① 无线传感器,主要应用在哪些方面
�丫���簧俚奈尴叽�衅魍�缈�纪度胧褂谩D壳拔尴叽�衅魍�绲挠τ弥饕��性谝韵铝煊颍骸�
1.环境的监测和保护
随着人们对于环境问题的关注程度越来越高,需要采集的环境数据也越来越多,无线传感器网络的出现为随机性的研究数据获取提供了便利,并且还可以避免传统数据收集方式给环境带来的侵入式破坏。比如,英特尔研究实验室研究人员曾经将32个小型传感器连进互联网,以读出缅因州大鸭岛上的气候,用来评价一种海燕巢的条件。无线传感器网络还可以跟踪候鸟和昆虫的迁移,研究环境变化对农作物的影响,监测海洋、大气和土壤的成分等。此外,它也可以应用在精细农业中,来监测农作物中的害虫、土壤的酸碱度和施肥状况等。
2.医疗护理无线传感器网络在医疗研究、护理领域也可以大展身手。罗彻斯特大学的科学家使用无线传感器创建了一个智能医疗房间,使用微尘来测量居住者的重要征兆(血压、脉搏和呼吸)、睡觉姿势以及每天24小时的活动状况。英特尔公司也推出了无线传感器网络的家庭护理技术。该技术是做为探讨应对老龄化社会的技术项目(CAST)的一个环节开发的。该系统通过在鞋、家具以家用电器等家中道具和设备中嵌入半导体传感器,帮助老龄人士、阿尔茨海默氏病患者以及残障人士的家庭生活。利用无线通信将各传感器联网可高效传递必要的信息从而方便接受护理。而且还可以减轻护理人员的负担。英特尔主管预防性健康保险研究的董事EricDishman称,在开发家庭用护理技术方面,无线传感器网络是非常有前途的领域。
3.军事领域由于无线传感器网络具有密集型、随机分布的特点,使其非常适合应用于恶劣的战场环境中,使其非常适合应用于恶劣的战场环境中,包括侦察敌情、监控兵力、装备和物资,判断生物化学攻击等多方面用途。美国国防部远景计划研究局已投资几千万美元,帮助大学进行智能尘埃传感器技术的研发。哈伯研究公司总裁阿尔门丁格预测:智能尘埃式传感器及有关的技术销售将从2004年的1000万美元增加到2010年的几十亿美元。
4.其他用途
无线传感器网络还被应用于其他一些领域。比如一些危险的工业环境如井矿、核电厂等,工作人员可以通过它来实施安全监测。也可以用在交通领域作为车辆监控的有力工具。此外和还可以在工业自动化生产线等诸多领域,英特尔正在对工厂中的一个无线网络进行测试,该网络由40台机器上的210个传感器组成,这样组成的监控系统将可以大大改善工厂的运作条件。它可以大幅降低检查设备的成本,同时由于可以提前发现问题,因此将能够缩短停机时间,提高效率,并延长设备的使用时间。尽管无线传感器技术目前仍处于初步应用阶段,但已经展示出了非凡的应用价值,相信随着相关技术的发展和推进,一定会得到更大的应用。
② 无线传感器有哪些应用实例
随着物联网无线传感器技术不断提高,越来越得到广泛应用,主要用于石油化工,电力,工业制造,医药,农业,养殖,市政等领域,不仅提高了工作效率,还降低了生产成本。这里,小编结合用户实际需求盘点了联网无线传感器技术的十大典型应用实例。
一、EMS能源数据无线监控
针对美的集团的一个总厂,下面有7个分厂(总装一分厂、总装二分厂、总装三分厂、轻商分厂、注塑分厂、电子分厂、部装分厂)的监控和信息分析。
1、实现对各分厂的各线体现场电能表、各种流量计量表(如压缩空气流量、石油气流量、氧气流量、氮气流量等)的实时数据采集及监控
2、实现各分厂的各线体的用电量、用压缩空气量、用石油气量、用氮气量、用氧气量等的计算、统计、分析
3、实现统计报表功能、实时数据和状态显示功能、历史和实时曲线功能、远程控制功能、管理功能、冗余功能
4、要求系统具有良好的开放性,可以与其它信息系统等进行数据交换
二、地下管沟水位监测
为了确保上海迪斯尼乐园整个园区后期的安全运营,需要对供排水管道网络进行科学周到的监控管理。
1、一共有六个点需要监测地下管沟的水位。
2、当水位超标时,将信号上传至电脑或手机上。
三、电厂管网压力、流量、温度无线监控
广东罗定电厂管网压力、流量、温度无线监测主要监测管网的压力、流量、温度,以及阀门开度等等参数,并在需要时对阀门进行开、关操作。该系统由监控中心、通信网路、测控终端等组成。
各个管网监测点的数据采集终端可监视和采集温度、压力、流量等等参数,同时具备远程控制功能,可进行管网阀门的开关调度及显示。数据存入数据库供控制中心及有关部门分析和决策取用,并能保存至少两年以上,提高工作效率。
③ 无线传感器网络节点部署问题研究
无线传感器网络是近几年发展起来的一种新兴技术,在条件恶劣和无人坚守的环境监测和事件跟踪中显示了很大的应用价值。节点部署是无线传感器网络工作的基础,对网络的运行情况和寿命有很大的影响。部署问题涉及覆盖、连接和节约能量消耗3个方面。该文重点讨论了网络部署中的覆盖问题,综述了现有的研究成果,总结了今后的热点研究方向,为以后的研究奠定了基础。
基于虚拟势场的有向传感器网络覆盖增强算法
陶 丹+, 马华东, 刘 亮
(智能通信软件与多媒体北京市重点实验室(北京邮电大学),北京 100876)
A Virtual Potential Field Based Coverage-Enhancing Algorithm for Directional Sensor Networks
TAO Dan+, MA Hua-Dong, LIU Liang
(Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunications), Beijing 100876, China)
+ Corresponding author: Phn: +86-10-62282277, Fax: +86-10-62283523, E-mail: [email protected], http://www.bupt.e.cn
Tao D, Ma HD, Liu L. A virtual potential field based coverage-enhancing algorithm for directional sensor networks. Journal of Software, 2007,18(5):11521163. http://www.jos.org.cn/1000-9825/18/1152.htm
Abstract: Motivated by the directional sensing feature of video sensor, a direction adjustable sensing model is proposed first in this paper. Then, the coverage-enhancing problem in directional sensor networks is analyzed and defined. Moreover, a potential field based coverage-enhancing algorithm (PFCEA) is presented. By introcing the concept of “centroid”, the pending problem is translated into the centroid points’ uniform distribution problem. Centroid points repel each other to eliminate the sensing overlapping regions and coverage holes, thus enhance the whole coverage performance of the directional sensor network. A set of simulation results are performed to demonstrate the effectiveness of the proposed algorithm.
Key words: directional sensor network; directional sensing model; virtual potential field; coverage enhancement
摘 要: 首先从视频传感器节点方向性感知特性出发,设计了一种方向可调感知模型,并以此为基础对有向传感器网络覆盖增强问题进行分析与定义;其次,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA (potential field based coverage-enhancing algorithm).通过引入“质心”概念,将有向传感器网络覆盖增强问题转化为质心均匀分布问题,以质心点作圆周运动代替传感器节点传感方向的转动.质心在虚拟力作用下作扩散运动,以消除网络中感知重叠区和盲区,进而增强整个有向传感器网络覆盖.一系列仿真实验验证了该算法的有效性.
关键词: 有向传感器网络;有向感知模型;虚拟势场;覆盖增强
中图法分类号: TP393 文献标识码: A
覆盖作为传感器网络中的一个基本问题,反映了传感器网络所能提供的“感知”服务质量.优化传感器网络覆盖对于合理分配网络的空间资源,更好地完成环境感知、信息获取任务以及提高网络生存能力都具有重要的意义[1].目前,传感器网络的初期部署有两种策略:一种是大规模的随机部署;另一种是针对特定的用途进行计划部署.由于传感器网络通常工作在复杂的环境下,而且网络中传感器节点众多,因此大都采用随机部署方式.然而,这种大规模随机投放方式很难一次性地将数目众多的传感器节点放置在适合的位置,极容易造成传感器网络覆盖的不合理(比如,局部目标区域传感器节点分布过密或过疏),进而形成感知重叠区和盲区.因此,在传感器网络初始部署后,我们需要采用覆盖增强策略以获得理想的网络覆盖性能.
目前,国内外学者相继开展了相关覆盖增强问题的研究,并取得了一定的进展[25].从目前可获取的资料来看,绝大多数覆盖问题研究都是针对基于全向感知模型(omni-directional sensing model)的传感器网络展开的[6],
即网络中节点的感知范围是一个以节点为圆心、以其感知距离为半径的圆形区域.通常采用休眠冗余节点[2,7]、
重新调整节点分布[811]或添加新节点[11]等方法实现传感器网络覆盖增强.
实际上,有向感知模型(directional sensing model)也是传感器网络中的一种典型的感知模型[12],即节点的感知范围是一个以节点为圆心、半径为其感知距离的扇形区域.由基于有向感知模型的传感器节点所构成的网络称为有向传感器网络.视频传感器网络是有向传感器网络的一个典型实例.感知模型的差异造成了现有基于全向感知模型的覆盖研究成果不能直接应用于有向传感器网络,迫切需要设计出一系列新方法.
在早期的工作中[13],我们率先开展有向传感器网络中覆盖问题的研究,设计一种基本的有向感知模型,用以刻画视频传感器节点的方向性感知特性,并研究有向传感器网络覆盖完整性以及通信连通性问题.同时,考虑到有向传感器节点传感方向往往具有可调整特性(比如PTZ摄像头的推拉摇移功能),我们进一步提出一种基于图论和计算几何的集中式覆盖增强算法[14],调整方案一经确定,网络中所有有向传感器节点并发地进行传感方向的一次性调整,以此获得网络覆盖性能的增强.但由于未能充分考虑到有向传感器节点局部位置及传感方向信息,因而,该算法对有向传感器网络覆盖增强的能力相对有限.
本文将基本的有向感知模型扩展为方向可调感知模型,研究有向传感器网络覆盖增强问题.首先定义了方向可调感知模型,并分析随机部署策略对有向传感器网络覆盖率的影响.在此基础上,分析了有向传感器网络覆盖增强问题.本文通过引入“质心”概念,将待解决问题转化为质心均匀分布问题,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA(potential field based coverage-enhancing algorithm).质心在虚拟力作用下作扩散运动,逐步消除网络中感知重叠区和盲区,增强整个网络覆盖性能.最后,一系列仿真实验验证了PFCEA算法的有效性.
1 有向传感器网络覆盖增强问题
本节旨在分析和定义有向传感器网络覆盖增强问题.在此之前,我们对方向可调感知模型进行简要介绍.
1.1 方向可调感知模型
不同于目前已有的全向感知模型,方向可调感知模型的感知区域受“视角”的限制,并非一个完整的圆形区域.在某时刻t,有向传感器节点具有方向性感知特性;随着其传感方向的不断调整(即旋转),有向传感器节点有能力覆盖到其传感距离内的所有圆形区域.由此,通过简单的几何抽象,我们可以得到有向传感器节点的方向可调感知模型,如图1所示.
定义1. 方向可调感知模型可用一个四元组P,R, ,
表示.其中,P=(x,y)表示有向传感器节点的位置坐标;R表示节
点的最大传感范围,即传感半径;单位向量 = 为扇形感知区域的中轴线,即节点在某时刻t时的传感方向; 和 分别是单位向量 在X轴和Y轴方向上的投影分量;表示边界距离传感向量 的传感夹角,2代表传感区域视角,记作FOV.
特别地,当=时,传统的全向感知模型是方向可调感知模型的一个特例.
若点P1被有向传感器节点vi覆盖成立,记为viP1,当且仅当满足以下条件:
(1) ,其中, 代表点P1到该节点的欧氏距离;
(2) 与 间夹角取值属于[,].
判别点P1是否被有向传感器节点覆盖的一个简单方法是:如果 且 ,那么,点P1
被有向传感器节点覆盖;否则,覆盖不成立.另外,若区域A被有向传感节点覆盖,当且仅当区域A中任何一个点都被有向传感节点覆盖.除非特别说明,下文中出现的“节点”和“传感器节点”均满足上述方向可调感知模型.
1.2 有向传感器网络覆盖增强问题的分析与定义
在研究本文内容之前,我们需要作以下必要假设:
A1. 有向传感器网络中所有节点同构,即所有节点的传感半径(R)、传感夹角()参数规格分别相同;
A2. 有向传感器网络中所有节点一经部署,则位置固定不变,但其传感方向可调;
A3. 有向传感器网络中各节点都了解自身位置及传感方向信息,且各节点对自身传感方向可控.
假设目标区域的面积为S,随机部署的传感器节点位置满足均匀分布模型,且目标区域内任意两个传感器节点不在同一位置.传感器节点的传感方向在[0,2]上也满足均匀分布模型.在不考虑传感器节点可能落入边界区域造成有效覆盖区域减小的情况下,由于每个传感器节点所监控的区域面积为R2,则每个传感器节点能监测整个目标区域的概率为R2/S.目标区域被N个传感器节点覆盖的初始概率p0的计算公式为(具体推导过程参见文献[14])
(1)
由公式(1)可知,当目标区域内网络覆盖率至少达到p0时,需要部署的节点规模计算公式为
(2)
当网络覆盖率分别为p0和p0+p时,所需部署的传感器节点数目分别为ln(1p0)/,ln(1(p0+p))/.其中, =ln(SR2)lnS.因此,传感器节点数目差异N由公式(3)可得,
(3)
当目标区域面积S、节点传感半径R和传感夹角一定时,为一常数.此时,N与p0,p满足关系如图2所示(S=500500m2,R=60m,=45º).从图中我们可以看出,当p0一定时,N随着p的增加而增加;当p一定时,N随着p0的增加而增加,且增加率越来越大.因此,当需要将覆盖率增大p时,则需多部署N个节点(p0取值较大时(80%),p取值每增加1%,N就有数十、甚至数百的增加).如果采用一定的覆盖增强策略,无须多部署节点,就可以使网络覆盖率达到p0+p,大量节省了传感器网络部署成本.
设Si(t)表示节点vi在传感向量为 时所覆盖的区域面积.运算操作Si(t)Sj(t)代表节点vi和节点vj所能覆盖到的区域总面积.这样,当网络中节点传感向量取值为 时,有向传感器网络覆盖率可表
示如下:
(4)
因此,有向传感器网络覆盖增强问题归纳如下:
问题:求解一组 ,使得对于初始的 ,有 取值
接近最大.
Fig.2 The relation among p0, p and N
图2 p0,p和N三者之间的关系
2 基于虚拟势场的覆盖增强算法
2.1 传统虚拟势场方法
虚拟势场(virtual potential field)的概念最初应用于机器人的路径规划和障碍躲避.Howard等人[8]和Pori等人[9]先后将这一概念引入到传感器网络的覆盖增强问题中来.其基本思想是把网络中每个传感器节点看作一个虚拟的电荷,各节点受到其他节点的虚拟力作用,向目标区域中的其他区域扩散,最终达到平衡状态,即实现目标区域的充分覆盖状态.Zou等人[15]提出了一种虚拟力算法(virtual force algorithm,简称VFA),初始节点随机部署后自动完善网络覆盖性能,以均匀网络覆盖并保证网络覆盖范围最大化.在执行过程中,传感器节点并不移动,而是计算出随机部署的传感器节点虚拟移动轨迹.一旦传感器节点位置确定后,则对相应节点进行一次移动操作.Li等人[10]为解决传感器网络布局优化,在文献[15]的基础上提出了涉及目标的虚拟力算法(target involved virtual force algorithm,简称TIVFA),通过计算节点与目标、热点区域、障碍物和其他传感器之间的虚拟力,为各节点寻找受力平衡点,并将其作为该传感器节点的新位置.
上述利用虚拟势场方法优化传感器网络覆盖的研究成果都是基于全向感知模型展开的.假定传感器节点间存在两种虚拟力作用:一种是斥力,使传感器节点足够稀疏,避免节点过于密集而形成感知重叠区域;另一种是引力,使传感器节点保持一定的分布密度,避免节点过于分离而形成感知盲区[15].最终利用传感器节点的位置移动来实现传感器网络覆盖增强.
2.2 基于虚拟势场的有向传感器网络覆盖增强算法
在实际应用中,考虑到传感器网络部署成本,所有部署的传感器节点都具有移动能力是不现实的.另外,传感器节点位置的移动极易引起部分传感器节点的失效,进而造成整个传感器网络拓扑发生变化.这些无疑都会增加网络维护成本.因而,本文的研究工作基于传感器节点位置不变、传感方向可调的假设.上述假设使得直接利用虚拟势场方法解决有向传感器网络覆盖增强问题遇到了麻烦.在传统的虚拟势场方法中,传感器节点在势场力的作用下进行平动(如图3(a)所示),而基于本文的假设,传感器节点表现为其扇形感知区域在势场力的作用下以传感器节点为轴心进行旋转(如图3(b)所示).
为了简化扇形感知区域的转动模型,我们引入“质心(centroid)”的概念.质心是质点系中一个特定的点,它与物体的平衡、运动以及内力分布密切相关.传感器节点的位置不变,其传感方向的不断调整可近似地看作是扇形感知区域的质心点绕传感器节点作圆周运动.如图3(b)所示,一个均匀扇形感知区域的质心点位于其对称轴上且与圆心距离为2Rsin/3.每个传感器节点有且仅有一个质心点与其对应.我们用c表示传感器节点v所对应的质心点.本文将有向传感器网络覆盖增强问题转化为利用传统虚拟势场方法可解的质心点均匀分布问题,如图4所示.
Fig.3 Moving models of sensor node
图3 传感器节点的运动模型
Fig.4 The issue description of coverage enhancement in directional sensor networks
图4 有向传感器网络覆盖增强问题描述
2.2.1 受力分析
利用虚拟势场方法增强有向传感器网络覆盖,可以近似等价于质心点-质心点(c-c)之间虚拟力作用问题.我们假设质心点-质心点之间存在斥力,在斥力作用下,相邻质心点逐步扩散开来,在降低冗余覆盖的同时,逐渐实现整个监测区域的充分高效覆盖,最终增强有向传感器网络的覆盖性能.在虚拟势场作用下,质心点受来自相邻一个或多个质心点的斥力作用.下面给出质心点受力的计算方法.
如图5所示,dij表示传感器节点vi与vj之间的欧氏距离.只有当dij小于传感器节点传感半径(R)的2倍时,它们的感知区域才存在重叠的可能,故它们之间才存在产生斥力的作用,该斥力作用于传感器节点相应的质心点ci和cj上.
定义2. 有向传感器网络中,欧氏距离不大于节点传感半径(R)2倍的一对节点互为邻居节点.节点vi的邻居节点集合记作i.即i={vj|Dis(vi,vj)2R,ij}.
我们定义质心点vj对质心点vi的斥力模型 ,见公式(5).
(5)
其中,Dij表示质心点ci和cj之间的欧氏距离;kR表示斥力系数(常数,本文取kR=1);ij为单位向量,指示斥力方向(由质心点cj指向ci).公式(5)表明,只有当传感器节点vi和vj互为邻居节点时(即有可能形成冗余覆盖时),其相应的质心点ci和cj之间才存在斥力作用.质心点所受斥力大小与ci和cj之间的欧氏距离成反比,而质心点所受斥力方向由ci和cj之间的相互位置关系所决定.
质心点ci所受合力是其受到相邻k个质心点排斥力的矢量和.公式(6)描述质心点ci所受合力模型 .
(6)
通过如图6所示的实例,我们分析质心点的受力情况.图中包括4个传感器节点:v1,v2,v3和v4,其相应的质心
点分别为c1,c2,c3和c4.以质心点c1为例,由于d122R,故 ,质心点c1仅受到来自质心点c3和c4的斥力,其所受合力 .传感器节点传感方向旋转导致质心点的运动轨迹并不是任意的,而是固定绕传感器节点作圆周运动.因此,质心点的运动仅仅受合力沿圆周切线方向分量 的影响.
Fig.6 The force on centroid
图6 质心点受力
2.2.2 控制规则(control law)
本文基于一个虚拟物理世界研究质心点运动问题,其中作用力、质心点等都是虚拟的.该虚拟物理世界的构建是建立在求解问题特征的基础上的.在此,我们定义控制规则,即规定质心点受力与运动之间的关系,以达到质心点的均匀分布.
质心点在 作用下运动,受到运动学和动力学的双重约束,具体表现如下:
(1) 运动学约束
在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,由于传感器节点向任意方向运动的概率是等同的,我们大都忽略其所受的运动学约束[8].而在转动模型中,质心点的运动不是任意方向的,受合力沿圆
周切线方向分量 的影响,只能绕其传感器节点作圆周运动.
质心点在运动过程中受到的虚拟力是变化的,但对传感器网络系统来说,传感器节点之间每时每刻都交换邻居节点位置及传感方向信息是不现实的.因此,我们设定邻居节点间每隔时间步长t交换一次位置及传感方向信息,根据交换信息计算当前时间步长质心点所受合力,得出转动方向及弧长.同时,问题求解的目的在于将节点的传感方向调整至一个合适的位置.在此,我们不考虑速度和加速度与转动弧长之间的关系.
(2) 动力学约束
动力学约束研究受力与运动之间的关系.本运动模型中的动力学约束主要包含两方面内容:
• 每个时间步长t内,质心点所受合力与转动方向及弧长之间的关系;
• 质心点运动的静止条件.
在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,在每个时间步长内,传感器节点的运动速度受限于最大运动速度vmax,而不是随传感器节点受力无止境地增加.通过此举保证微调方法的快速收敛.在本转动模型中,我们同样假设质心点每次固定以较小的转动角度进行转动,通过多次微调方法逐步趋向最优解,即在每个时间步长t内,质心点转动的方向沿所受合力在圆周切线方向分量,转动大小不是任意的,而是具有固定转动角度.采用上述方法的原因有两个:
• 运动过程中,质心点受力不断变化,且变化规律很难用简单的函数进行表示,加之上述运动学约束和问题特征等因素影响,我们很难得出一个简明而合理的质心点所受合力与转动弧长之间的关系.
• 运动过程中,质心点按固定角度进行转动,有利于简化计算过程,减少节点的计算负担.同时,我们通过分析仿真实验数据发现,该方法具有较为理想的收敛性(具体讨论参见第3.2节).
固定转动角度取值不同对PFCEA算法性能具有较大的影响,这在第3.3节中将加以详细的分析和说明.
当质心点所受合力沿圆周切线方向分量为0时,其到达理想位置转动停止.如图7所示,我们假定质心点在圆周上O点处合力切向分量为0.由于质心点按固定转动角度进行转动,因此,它
未必会刚好转动到O点处.当质心点处于图7中弧 或 时,会
因合力切向分量不为0而导致质心点围绕O点附近往复振动.因此,为避免出现振动现象,加速质心点达到稳定状态,我们需要进一步限定质心点运动的停止条件.
当质心点围绕O点附近往复振动时,其受合力的切向分量很
小.因此,我们设定受力门限,当 (本文取=10e6),即可认
定质心点已达到稳定状态,无须再运动.经过数个时间步长t后,当网络中所有质心点达到稳定状态时,整个传感器网络即达到稳定状态,此时对应的一组 ,该
组解通常为本文覆盖增强的较优解.
2.3 算法描述
基于上述分析,本文提出了基于虚拟势场的网络覆盖增强算法(PFCEA),该算法是一个分布式算法,在每个传感器节点上并发执行.PFCEA算法描述如下:
输入:节点vi及其邻居节点的位置和传感方向信息.
输出:节点vi最终的传感方向信息 .
1. t0; //初始化时间步长计数器
2. 计算节点vi相应质心点ci初始位置 ;
3. 计算节点vi邻居节点集合i,M表示邻居节点集合中元素数目;
4. While (1)
4.1 tt+1;
4.2 ;
4.3 For (j=0; j<M; j++)
4.3.1 计算质心点cj对ci的当前斥力 ,其中,vji;
4.3.2 ;
4.4 计算质心点ci当前所受合力 沿圆周切线分量 ;
4.5 确定质心点ci运动方向;
4.6 If ( ) Then
4.6.1 质心点ci沿 方向转动固定角度;
4.6.2 调整质心点ci至新位置 ;
4.6.3 计算节点vj指向当前质心点ci向量并单位化,得到节点vi最终的传感方向信息 ;
4.7 Sleep (t);
5. End.
3 算法仿真与性能分析
我们利用VC6.0自行开发了适用于传感器网络部署及覆盖研究的仿真软件Senetest2.0,并利用该软件进行了大量仿真实验,以验证PFCEA算法的有效性.实验中参数的取值见表1.为简化实验,假设目标区域中所有传感器节点同构,即所有节点的传感半径及传感夹角规格分别相同.
Table 1 Experimental parameters
表1 实验参数
Parameter Variation
Target area S 500500m2
Area coverage p 0~1
Sensor number N 0~250
Sensing radius Rs 0~100m
Sensing offset angel 0º~90º
3.1 实例研究
在本节中,我们通过一个具体实例说明PFCEA算法对有向传感器网络覆盖增强.在500500m2的目标区域内,我们部署传感半径R=60m、传感夹角=45º的传感器节点完成场景监测.若达到预期的网络覆盖率p=70%, 通过公式(1),我们可预先估算出所需部署的传感器节点数目,
.
针对上述实例,我们记录了PFCEA算法运行不同时间步长时有向传感器网络覆盖增强情况,如图8所示.
(a) Initial coverage, p0=65.74%
(a) 初始覆盖,p0=65.74% (b) The 10th time step, p10=76.03%
(b) 第10个时间步长,p10=76.03%
(c) The 20th time step, p20=80.20%
(c) 第20个时间步长,p20=80.20% (d) The 30th time step, p30=81.45%
(d) 第30个时间步长,p30=81.45%
Fig.8 Coverage enhancement using PFCEA algorithm
图8 PFCEA算法实现覆盖增强
直观看来,质心点在虚拟斥力作用下进行扩散运动,逐步消除网络中感知重叠区和盲区,最终实现有向传感器网络覆盖增强.此例中,网络传感器节点分别经过30个时间步长的调整,网络覆盖率由最初的65.74%提高到81.45%,网络覆盖增强达15.71个百分点.
图9显示了逐个时间步长调整所带来的网络覆盖增强.我们发现,随着时间步长的增加,网络覆盖率也不断增加,且近似满足指数关系.当时间步长达到30次以后,网络中绝大多数节点的传感方向出现振动现象,直观表现为网络覆盖率在81.20%附近在允许的范围振荡.此时,我们认定有向传感器网络覆盖性能近似增强至最优.
网络覆盖性能可以显着地降低网络部署成本.实例通过节点传感方向的自调整,在仅仅部署105个传感器节点的情况下,最终获得81.45%的网络覆盖率.若预期的网络覆盖率为81.45%,通过公式(1)的计算可知,我们至少需要部署148个传感器节点.由此可见,利用PFCEA算法实现网络覆盖增强的直接效果是可以节省近43个传感器节点,极大地降低了网络部署成本.
3.2 收敛性分析
为了讨论本文算法的收敛性,我们针对4种不同的网络节点规模进行多组实验.我们针对各网络节点规模随机生成10个拓扑结构,分别计算算法收敛次数,并取平均值,实验数据见表2.其他实验参数为R=60m,=45º, =5º.
Table 2 Experimental data for convergence analysis
表2 实验数据收敛性分析
(%)
(%)
1 50 41.28 52.73 24
2 70 52.74 64.98 21
3 90 60.76 73.24 28
4 110 65.58 78.02 27
分析上述实验数据,我们可以得出,PFCEA算法的收敛性即调整的次数,并不随传感器网络节点规模的变化而发生显着的改变,其取值一般维持在[20,30]范围内.由此可见,本文PFCEA算法具有较好的收敛性,可以在较短的时间步长内完成有向传感器网络的覆盖增强过程.
3.3 仿真分析
在本节中,我们通过一系列仿真实验来说明4个主要参数对本文PFCEA算法性能的影响.它们分别是:节点规模N、传感半径R、传感夹角和(质心点)转动角度.针对前3个参数,我们与以往研究的一种集中式覆盖增强算法[14]进行性能分析和比较.
A. 节点规模N、传感半径R以及传感角度
我们分别取不同节点规模进行仿真实验.从图10(a)变化曲线可以看出,当R和一定时,N取值较小导致网络初始覆盖率较小.此时,随着N的增大,p取值呈现持续上升趋势.当N=200时,网络覆盖率增强可达14.40个百分点.此后,p取值有所下降.这是由于当节点规模N增加导致网络初始覆盖率较高时(如60%),相邻多传感器节点间形成覆盖盲区的概率大为降低,无疑削弱了PFCEA算法的性能.另外,部分传感器节点落入边界区域,也会间接起到削弱PFCEA算法性能的作用.
另外,传感半径、传感角度对PFCEA算法性能的影响与此类似.当节点规模一定时,节点传感半径或传感角度取值越小,单个节点的覆盖区域越小,各相邻节点间形成感知重叠区域的可能性也就越小.此时,PFCEA算法对网络覆盖性能改善并不显着.随着传感半径或传感角度的增加,p不断增加.当R=70m且=45º时,网络覆盖率最高可提升15.91%.但随着传感半径或传感角度取值的不断增加,PFCEA算法带来的网络覆盖效果降低,如图10(b)、图10(c)所示.
(c) The effect of sensing offset angle , other parameters meet N=100, R=40m, =5º
(c) 传感角度的影响,其他实验参数满足:N=100,R=40m,=5º
④ 什么是无线传感器网络
无线传感器的无线传输功能,常见的无线传输网络有RFID、ZigBee、红外、蓝牙、GPRS、4G、2G、Wi-Fi、NB-IoT。
与传统有线网络相比,无线传感器网络技术具有很明显的优势特点,主要的要求有: 低能耗、低成本、通用性、网络拓扑、安全、实时性、以数据为中心等。
⑤ 无线传感器网络面临的挑战有哪些
无线通信和低功耗嵌入式技术的飞速发展,孕育出无线传感器网络(Wireless Sensor Networks, WSN),并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革,无线传感器网络是由部署在监测区域内大量的廉价微型传感器节点,通过无线通信方式形成的一个多跳自组织网络。
信息安全
很显然,现有的传感节点具有很大的安全漏洞,攻击者通过此漏洞,可方便地获取传感节点中的机密信息、修改传感节点中的程序代码,如使得传感节点具有多个身份ID,从而以多个身份在传感器网络中进行通信,另外,攻击还可以通过获取存储在传感节点中的密钥、代码等信息进行,从而伪造或伪装成合法节点加入到传感网络中。一旦控制了传感器网络中的一部分节点后,攻击者就可以发动很多种攻击,如监听传感器网络中传输的信息,向传感器网络中发布假的路由信息或传送假的传感信息、进行拒绝服务攻击等。
对策:由于传感节点容易被物理操纵是传感器网络不可回避的安全问题,必须通过其它的技术方案来提高传感器网络的安全性能。如在通信前进行节点与节点的身份认证;设计新的密钥协商方案,使得即使有一小部分节点被操纵后,攻击者也不能或很难从获取的节点信息推导出其它节点的密钥信息等。另外,还可以通过对传感节点软件的合法性进行认证等措施来提高节点本身的安全性能。
根据无线传播和网络部署特点,攻击者很容易通过节点间的传输而获得敏感或者私有的信息,如:在使用WSN监控室内温度和灯光的场景中,部署在室外的无线接收器可以获取室内传感器发送过来的温度和灯光信息;同样攻击者通过监听室内和室外节点间信息的传输,也可以获知室内信息,从而非法获取出房屋主人的生活习惯等私密信息。[6]
对策:对传输信息加密可以解决窃听问题,但需要一个灵活、强健的密钥交换和管理方案,密钥管理方案必须容易部署而且适合传感节点资源有限的特点,另外,密钥管理方案还必须保证当部分节点被操纵后(这样,攻击者就可以获取存储在这个节点中的生成会话密钥的信息),不会破坏整个网络的安全性。由于传感节点的内存资源有限,使得在传感器网络中实现大多数节点间端到端安全不切实际。然而在传感器网络中可以实现跳-跳之间的信息的加密,这样传感节点只要与邻居节点共享密钥就可以了。在这种情况下,即使攻击者捕获了一个通信节点,也只是影响相邻节点间的安全。但当攻击者通过操纵节点发送虚假路由消息,就会影响整个网络的路由拓扑。解决这种问题的办法是具有鲁棒性的路由协议,另外一种方法是多路径路由,通过多个路径传输部分信息,并在目的地进行重组。
传感器网络是用于收集信息作为主要目的的,攻击者可以通过窃听、加入伪造的非法节点等方式获取这些敏感信息,如果攻击者知道怎样从多路信息中获取有限信息的相关算法,那么攻击者就可以通过大量获取的信息导出有效信息。一般传感器中的私有性问题,并不是通过传感器网络去获取不大可能收集到的信息,而是攻击者通过远程监听WSN,从而获得大量的信息,并根据特定算法分析出其中的私有性问题。因此攻击者并不需要物理接触传感节点,是一种低风险、匿名的获得私有信息方式。远程监听还可以使单个攻击者同时获取多个节点的传输的信息。
对策:保证网络中的传感信息只有可信实体才可以访问是保证私有性问题的最好方法,这可通过数据加密和访问控制来实现;另外一种方法是限制网络所发送信息的粒度,因为信息越详细,越有可能泄露私有性,比如,一个簇节点可以通过对从相邻节点接收到的大量信息进行汇集处理,并只传送处理结果,从而达到数据匿名化。
拒绝服务攻击(DoS)
专门的拓扑维护技术研究还比较少,但相关研究结果表明优化的拓扑维护能有效地节省能量并延长网络生命周期,同时保持网络的基本属性覆盖或连通。本节中,根据拓扑维护决策器所选维护策略
在无线传感器网络的研究中,能效问题一直是热点问题。当前的处理器以及无线传输装置依然存在向微型化发展的空间,但在无线网络中需要数量更多的传感器,种类也要求多样化,将它们进行链接,这样会导致耗电量的加大。如何提高网络性能,延长其使用寿命,将不准确性误差控制在最小将是下一步研究的问题。
采集与管理数据
在今后,无线传感器网络接收的数据量将会越来越大,但是当前的使用模式对于数量庞大的数据的管理和使用能力有限。如何进一步加快其时空数据处理和管理的能力,开发出新的模式将是非常有必要的。
无线通讯的标准问题
标准的不统一会给无线传感器网络的发展带来障碍,在接下来的发展中,要开发出无线通讯标准。
⑥ 无线传感器网络和嵌入式系统开发这两个研究方向,哪一个更有前途
进入二十一世纪以来,高新技术的发展日新月异,多学科交叉领域成为当前研究的热点。MEMS、无线通信、嵌入式系统和传感器技术的发展和融合,推动了具有现代意义的无线传感器网络的产生和发展。无线传感器网络是由分布于一定的监控区域内,用于监测特定环境信息的无线传感器网络节点组成的。作为通信,自动化以及计算机领域的一门新技术,无线传感器网络已经在军事国防、城市管理、环境检测、危险区域的远程控制等领域得到了广泛的研究与应用。 为了实现对无线传感器网络定位、组网、路由和能量管理等技术的深入研究,采用嵌入式系统技术设计一种无线传感器网络是十分必要并且可行的。 本文给出了嵌入式无线传感器网络节点的软硬件设计方案。在综合考虑节点性能、功耗、成本等基础上,采用当前流行的ARM系列微处理器芯片AT91SAM7S256,结合射频芯片CC2420、GPRS模块MC39i、温度传感器TMP05和加速度传感器ADXL202实现无线传感器网络节点的硬件设计。采用嵌入式实时操作系统FreeRTOS,TCP/IP协议栈和ZigBee组网协议栈构建节点软件开发平台,设计各个功能模块的驱动和应用程序,实现了节点间的通信、利用GPRS模块进行数据的传输和传感器信号的采集等功能。采用VB.NET设计了数据中心软件用于接收远程无线传感器网络的信息。本文详细地阐述了嵌入式无线传感器网络的总体方案设计、主要功能模块的硬件和软件设计过程。 论文最后对嵌入式无线传感器网络节点各功能模块进行了测试,验证了节点及整个无线传感器网络的性能。本文给出的嵌入式无线传感器网络具有性能高、功耗可控、可升级性等特点,可为无线传感器网络相关技术的深入研究提供平台,为多个领域的应用开发提供参考。
⑦ 传感器的发展中,无线传感器网络的发展分为哪些阶段
无线传感器
无线传感器的组成模块封装在一个外壳内,在工作时它将由电池或振动发电机提供电源,构成无线传感器网络节点。它可以采集设备的数字信号通过无线传感器网络传输到监控中心的无线网关,直接送入计算机,进行分析处理。如果需要,无线传感器也可以实时传输采集的整个时间历程信号。
发展历程
早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感器网络雏形,我们把它归之为第一代传感器网络。随着相关学科的的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制器的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接CONTROLENGINEERING China版权所有,无线传感器网络逐渐形成。
无线传感器网络是新一代的传感器网络,具有非常广泛的应用前景,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。发达国家如美国,非常重视无线传感器网络的发展CONTROLENGINEERING China版权所有,IEEE正在努力推进无线传感器网络的应用和发展,波士顿大学(BostonUnversity)还于最近创办了传感器网络协会(Sensor Network Consortium),期望能促进传感器联网技术开发。除了波士顿大学,该协会还包括BP、霍尼韦尔(Honeywell)、Inetco Systems、Invensys、L-3Communications、Millennial Net、Radianse、Sensicast Systems及Textron Systems。美国的《技术评论》杂志在论述未来新兴十大技术时,更是将无线传感器网络列为第一项未来新兴技术,《商业周刊》预测的未来四大新技术中,无线传感器网络也列入其中。可以预计,无线传感器网络的广泛是一种必然趋势,它的出现将会给人类社会带来极大的变革。
应用现状
虽然无线传感器网络的大规模商业应用CONTROLENGINEERING China版权所有,由于技术等方面的制约还有待时日,但是最近几年,随着计算成本的下降以及微处理器体积越来越小,已经为数不少的无线传感器网络开始投入使用。目前无线传感器网络的应用主要集中在以下领域:
1 环境的监测和保护
随着人们对于环境问题的关注程度越来越高,需要采集的环境数据也越来越多,无线传感器网络的出现为随机性的研究数据获取提供了便利,并且还可以避免传统数据收集方式给环境带来的侵入式破坏。比如,英特尔研究实验室研究人员曾经将32个小型传感器连进互联网,以读出缅因州"大鸭岛"上的气候,用来评价一种海燕巢的条件。无线传感器网络还可以跟踪候鸟和昆虫的迁移,研究环境变化对农作物的影响,监测海洋、大气和土壤的成分等。此外,它也可以应用在精细农业中控制工程网版权所有,来监测农作物中的害虫、土壤的酸碱度和施肥状况等。
2 医疗护理
无线传感器网络在医疗研究、护理领域也可以大展身手。
⑧ 关于无线传感器网络的安全,你认为未来面临的攻击主要包 含哪些
根据网络层次的不同,可以将无线传感器网络容易受到的威胁分为四类:
1、物理层:主要的攻击方法为拥塞攻击和物理破坏。
2、链路层:主要的攻击方法为碰撞攻击、耗尽攻击和非公平竞争。
3、网络层:主要的攻击方法为丢弃和贪婪破坏、方向误导攻击、黑洞攻击和汇聚节点攻击。
4、传输层:主要的攻击方法为泛洪攻击和同步破坏攻击。
安全需求
由于WSN使用无线通信,其通信链路不像有线网络一样可以做到私密可控。所以在设计传感器网络时,更要充分考虑信息安全问题。
手机SIM卡等智能卡,利用公钥基础设施(Public Key Infrastructure,PKI)机制,基本满足了电信等行业对信息安全的需求。同样,亦可使用PKI来满足WSN在信息安全方面的需求。
1、数据机密性
数据机密性是重要的网络安全需求,要求所有敏感信息在存储和传输过程中都要保证其机密性,不得向任何非授权用户泄露信息的内容。
2、数据完整性
有了机密性保证,攻击者可能无法获取信息的真实内容,但接收者并不能保证其收到的数据是正确的,因为恶意的中间节点可以截获、篡改和干扰信息的传输过程。通过数据完整性鉴别,可以确保数据传输过程中没有任何改变。
3、数据新鲜性
数据新鲜性问题是强调每次接收的数据都是发送方最新发送的数据,以此杜绝接收重复的信息。保证数据新鲜性的主要目的是防止重放(Replay)攻击。
4、可用性
可用性要求传感器网络能够随时按预先设定的工作方式向系统的合法用户提供信息访问服务,但攻击者可以通过伪造和信号干扰等方式使传感器网络处于部分或全部瘫痪状态,破坏系统的可用性,如拒绝服务(Denial of Service,DoS)攻击。
5、鲁棒性
无线传感器网络具有很强的动态性和不确定性,包括网络拓扑的变化、节点的消失或加入、面临各种威胁等,因此,无线传感器网络对各种安全攻击应具有较强的适应性,即使某次攻击行为得逞,该性能也能保障其影响最小化。
6、访问控制
访问控制要求能够对访问无线传感器网络的用户身份进行确认,确保其合法性。
⑨ 什么是无线传感技术
早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感网络雏形,我们把它归之为第一代传感器网络。随着相关学科的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接,无线传感器网络逐渐形成。
无线传感器网络是新一代的传感器网络,具有非常上世纪70年代,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。
无线传感器网络可以看成是由数据获取网络、数据颁布网络和控制管理中心三部分组成的。其主要组成部分是集成有传感器、处理单元和通信模块的节点,各节点通过协议自组成一个分布式网络,再将采集来的数据通过优化后经无线电波传输给信息处理中心。
⑩ 无线传感器网络的优缺点
一、优点
(1) 数据机密性
数据机密性是重要的网络安全需求,要求所有敏感信息在存储和传输过程中都要保证其机密性,不得向任何非授权用户泄露信息的内容。
(2)数据完整性
有了机密性保证,攻击者可能无法获取信息的真实内容,但接收者并不能保证其收到的数据是正确的,因为恶意的中间节点可以截获、篡改和干扰信息的传输过程。通过数据完整性鉴别,可以确保数据传输过程中没有任何改变。
(3) 数据新鲜性
数据新鲜性问题是强调每次接收的数据都是发送方最新发送的数据,以此杜绝接收重复的信息。保证数据新鲜性的主要目的是防止重放(Replay)攻击。
二、缺点
根据网络层次的不同,无线传感器网络容易受到的威胁:
(1)物理层:主要的攻击方法为拥塞攻击和物理破坏。
(2)链路层:主要的攻击方法为碰撞攻击、耗尽攻击和非公平竞争。
(3)网络层:主要的攻击方法为丢弃和贪婪破坏、方向误导攻击、黑洞攻击和汇聚节点攻击。
(4)传输层:主要的攻击方法为泛洪攻击和同步破坏攻击。
(10)无线传感器网络技术行业分析扩展阅读:
一、相关特点
(1)组建方式自由。
无线网络传感器的组建不受任何外界条件的限制,组建者无论在何时何地,都可以快速地组建起一个功能完善的无线网络传感器网络,组建成功之后的维护管理工作也完全在网络内部进行。
(2)网络拓扑结构的不确定性。
从网络层次的方向来看,无线传感器的网络拓扑结构是变化不定的,例如构成网络拓扑结构的传感器节点可以随时增加或者减少,网络拓扑结构图可以随时被分开或者合并。
(3)控制方式不集中。
虽然无线传感器网络把基站和传感器的节点集中控制了起来,但是各个传感器节点之间的控制方式还是分散式的,路由和主机的功能由网络的终端实现各个主机独立运行,互不干涉,因此无线传感器网络的强度很高,很难被破坏。
(4)安全性不高。
无线传感器网络采用无线方式传递信息,因此传感器节点在传递信息的过程中很容易被外界入侵,从而导致信息的泄露和无线传感器网络的损坏,大部分无线传感器网络的节点都是暴露在外的,这大大降低了无线传感器网络的安全性。
二、组成结构
无线传感器网络主要由三大部分组成,包括节点、传感网络和用户这3部分。其中,节点一般是通过一定方式将节点覆盖在一定的范围,整个范围按照一定要求能够满足监测的范围。
传感网络是最主要的部分,它是将所有的节点信息通过固定的渠道进行收集,然后对这些节点信息进行一定的分析计算,将分析后的结果汇总到一个基站,最后通过卫星通信传输到指定的用户端,从而实现无线传感的要求。