比拟的优越性。
4G移动系统网络结构可分为三层:物理网络层、中间环境层、应用网络层。物理网络层提供接入和路由选择功能,它们由无线和核心网的结合格式完成。中间环境层的功能有QoS映射、地址变换和完全性管理等。物理网络层与中间环境层及其应用环境之间的接口是开放的,它使发展和提供新的应用及服务变得更为容易,提供无缝高数据率的无线服务,并运行于多个频带。这一服务能自适应多个无线标准及多模终端能力,跨越多个运营者和服务,提供大范围服务。第四代移动通信系统的关键技术包括信道传输;抗干扰性强的高速接入技术、调制和信息传输技术;高性能、小型化和低成本的自适应阵列智能天线;大容量、低成本的无线接口和光接口;系统管理资源;软件无线电、网络结构协议等。第四代移动通信系统主要是以正交频分复用(OFDM)为技术核心。OFDM技术的特点是网络结构高度可扩展,具有良好的抗噪声性能和抗多信道干扰能力,可以提供无线数据技术质量更高(速率高、时延小)的服务和更好的性能价格比,能为4G无线网提供更好的方案。例如无线区域环路(WLL)、数字音讯广播(DAB)等,预计都采用OFDM技术。4G移动通信对加速增长的广带无线连接的要求提供技术上的回应,对跨越公众的和专用的、室内和室外的多种无线系统和网络保证提供无缝的服务。通过对最适合的可用网络提供用户所需求的最佳服务,能应付基于因特网通信所期望的增长,增添新的频段,使频谱资源大扩展,提供不同类型的通信接口,运用路由技术为主的网络架构,以傅利叶变换来发展硬件架构实现第四代网络架构。移动通信会向数据化,高速化、宽带化、频段更高化方向发展,移动数据、移动IP预计会成为未来移动网的主流业务。
⑹ 第一代个人移动通信采用的是模拟技术 它属于蜂窝式模拟移动通信
一、第一代移动通信技术(1G)是指最初的模拟、仅限语音的蜂窝电话标准,制定于上世纪80年代。
Nordic移动电话(NMT)就是这样一种标准,应用于Nordic国家、东欧以及俄罗斯。其它还包括美国的高级移动电话系统(AMPS),英国的总访问通信系统(TACS)以及日本的JTAGS,西德的 C-Netz,法国的Radiocom 2000和意大利的RTMI。模拟蜂窝服务在许多地方正被逐步淘汰。
二、第一代移动通信系统主要用于提供模拟语音业务。
美国摩托罗拉公司的工程师马丁·库珀于1976年首先将无线电应用于移动电话。
同年,国际无线电大会批准了800/900 MHz频段用于移动电话的频率分配方案。
在此之后一直到20世纪80年代中期,许多国家都开始建设基于频分复用技术(FDMA,Frequency Division Multiple Access)和模拟调制技术的第一代移动通信系统(1G,1st Generation)。
说起第一代移动通信系统,就不能不提大名鼎鼎的贝尔实验室。
1978年底,美国贝尔试验室研制成功了全球第一个移动蜂窝电话系统—先进移动电话系统(AMPS,Advanced Mobile Phone System)。
5年后,这套系统在芝加哥正式投入商用并迅速在全美推广,获得了巨大成功。
同一时期,欧洲各国也不甘示弱,纷纷建立起自己的第一代移动通信系统。
瑞典等北欧4国在1980年研制成功了NMT-450移动通信网并投入使用;
联邦德国在1984年完成了C网络(C-Netz);
英国则于1985年开发出频段在900MHz的全接入通信系统(TACS,Total Access Communications System)。
在各种1G系统中,美国AMPS制式的移动通信系统在全球的应用最为广泛,它曾经在超过72个国家和地区运营,直到1997年还在一些地方使用。同时,也有近30个国家和地区采用英国TACS制式的1G系统。这两个移动通信系统是世界上最具影响力的1G系统。
中国的第一代模拟移动通信系统于1987年11月18日在广东第六届全运会上开通并正式商用,采用的是英国TACS制式。
从中国电信1987年11月开始运营模拟移动电话业务到2001年12月底中国移动关闭模拟移动通信网,1G系统在中国的应用长达14年,用户数最高曾达到了660万。如今,1G时代那像砖头一样的手持终端——大哥大,已经成为了很多人的回忆。