导航:首页 > 无线网络 > 简述植物磷饥饿信号调控网络

简述植物磷饥饿信号调控网络

发布时间:2022-10-19 03:20:54

‘壹’ 什么是植物信号传递网络

不同信号传递系统之间存在相互作用。例如,用细胞壁降解酶(CWE)处理拟南芥,可激发对软腐病(Erwiniacarotovora)的系统抗病性,这与接种病原菌的表现一致。利用乙烯和JA信号传递途径的标记基因以及可以分别阻断乙烯途径与JA途径的突变体进行研究,发现CWE诱导的标记基因活化,依赖于乙烯和JA。CWE不诱导SA依赖的基因,例如PR-1。但SA有双重作用,既增强依赖乙烯和JA的基因表达,又抑制只依赖JA的基因表达。这表明存在不同途径之间的“对话”(crosstalk)。SA可作为JA与乙烯依赖性防卫反应的增效剂。

植物根围的促生细菌,可诱导植物对叶部病原菌的抗病性。用荧光假单胞菌接种拟南芥,则诱导出不依赖SA的诱导系统抗病性(ISR)。ISR的表达虽然不依赖PR蛋白,但仍需要NPR1蛋白,后者是SAR途径的重要成分。相反地,拟南芥依赖SA的对病毒的抗病性却不依赖NPR1。由此可见,尽管有不同的信号传递途径在起作用,但这些途径可能共用某些相同的组分,仅连接方式不同而已。各种信号传递途径的组分很多,但其下游收敛,仅涉及少数蛋白质分子,看来不同的信号传递过程,可能存在着共同的枢纽基因,对下游的多种防卫反应起重要的调控作用。

在水杨酸、茉莉酸和乙烯等信号分子之间存在高水平的协调(Reymond等,2000),R基因信号传递并不是若干事件的线性串连,而是一个信号网络(signalingnetwork)。不同的途径之间相互作用,导致对不同病原物的防卫反应。

‘贰’ 植物细胞信号转导的主要途径,各途径之间的关系,以及转导中的重要因子

植物体内的信号传导 Signal Transction
生物体的生长发育受遗传信息及环境信息的调节控制。基因决定了个体发育的基本模式,但其表达和实现在很大程度上受控于环境信息的刺激。植物的不可移动性使它难以逃避或改变环境,接受环境变化信息,及时作出反应,调节适应环境是植物维持生存的出路。已经发现的植物细胞的信号分子也很多,按其作用的范围可分为胞间信号分子和胞内信号分子。细胞信号传导的分子途径可分为胞间信使、膜上信号转换机制、胞内信号及蛋白质可逆磷酸化四个阶段
一.胞间信号传递
胞间信号一般可分为物理信号(physical signal)和化学信号(chemical signal)两类。物理信号如细胞感受到刺激后产生电信号传递,许多敏感植物受刺激时产生动作电位,电波传递和叶片运动伴随。水力信号(hydraulic signal)。化学信号是细胞感受刺激后合成并传递化学物质,到达作用部位,引起生理反应,如植物激素等。信号物质可从产生的部位经维管束进行长距离传递,到达作用的靶子部位。
传导途径是共质体和质外体。
二.跨膜信号转换机制(signal transction)
信号到达靶细胞,首先要能被感受并将其转换为胞内信号,再启动胞内各种信号转导系统,并对原初信号进行级联放大,最终导致生理生化变化。
1. 受体(receptor)
主要在质膜上,能与信号物质特异结合,并引发产生胞内次级信号的物质,主要是蛋白质。信号与受体结合是胞间信使起作用并转换为胞内信使的首要步骤。目前研究较活跃的两类受体是光受体和激素受体。光受体有对红光和远红光敏感的光敏色素、对蓝光和紫外光敏感的隐花色素以及对紫外光敏感的受体等;激素受体的研究正在进展中,如质膜上的乙烯受体,质膜或胞内的其他激素的结合蛋白等。
2. G蛋白(G proteins)
GTP结合调节蛋白(GTP binding regulatory protein)。其生理活性有赖于三磷酸鸟苷(GTP)的结合并具有GTP水解酶的活性。70年代初在动物细胞中发现了G蛋白,证明了它在跨膜细胞信号转导过程中有重要的调控作用,Gilman与Rodbell因此获得1994年诺贝尔医学生理奖。80年代开始在植物体内研究,已证明G蛋白在高等植物中普遍存在并初步证明G蛋白在光、植物激素对植物的生理效应中、在跨膜离子运输、气孔运动、植物形态建成等生理活动的细胞信号转导过程中同样起重要的调控作用。由于G蛋白分子的多样性………在植物细胞信号系统中起着分子开关的重要作用。

三,胞内信号
如果将胞外刺激信号称作第一信使,由胞外信号激活或抑制、具有生理调节活性的细胞内因子称第二信使(second messenger)。植物细胞中的第二信使不仅仅是一种,也可总称为第二信使系统。
1.钙信号系统
在植物细胞内外以及细胞内的不同部位Ca2+的浓度有很大的差别。在细胞质中,一般在10-8~10-7 mol/L,而细胞壁是细胞最大的Ca2+库,其浓度可达1~5mol/L。胞内细胞器的Ca2+浓度也比胞质的Ca2+浓度高几百倍到上千倍。几乎所有的胞外刺激信号都能引起胞质游离Ca2+浓度变化,由于变化的时间、幅度、频率、区域化分布的不同,可能区别信号的特异性。

钙调节蛋白
胞内钙信号再通过其受体――钙调节蛋白传递信息。主要包括钙调素(calmolin CaM)和钙依赖的蛋白激酶,植物细胞中CaM是最重要的多功能Ca2+信号受体。这是由148个氨基酸组成的单链小分子酸性蛋白(分子量为17~19KDa)。CaM分子有四个Ca结合位点,当第一信使引起胞内Ca2+浓度上升到一定阈值后,Ca2+与CaM结合,引起CaM构象改变,活化的CaM再与靶酶结合,使其活化而引起生化反应。已知有蛋白激酶、NAD激酶、H+-ATP酶等多种酶受Ca-CaM的调控。在以光敏素为受体的光信号转导过程中,Ca-CaM胞内信号起了重要作用。

3. 肌醇磷脂(inositide)信号系统
这是肌醇分子六碳环上的羟基被不同数目磷酸酯化形成的一类化合物。80年代后期的研究证明植物细胞质膜中存在三种主要的肌醇磷脂,即磷脂酰肌醇(PI)、磷脂酰肌醇-4-磷酸(PIP)、磷脂酰肌醇-4,5-二磷酸(PIP2)。胞为信号被质膜受体接受后,以G蛋白为中介,由质膜中的磷酸脂酶C(PLC)水解PIP2产生肌醇-3-磷酸(IP3)和甘油二酯(DG)两种信号分子,所以,又可称双信使系统。IP3通过调节Ca2+变化、DG通过激活蛋白激酶C(PKC)传递信息。

4. 环核苷酸信号系统
受动物细胞信号启发,在植物细胞中也存在环腺苷酸(cAMP)和环鸟苷酸(cGMP)参与信号转导。

四.蛋白质的可逆磷酸化 (phosphoralation)
细胞内存在的多种蛋白激酶(protein kinase)蛋白磷酸酶(protein phosphatase)是前述胞内信使进一步作用的靶子,通过调节胞内蛋白质的磷酸化或去磷酸化而进一步传递信息。如钙依赖型蛋白激酶(CDPK),其磷酸化后,可将质膜上的ATP酶磷酸化,从而调控跨膜离子运输;又如和光敏素相关的Ca-CaM调节的蛋白激酶等。
蛋白磷酸酶起去磷酸化作用,是终止信号或一种逆向调节。

植物体内、细胞内信号转导是一个新的研究领域,正在进展中,需要完善已知的、并发现新的植物信号转导途径(H+、H2O、Mg2+、氧化还原物质等);信号系统之间的相互关系(cross talk)及时空性研究,细胞内实际上存在着信号网络,多种信号相互联系和平衡来决定特异的细胞反应;利用新的技术如基因工程及微注射等研究信号转导的分子途径,以及它对基因表达调控功能;植物细胞壁与细胞内信号的联系,是否存在细胞壁-质膜-细胞骨架信息传递连续体等。

‘叁’ 植物经过冷驯化后,哪些含量变化

植物经过非致死温度的处理可以获得更强的抗冷能力叫做冷驯化,主要包括寒驯化和冻驯
化.在冷驯化过程中,质膜首先感受冷信号,调节胞质中IP3的含量,诱导胞质Ca2+
浓度的升高,从而激活CBF基因的表达.至今已经克隆了大量的冷调控基因,组成了复杂的信号传导网络,其中ICE12CBF2COR通路在植物的冷驯化过程中起到重要的作用.ICE1基因编码一个MYB类型的碱性螺旋2环2螺旋(bHLH)转录因子,在上游调节CBF和其它转录因子的表达,提高抗冷性.HOS1蛋白通过泛素化介导的蛋白降解负调控ICE1,另外,CBF还通过转录的自我调控保持恰当的表达水平.基因的分析研究证明,RNA修饰和核质转运在植物的抗冷过程中也具有重要作用.在不依赖于CBF的途径中,转录因子HOS9和HOS10在调节抗冷有关基因的表达和提高抗冷能力方面具有至关重要的作用

‘肆’ 简述植物的启迪功能有哪些各举一例

大自然给人类的启发是多种多样的。大自然的巢穴,天然浑成,质朴无华,然而正是受此启发,人类才发展起了建设科学,建立起了现代化大城市。大自然的河流,看起来不以人的意志为转移,日夜奔腾不息,但它不也是在日夜教导人们如何理解地球的重力、运动的惯性力等许多道理,教会人们如何开发利用大自然的潜能吗?金属,给人类的灵感就更多了,这类看起来很坚硬的东西,被火融化后竟能按照人类的需要变成为人类所用的工具,更重要的是,它让人们明白了各种物质都有熔点,都能进行形态和能态转化。 人类根据鲨鱼做出了飞机,根据蝙蝠做出了雷达.人类根据蜻蜓的翅膀发明了飞机,根据蝙蝠的嘴和耳朵发明雷达,根据鲸鱼的外形发明了轮船,根据青蛙的眼睛发明了“电子蛙眼”. 由令人讨厌的苍蝇,仿制成功一种十分奇特的小型气体分析仪。已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。 从萤火虫到人工冷光; 电鱼与伏特电池; 水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。 人们根据蛙眼的视觉原理,已研制成功一种电子蛙眼。这种电子蛙眼能像真的蛙眼那样,准确无误地识别出特定形状的物体。把电子蛙眼装入雷达系统后,雷达抗干扰能力大大提高。这种雷达系统能快速而准确地识别出特定形状的飞机、舰船和导弹等。特别是能够区别真假导弹,防止以假乱真。 电子蛙眼还广泛应用在机场及交通要道上。在机场,它能监视飞机的起飞与降落,若发现飞机将要发生碰撞,能及时发出警报。在交通要道,它能指挥车辆的行驶,防止车辆碰撞事故的发生。 根据蝙蝠超声定位器的原理,人们还仿制了盲人用的“探路仪”。这种探路仪内装一个超声波发射器,盲人带着它可以发现电杆、台阶、桥上的人等。如今,有类似作用的“超声眼镜”也已制成。 模拟蓝藻的不完全光合器,将设计出仿生光解水的装置,从而可获得大量的氢气。 根据对人体骨胳肌肉系统和生物电控制的研究,已仿制了人力增强器——步行机。 现代起重机的挂钩起源于许多动物的爪子。 屋顶瓦楞模仿动物的鳞甲。 船桨模仿的是鱼的鳍。 锯子学的是螳螂臂,或锯齿草。 苍耳属植物获取灵感发明了尼龙搭扣。 嗅觉灵敏的龙虾为人们制造气味探测仪提供了思路。 壁虎脚趾对制造能反复使用的粘性录音带提供了令人鼓舞的前景。 贝用它的蛋白质生成的胶体非常牢固,这样一种胶体可应用在从外科手术的缝合到补船等一切事情上根据蝙蝠,研究了雷达根据鱼类,研究了潜水艇根据鸟类,研究了飞机根据荧火虫,研究了荧光灯, 早在一百万年前,植物就作为最古老的生命形式在地球上出现,并且已经和人类相伴多年。但今天的科学家们大都谦虚地认为:对于植物,人类了解的还远远不够,诸如开花结实、生长发育这些最基本的生理过程,人类的教科书中还无法具体描述。 因此,世界各国的植物学家都致力于对植物生理活动微观过程的研究。 植物体内的接力赛 在我们眼里,扎根于土壤的植物是平静的。但科学家们却发现;植物体内却充满了纷繁复杂的运动。 中国的科学家正在试图描述植物体内的一场田径比赛。这是一场被冠名为光合作用的接力赛。光信号是接力棒,它首先被植物体内的光线接受体接收,“接力棒”随后通过下面的蛋白质“接力手”层层传递,最终到达植物细胞的信息处理中心。 到目前为止,科学家们已经发现了传递蓝光信号的一号和二号“接力手”,但都是哪些蛋白质接力手参与了比赛?每一位“接力手”承担了什么功能?目前还不清楚。如果能找到所有的光信号传导的“接力手”,那么就能构建起一个植物体内的光信号传导网络。那时,人类将能通过调节网络中光信号的传递,按照植物育种的各种需要来改良农作物。 花开随人意 光合作用是一场激烈的接力赛。实际上,据生物学家们的统计,一种植物体内有数万种生物反应,那植物体内可以称得上是一场门类复杂的奥运赛场。 比赛离不开裁判,花儿的绽放依靠的是植物生长细胞的分裂,这场比赛的裁判是阳光和温度,只有适宜的光照和温度才能保证细胞分裂的正常进行。但究竟阳光和温度怎样影响着这场比赛,一直是生物学研究的一大挑战。 今天计算机模拟技术帮助生物学家了解了这个过程。在对植物开花过程的研究中,科学家们对控制开花时间的基因做标志,并通过阳光照射强度控制它的活跃程度。不同时期,这个基因在花朵的哪个部位,呈现什么状态,把这些信息输入计算机,通过计算机的模拟,这个基因在整个开花过程中发挥的功效就一清二楚了。 科学家们相信,通过调控这类基因,可以改良某些经济作物。在那些日照时间短的地方,可以缩短开花期,保证农业的丰收。那时,细胞分裂赛事的裁判不再是阳光、温度而是人类了。 植物哨兵 植物体内的生理活动,让生物学家们着迷。而另外一些科学家则看上了植物扎根土壤,忠于职守的特性。 由于不少植物对环境的变化都非常敏感,并能通过颜色、形状、生长习性的变化上表现出来。人们就依靠对植物状态的监测,来对有害物质进行预警。这为现代战争中的环境监测提供了意想不到的帮助。在战争地带前进的士兵,正尝试用电子装置来监测植物,以此判断当地是否遭受过化学毒气的攻击。 植物扎根地面不会逃跑,它们就成了忠于职守的哨兵。 科学家们已经培养成功了几种植物哨兵,他们对化学、辐射等环境的变化特别敏感,用于警示有毒的生物制剂化学制剂的出现。同时,某些植物对某种有害物质还有净化清除的功能。 可以想象,将来我们刚刚完成装修的居室,或者空气污浊的办公环境,也能摆上一两盆这样的植物哨兵。那么充盈眼帘的绿色,还为我们担当着保护环境、清除空气垃圾的责任。 对于生物学研究来说;植物留给人类的迷太多太多,但每一个谜语的破解,都将给人类认识植物改变生活带来莫大的 鱼儿在水中有自由来去的本领,人们就模仿鱼类的形体造船,以木桨仿鳍。相传早在大禹时期,我国古代劳动人民观察鱼在水中用尾巴的摇摆而游动、转弯,他们就在船尾上架置木桨。通过反复的观察、模仿和实践,逐渐改成橹和舵,增加了船的动力,掌握了使船转弯的手段。这样,即使在波涛滚滚的江河中,人们也能让船只航行自如。 苍蝇的楫翅(又叫平衡棒)是“天然导航仪”,人们模仿它制成了“振动陀螺仪”。这种仪器目前已经应用在火箭和高速飞机上,实现了自动驾驶。 苍蝇的眼睛是一种“复眼”,由30o0多只小眼组成,人们模仿它制成了“蝇眼透镜”。“蝇眼透镜”是用几百或者几千块小透镜整齐排列组合而成的,用它作镜头可以制成“蝇眼照相机”,一次就能照出千百张相同的相片。这种照相机已经用于印刷制版和大量复制电子计算机的微小电路,大大提高了工效和质量。“蝇眼透镜”是一种新型光学元件,它的用途很多。 鸟类的翅膀具有许多特殊功能和结构,使得它们不仅善于飞行,而且会表演许多“特技”,这些特技还是目前人类的技术难以达到的。小小的蜂鸟是鸟中的“直升机”,它既可以垂直起落,又可以退着飞。在吮吸花蜜时,它不像蜜蜂那样停落在花上,而是悬停于空中。这是多么巧妙的飞行啊。制造具有蜂鸟飞行特性的垂直起落飞机,已经成为许多飞机设计师梦寐以求的愿望。 在企鹅的启示下,人们设计了一种新型汽车“企鹅牌极地越野汽车”。这种汽车用宽阔的底部贴在雪面上,用轮勺推动前进,这样不仅解决了极地运输问题,而且也可以在泥泞地带行驶。 苍蝇的眼睛,发明了蝇眼摄象机。 苍蝇的灵敏感知,发明了危险探测仪,用在危险工作场所 鹰的滑翔技巧,发明了滑翔机。 鸟类的留线造型,改变了飞机的外型,更符合空气动力学。 鸟类的骨头,改进了飞行器的骨架结构,更轻,强度更高。 蝙蝠和海豚的声波探测,发明了超声波雷达。 飞机靠雷达在夜间飞行是人们从蝙蝠身上受到的启示 仙人掌、蚂蚁,这些自然的事物随处可见,因此它们并不稀奇,但你可别小看它们。 你是否看过一群小小的蚂蚁,在墙壁爬动着?它们时时抬着像沙子一般小的食物,成群结队的走动。那细小的身材,生命十分柔弱,只要被人一压,它的一生,可能就这样结束。蚂蚁虽然渺小,但非常团结。一只蚂蚁找到食物,由于食物的体积太大,自己无法搬运,它便立刻回巢,通知伙伴,大家一起团结起来,就能成功了。我们也是一样,如果不能团结,像一盘散沙一样,一点力量都没有;如果能合作,在做人处世上就能屹立不摇。 仙人掌生活在沙漠地区,那里酷热无比,还有许多恶毒的猛兽,处境十分危险。但是仙人掌生活在那里许久,却不见它绝种,这是因为它为了适应险恶的环境,长出了尖锐的刺,使动物们无可奈何。这似乎告诉我们,必须克服困难,外在艰苦的环境,要靠自己坚强的毅力去解决。俗语说:“天下无难事,只怕有心人。”就是这个道理。 大自然中,给我们的启示实在太多了,只要用心体会,都能让我们对生命有更深一层的体认,像仙人掌、蚂蚁,不都是很好的例子吗? 蝴蝶 五彩的蝴蝶颜色粲然,如重月纹凤蝶、褐脉金斑蝶等,尤其是萤光翼凤蝶,其后翊在阳光下时而金黄,时而翠绿,有时还由紫变蓝。科学家通过对蝴蝶色彩的研究,为军事防御带来了极大的稗益。在二战期间,德军包围了列宁格勒,企图用轰炸机摧毁其军事目标和其他防御设施。苏联昆虫学家施万维奇根据当时人们对伪装缺乏认识的情况,提出利用蝴蝶的色彩在花丛中不易被发现的道理,在军事设施上覆盖蝴蝶花纹般的伪装。因此,尽管德军费尽心机,但列宁格勒的军事基地仍然无恙,为赢得最后的胜利奠定了坚实的基础。根据同样的原理,后来人们还生产出了迷彩服,大大减少了战斗中的伤亡。 人造卫星在太空中由于位置的不断变化可引起温度骤然变化,有时温差可高达两、三网络,严重影响许多仪器的正常工作。科学家们受蝴蝶身上的鳞片会随阳光的照射方向自动变换角度而调节体温的启发,将人造卫星的控温系统制成了叶片反两面辐射、散热能力相差很大的百叶窗样式,在每扇窗的转动位置安装有对温度敏感的金属丝,随温度变化可调节窗的开合,从而保持了人造卫星内部温度的恒定,解决了航天事业中的一大难题。 甲虫 甲虫自卫时,可喷射出具有恶臭的高温液体“炮弹”,以迷惑、刺激和惊吓敌害。科学家将其解剖后发现甲虫体内有3个小室,分别储有二元酚溶液、双氧水和生物酶。二元酚和双氧水流到第三小室与生物酶混合发生化学反应,瞬间就成为100℃的毒液,并迅速射出。这种原理目前已应用于军事技术中。二战期间,德国纳粹为了战争的需要,据此机理制造出了一种功率极大且性能安全可靠的新型发动机,安装在飞航式导弹上,使之飞行速度加快,安全稳定,命中率提高,英国伦敦在受其轰炸时损失惨重。美国军事专家受甲虫喷射原理的启发研制出了先进的二元化武器。这种武器将两种或多种能产生毒剂的化学物质分装在两个隔开的容器中,炮弹发射后隔膜破裂,两种毒剂中间体在弹体飞行的8—10秒内混合并发生反应,在到达目标的瞬间生成致命的毒剂以杀伤敌人。它们易于生产、储存、运输,安全且不易失效。萤火虫可将化学能直接转变成光能,且转化效率达100%,而普通电灯的发光效率只有6%。人们模仿萤火虫的发光原理制成的冷光源可将发光效率提高十几倍,大大节约了能量。另外,根据甲虫的视动反应机制研制成功的空对地速度计已成功地应用于航空事业中。 蜻蜓 蜻蜓通过翅膀振动可产生不同于周围大气的局部不稳定气流,并利用气流产生的涡流来使自己上升。蜻蜓能在很小的推力下翱翔,不但可向前飞行,还能向后和左右两侧飞行,其向前飞行速度可达72公里/小时。此外,蜻蜓的飞行行为简单,仅靠两对翅膀不停地拍打。科学家据此结构基础研制成功了直升飞机。飞机在高速飞行时,常会引起剧烈振动,甚至有时会折断机翼而引起飞机失事。蜻蜓依靠加重的翅膀在高速飞行时安然无恙,于是人们效仿蜻蜓在飞机的两翼加上了平衡重锤,解决了因高速飞行而引起振动这个令人棘手的问题。 为了研究滑翔飞行和碰撞的空气动力学以及其飞行的效率,一个四叶驱动,用远程水平仪控制的机动机翼(翅膀)模型被研制,并第一次在风洞内测试了各项飞行参数。 第二个模型试图安装一个以更快频率飞行的翅膀,达到每秒18次震动的速度。有特色的是,这个模型采用了可变可调节前后两对机翼之间相差的装置。 研究的中心和长远目标,是要研究使用“翅膀”驱动的飞机表现,以及与传统的螺旋推动器驱动的飞机效率的比较等等。 苍蝇 家蝇的特别之处在于它的快速的飞行技术,这使得它很难被人类抓住。即使在它的后面也很难接近它。它设想到了每一种情况,非常小心,并能快速移动。那么,它是怎么做到的呢? 昆虫学家研究发现,苍蝇的后翅退化成一对平衡棒。当它飞行时,平衡棒以一定的频率进行机械振动,可以调节翅膀的运动方向,是保持苍蝇身体平衡导航仪。科学家据此原理研制成一代新型导航仪——振动陀螺仪,大在改进了飞机的飞行性能,可使飞机自动停止危险的滚翻飞行,在机体强烈倾斜时还能自动恢复平衡,即使是飞机在最复杂的急转弯时也万无一失。苍蝇的复眼包含4000个可独立成像的单眼,能看清几乎360度范围内的物体。在蝇眼的启示下,人们制成了由1329块小透镜组成的一次可拍1329张高分辨率照片的蝇眼照像机,在军事、医学、航空、航天上被广泛应用。苍蝇的嗅觉特别灵敏并能对数十种气味进行快速分析且可立即作出反应。科学家根据苍蝇嗅觉器官的结构,把各种化学反应转变成电脉冲的方式,制成了十分灵敏的小型气体分析仪,目前已广泛应用于宇宙飞船、潜艇和矿井等场所来检测气体成分,使科研、生产的安全系数更为准确、可靠。 心理压力大,有可能是。“睡前喝杯牛奶”却不是很好,晚上不宜喝/吃含钙质高的食品,不易消化。 做梦是因为人没有深度睡眠,人处于半睡半醒的时候才容易做梦。 几点建议: 1.调整好合适自己的生物钟。 2.参加体力活动,比如运动,爬山等。拥有健康的身体自然睡得很好。 3.适当放松自己,工作压力过大时要注意自己的心理活动。 4.不要把手放在胸口上。 5.被子不宜盖太重的,压力大也容易做梦。 6.保持良好的睡姿。 7.睡前听听轻音乐。 希望对你有帮助!心理压力大,睡前喝杯牛奶,白天放松心情,不要胡思乱想。可能植物神经功能失调引起的.减轻一下精神压力,适当的运动,注意生活休息时间有规律就可以了。 睡太多了也会做梦的。 每天7-8小时就够了。 有人是长睡眠,有人是短睡眠。白天一定多运动,多照太阳。早起早睡。 服用安心补肾的药物,六味地黄丸,蝉蜕,等等参加体力活动,睡前喝杯牛奶多做运动啊、多学习啊、工作一定要积极哦神经有点衰弱,吃点营养神经的药。日有所思,夜有所梦!忘了是哪位心理学家说的话,梦是人潜意识的崩发,也就是说要不是你心事重,要不是你经历的事多,对于前者,就是赶快把想干的事干完,对于后者,说明你很怀旧,多找老朋友聊聊,散散心就行了。不用担心,上上楼朋友的观点我也认同,日有所思,夜自然就有梦啦,放好心态别着急呀!其实每个人每天晚上都会做梦,只是有的你记住了醒来却又忘了,而有的一直在你的脑海里,因为你一直想着这个梦.没事!没什么啊,我几乎每天都做梦的,只要一闭上眼睛就进入梦乡的世界,我朋友也是每天都做梦。没什么太大的影响,可能是压力太大的原因,要么就是白天想的事情太多,所以晚上会做梦!!第一种解释(引自中国科技报): 做梦是人体一种正常的、必不可少的生理和心理现象。人入睡后,一小部分脑细胞仍在活动,这就是梦的基础。人为什么要做梦,不做梦会有什么反应呢? 正常的梦境活动,是保证机体正常活力的重要因素之一 科学工作者做了一些阻断人做梦的实验。即当睡眠者一出现做梦的脑电波时,就立即被唤醒,不让其梦境继续,如此反复进行,结果发现对梦的剥夺,会导致人体一系列生理异常,如血压、脉搏、体温以及皮肤的电反应能力均有增高的趋势,植物神经系统机能有所减弱,同时还会引起人的一系列不良心理反应,如出现焦虑不安、紧张、易怒、感知幻觉、记忆障碍、定向障碍等。显而易见,正常的梦境活动,是保证机体正常活力的重要因素之一。 梦是协调人体心理世界平衡的一种方式 由于人在梦中以右大脑半球活动占优势,而觉醒后则以左侧大脑半球占优势,在机体24小时昼夜活动过程中,使醒与梦交替出现,可以达到神经调节和精神活动的动态平衡。因此,梦是协调人体心理世界平衡的一种方式,特别是对人的注意力、情绪和认识活动有较明显的作用。 无梦睡眠不仅质量不好,而且还是大脑受损害或有病的一种征兆 最近的研究成果亦证实了这个观点,即梦是大脑调节中心平衡机体各种功能的结果,梦是大脑健康发育和维持正常思维的需要。倘若大脑调节中心受损,就形成不了梦,或仅出现一些残缺不全的梦境片断,如果长期无梦睡眠,倒值得人们警惕了。当然,若长期恶梦连连,也常是身体虚弱或患有某些疾病的预兆。 第二种解释(引自福建医学院): 所谓的梦,就是平日的愿望或恐惧在睡眠时不受抑制地显现。奥地利的精神病学家及精神分析学派的创始人弗络伊德指出:“梦就是受抑制的潜意识上升为意识的东西。” 每个人都会做梦,而在我们的梦中经常会出现一些与考试有关的事情,其中多半都是梦见题很难,做不出来,而时间又紧,眼看就要到了,可还是做不出来,正在着急的时候,竟醒了。这说明考试给我们的心理带来很大的影响。还有一种情形是如果某人喜欢某人,虽然平时不能相见,甚至连说话的机会都没有,但是在梦中却能经常相见。然而醒来后对梦中的事会感到很遗憾、很痛苦。 一:做梦的原因。 1969年,埃默里大学的戴维.福克斯做了一个试验,当睡眠者处于异相睡眠状态而出现眼球激烈活动的时候,他便把受试者叫醒,问他刚才做了什么梦。然后将各种情况进行归纳得出以下结论。 受试者所梦见的事情多数是自己所关心的事情,如考试、爱情等,另外一些情况,如有的人在睡眠中口渴了,肚子饿了,或有尿意等,他们所梦见的也基本上都与这些事情有关。因此说,这些将各自的事项连接起来的梦中故事,根本没有什么重要意义。因此也有人认为,梦不过是将各种感情和事项连接起来的一种练习罢了。但有人通过电脑模型提出了有关梦的两种假说。 一种假说是英国的心理学家克里斯托弗.埃文斯提出的,他认为,梦就如同将电脑的终端取下之后,重新对程序进编制,然后加以检点,因此,睡眠就是切断了外界信号的输入,运动系统也静息了这样一种状态。在此基础上,梦再对大脑的程序进行检验,然后在重新编制,并加以润色,以此来训练大脑能把近期的信号应用于将来的事态的能力。 根据埃文斯的主张,我们人类可以说是一种社会性的动物,因此,必须将这种社会性动物分成不同的种类,或者按性格进行分类,而且这种过程必须迅速、敏捷,而做梦就可以使这种快速分类得到练习。 还有一种有力的学说也来自电子计算机模型。这一学说的提出者是因发明dna双螺旋模型而出名的弗朗西斯.克里克。 克里克将“哺乳动物具有较大的新皮质”和“睡眠见于哺乳类和鸟类”这两种情况联系起来进行考虑。从“心皮质中含有纵横交错的神经纤维”和“神经细胞和神经细胞之间的结合部有兴奋性”这两点来看,可以认为大脑皮质是由若干个兴奋单位或者说兴奋要素而组成。神经之间的连接有三个特征:第一是辐散传入;第二是强度完整;第三是聚合。 兴奋信号就进入了这样一个网壮结构的局部,作为这一部分的处理特征,只要有信号输入,就有与之相应的适度的信号输出。当有与若干突触有关的信号输入的时候,就会有相互关联的信号输出。 因此,若问把他们异常的精神状态与这种电子计算机模型联系起来之后将会有以下几种关系:(1)当突触的连接过多或不顺的时候,就会产生“空想”;(2)不论输入什么信号,相同的回路都会兴奋(强迫观念);(3)尽管是一般不会引起反应的不适当的刺激也会发生反应(幻觉)。 克里克认为,电子计算机出错可以把浅路截断进行检查,但是人脑就不同了,只能在异相睡眠的时候,才能对浅路进行检查。在异相睡眠的时候,大脑正在被正常的输入和输出所隔离,而且正受到来自脑干的非特异性刺激,而且这种刺激很活跃,这就是所谓的无意识的梦。 二:梦中的重大的发现。 在历史记载中也有关梦的形象描述,其中,最有名的就是对德国的化学家凯库勒的记载。据说他因为对某一种物质的结构式未搞清楚而非常烦恼。有一晚上,他梦见了一幅蛇咬自己尾巴的图,因此而发现了苯环的结构。 医学史上也有一个事例。这就是德国的生理学家奥托.利维的有名的“梦的发现”。有一次,利维做了这样一个梦:一刺激迷走神经,其末梢就释放一种物质,该物质就能抑制心脏的活动。然后,再将停止了跳动的心脏的血采集起来,由于里面含有抑制性物质,所以如果再把这种血液注射到另一动物的心脏里面,该动物的心脏也将会停止跳动吧?如果能将这件事证实一下就好了。 于是,第二天一早,他便兴冲冲地去了大学,为了做这种实验,他将研究者召集起来,正要给大家说明的时候,昨晚的梦却记不起来了。 不管利维怎么想也想不起来。他想,那梦能再做一遍就好了,然后他就把纸和笔放在枕边。结果他幸好又做了一个同样的梦。他醒后马上将梦的内容记录了下来。 一大早起来,他便匆匆忙忙地去了大学,开始了他“梦的实验”,结果,他获得了巨大的成功,他把停止了跳动的狗的血液采集出来,接着注射给一只狗的心脏,于是,这只狗的心脏跳动便时而减慢,时而停止。 不久,他向世界公布了他的这一实验结果,于是,这种实验在世界范围展开了。但是,不可思意的是:虽然有的研究者得出了与他相同的实验结论,但在有的人的实验中,接受了血液注射的狗的心脏,却根本没有变化。于是,这些人便说利维是个骗子,他也因此得了神经衰弱。 如果用现代的知识来解释的话,这是一种很正常的现象。通过刺激交感神经就会使心脏兴奋、心跳加快;当刺激迷走神经时,心跳就会减慢;如果再进一步增强刺激,心脏就会停止跳动。 从以上可知人会做梦主要是因为平日的愿望或恐惧等各种感情在睡眠时不受抑制的显现出来。但我们也可以从梦中得到启发,而获得成功如利维的重大发现等。所以我们要处理好生活中的各种感情不要给自己太大的压力,用正确的方式来处理各种困难。梦是正常的生理现象,可能和白天的生活和工作有关系吧。只要不影响第二天正常的生活和情绪就没关系。建议你白天多运动,养成早睡早起的好习惯,不要一进家门就躺床上睡觉,一定要感觉很疲倦很累的时候再上床睡觉,上床后不要胡思乱想,可以适当喝杯热牛奶。不要观看刺激恐怖的电视,另外睡前也不可太兴奋。必要时可以适当吃点药物帮助睡眠。

‘伍’ 植物转录因子调控网络该怎么研究

我们以玉米为例,介绍构建TF调控网络的详细方法。

真核细胞内的转录调控网络,是由 转录因子(TFs)的组合作用所决定的 。但是, 植物中的TF结合研究的数量太少 ,无法给出这个复杂网络的全貌。

本研究 以玉米为模型,对玉米叶片中表达的104种TF进行ChIP-seq,重建其转录调控网络 ,并训练机器学习模型来预测TF结合和共定位。

作者开发了一种高效的玉米原生质体分离和转化系统(图1a),成功 对104个在玉米叶片发育切片上表达的TFs进行了ChIP-seq实验 。然后应用 ENCODE2统一pipeline来处理 ,总共得到了217个ChIP-seq数据,2,147,346个可重复的TF结合peak。

验证发现, TF结合形成密集的cluster并定位在开放的染色质区域 (图1b-d)。使用 GO-term和MAPMAN功能类别富集分析 ,来根据靶基因对其进行分类(图1e)。 大部分的TFs被分为信号传导、激素、光合作用和代谢类 ,这些都是叶子的核心生物功能。

此外,作者观察到尽管一半以上的TF结合位点位于基因5'的近端区域,但远侧的TF结合位点(如 Vgt1 )也显示出相似的染色质特征,并可能在调节转录中发挥重要作用(图2)。

接下来,使用 ENCODE TIP概率框架 构建了一个基因调控网络,使用该TIP模型,生成了一个具有272,627条边和20,179个节点的网络图(约45%的注释基因和约77%的叶子表达基因)(图3a)。

生物网络通常表现出拓扑和/或功能模块化。应用分区算法(Gephi version 0.92)来确定网络元素子集之间的关系,发现网络可以被划分为七个模块(分辨率1.0)。每个模块包含约27 - 5%的节点。这些模块并不是孤立的,大约40%的边缘出现在每个模块内,说明TFs可以调节自身模块外的基因,模块之间存在大量的信息流。接下来,对每个模块中的基因进行GOterm和MapMan功能富集分析,发现它们确实针对特定功能富集。

然而,每个模块包含数千个具有不同功能的基因,而且太大而不能作为一个整体进行评估。 假设:由于该网络已经能够在这个尺度上提供生物学功能的线索,因此可以根据局部规模的连通性来确定更小通路的潜在调控因子

首先, 在保守的叶绿素生物合成通路中测试了这一点 。已知该通路受GLK TFs的调控,因为它们的突变会破坏光合作用基因的表达。为了推断每个TF对给定通路的贡献, 用ENCODE TIP概率模型为每个TFtarget相互作用计算了对数转换后的p值的总和 (图4a)。发现,叶绿素生物合成通路的主要转录因子确实是 两个GLKs和一个未知的MYBR26 。尽管尚未在玉米中研究MYBR26的功能,但其拟南芥同源物参与了昼夜节律调节,进一步证实了假设。

接下来, 使用这种策略来检查缺乏预先定义调控子的玉米C4光合作用通路 。结果表明,**连通性排名前5位的TFs均为constant -

like(COL)TFs**(图5b,c)。之前其他植物的研究表明,COLs在花期和光周期的调节中发挥着重要作用。纯合突变体具有浅绿色和幼苗致死性表型,支持作者的假设,即COL TF对光合作用很重要(图5d)。

有趣的是,对于在叶肉或束鞘细胞中特异性表达的关键C4光合作用基因,作者发现, 它们的基因位点与细胞特异性H3K27me3标记相关 。这表明, 它们不仅受到复杂的TF网络的调控,而且在表观基因组水平上也受到调控 (图5e)。

利用来自于共定位模型的规则,在给定背景下作者对每个partner TF的相对重要性进行了评分,以反映peak集的联合分布(图6 d)。

为了从模型结果中获得全局视图,作者计算了 所有focus-TF的TF的平均RI 。观察到,整个集合显示出一个平均RI值趋于中低(即≤60RI,上下文相关性更高)的趋势, 较少的TF可以预测大量的focus-TF (即> 60 RI,高组合潜力)。例如,在104个TFs中, LATE ELONGATED HYPOCOTYL (LHY) 在分化叶截面中表达最高。LHY编码一个MYB TF,它是植物生物钟中的中心振子,基于RI预测的前三位伙伴TFs是ZIM18、bHLH172和COL7(图6e)。

尽管它们的功能尚未在玉米中鉴定,但它们的拟南芥同源物分别与茉莉酸信号,铁稳态和开花时间调节有关,所有这些都与昼夜节律紧密相关。

作者的发现证实, 共结合 可能是解释具 有相似序列偏好的TF如何靶向不同基因并控制不同生物学功能的关键 。共定位模型还揭示了TF结合位点的组合空间很大,这可能有利于特定组合的出现,从而促进了物种形成过程中调控网络的快速多样化。

接下来,作者研究 禾本科的转录调控网络是如何进化的 。作者在 高粱和水稻中进行了ATAC-seq ,并获得了 其同系玉米基因的开放染色质序列 。然后, 根据玉米TF的模型是否可以预测高粱和水稻中共同目标基因的开放染色质中的结合 ,来推断网络边缘保守性(图7a)。例如,作者在高粱中68%的同系开放染色质区域中发现了预测的TF结合事件。从同系TF到同系基因的预测网络边缘来看,作者推断玉米网络中约28%的边缘在高粱中是保守的,而约19%在水稻中是保守的(图7b)。

为了在植物中测试同源TF识别位点之间的强相关性,作者计算了玉米,高粱和水稻的开放染色质区域中每个TF模型的匹配数,发现它们确实相关(图7d)。此外,每个玉米TF在水稻和高粱中发现的保守靶点数量也存在相关性(图7e),表明在动植物进化过程中存在相似的选择压力。

‘陆’ 植物激素的稳态通过哪些方面进行调节

植物体维持稳态的调节方式──激素调节的原理和应用知识,与第1、2章内容并列共同组成生物有机体稳态调节知识体系。植物生长素的发现一节作为本章开篇一节层层深入揭示了植物向光性这一生命现象是在生长素调节作用下产生的个体适应性,随着生长素的发现学生认识到植物激素的存在,并初步了解生长素作用──促进生长,这也为继续探索第二、三节生长素的其他生理作用及激素应用奠定基础,本节内容起着承上启下的作用。这一节内容其中“生长素的发现过程” 隐含的科学研究的方法与过程,在整个必修课本中处于相当重要的地位,也是培养学生科学研究能力的很好的载体,更是历年高考的热点。

‘柒’ 不同植物激素信号转导途径各有何特点

摘要 细胞信号转导是指细胞外因子通过与受体(膜受体或核受体)结合,引发细胞内的一系列生物化学反应以及蛋白间相互作用,直至细胞生理反应所需基因开始表达、各种生物学效应形成的过程。现已知道,细胞内存在着多种信号转导方式和途径,各种方式和途径间又有多个层次的交叉调控,是细胞信号转导

‘捌’ 植物的病原物信号转导途径是怎样的

植物经常处于病原物的侵染胁迫之中,因此,进化出复杂的检测和反应系统以破译病原物信号,并诱导相应的防御反应。对于那些对入侵病原物的防御反应被削弱的植物突变体的遗传学分析,发现了一些不同但相互关联的可被正调控的信号网络。这些途径至少部分通过一些小的信号分子起作用,诸如SA、JA和乙烯。信号分子之间的相互作用可能使得植物局部和系统组织防御反应得到最佳调节。

(1)早期的诱导反应

在病原物侵染发生后,植物细胞发生的早期反应包括质膜渗透活性的变化,它导致了钙离子和质子的流入,钾离子和氯离子的流出。离子流随后使引起细胞外产生活性氧的中间子的流出,通过定位于质膜的NADPH氧化酶或定位于质外体的过氧化物酶而催化。这些最初的瞬时反应至少部分是引起进一步信号转导的前提条件,从而启动复杂、高度整合的信号转导网络,引发整体的防御反应。离子流的变化所激发产生的局部的活性氧和NO,作为第二信使诱导过敏反应产生和防御反应基因表达。活性氧中间产物、NO和SA间的协同作用已经被假定。

(2)依赖SA的防御信号转导途径

SA已经被证明在植物抗病过程中具有重要作用,无论是在SAR的建立过程,还是在受侵组织的局部防御反应。对于植物抗病过程SA积累水平有所提升或下降的拟南芥抗病突变体的一系列分离、研究,使得我们对于SA在植物抗病性中的作用有了进一步的了解。拟南芥突变体PAD4的研究表明,PAD4在完全抑制病原物的局部防御反应的巩固或加强的过程中起作用。PAD4基因已经被克隆,并发现其编码产物属于包括EDS1的L-脂肪酶蛋白。这暗示这种蛋白可能是对植物防御专一性信号转导的一种补充。此外,尽管PAD4和EDS1在SA积累的上游起作用,但进行SA处理后它们的mRNA表达水平被上调。这些也与早期为阐明SA对于增强植物防御信号转导能力所进行的一些生化分析结果一致,认为其可能与其他分子结合后发挥作用。由Nawrath等人进行的旨在发现当病原物侵染时,SA积累受损的拟南芥突变体的筛选过程中,发现了SID1和SID2两个新的位点。拟南芥突变体eds5对P.synringaepv.macullcola和粉霉病真菌Erysipheorotil的病害敏感性提高。这些表明SID1/EDS5对广谱病原物防御中的作用。拟南芥中控制SA积累下游的防御信号转导基因是NPR1,最初在对SA及SA类似物反应具有缺陷的突变体筛选中得到鉴别,代表SAR过程的一个关键组分。在对nprl突变体背景及其在不同植物防御反应中所处位置的进一步验证,揭示了NPRl是多个抗性途径下游的调节因子。同时NPRl被发现是由根基农杆菌(root-colonizingrhizobacteria)所诱导的诱导系统抗性(ISR)的一个必须组分。对于该途径的遗传学分析,证明NAPl在由SA、JA和乙烯介导的系统抗性机制中具有双重作用。

(3)SA-independent防御反应

多项研究已确认了SA在建立抗病性中的重要性。然而,在不发生依赖于SA的防御反应的植株(如nprl和NahG),并不表现出对根软腐病真菌Botrytiscinerea敏感性的提高,这说明SA并不是对所有病原物的防御都是必须的。而另一方面,对于在JA信号转导(cmil)和乙烯感知(ein2)具有缺陷的植株表现对该真菌的敏感性提高,这说明JA和乙烯在植物防御中都具有作用。

(4)SA和JA与乙稀反应之间的互作(InteractionamongtheSAandJA和乙稀反应)

尽管依赖于SA和依赖于JA/ethylene的途径分别诱导不同的PR基因表达,并引起植物对不同病原物的抗性,实际上两条途径在系统获得性抗性过程存在很多相互作用。最近一项研究调查了在病原物侵染或用SA、JA和乙烯进行处理的情况下,2375个选择基因的表达情况的变化。研究结果表明,尽管一些基因只被一种信号所影响,更多的则对两个或更多防御信号起反应。这些结果暗示了在植物不同的防御途径进行着各种调控互作和协作,从而形成复杂的网络。

‘玖’ 从动植物身上得到的启示

大自然给人类的启发是多种多样的.大自然的巢穴,天然浑成,质朴无华,然而正是受此启发,人类才发展起了建设科学,建立起了现代化大城市.大自然的河流,看起来不以人的意志为转移,日夜奔腾不息,但它不也是在日夜教导人们如何理解地球的重力、运动的惯性力等许多道理,教会人们如何开发利用大自然的潜能吗?金属,给人类的灵感就更多了,这类看起来很坚硬的东西,被火融化后竟能按照人类的需要变成为人类所用的工具,更重要的是,它让人们明白了各种物质都有熔点,都能进行形态和能态转化.
人类根据鲨鱼做出了飞机,根据蝙蝠做出了雷达.人类根据蜻蜓的翅膀发明了飞机,根据蝙蝠的嘴和耳朵发明雷达,根据鲸鱼的外形发明了轮船,根据青蛙的眼睛发明了“电子蛙眼”.
由令人讨厌的苍蝇,仿制成功一种十分奇特的小型气体分析仪.已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分.
从萤火虫到人工冷光;
电鱼与伏特电池;
水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义.
人们根据蛙眼的视觉原理,已研制成功一种电子蛙眼.这种电子蛙眼能像真的蛙眼那样,准确无误地识别出特定形状的物体.把电子蛙眼装入雷达系统后,雷达抗干扰能力大大提高.这种雷达系统能快速而准确地识别出特定形状的飞机、舰船和导弹等.特别是能够区别真假导弹,防止以假乱真.
电子蛙眼还广泛应用在机场及交通要道上.在机场,它能监视飞机的起飞与降落,若发现飞机将要发生碰撞,能及时发出警报.在交通要道,它能指挥车辆的行驶,防止车辆碰撞事故的发生.
根据蝙蝠超声定位器的原理,人们还仿制了盲人用的“探路仪”.这种探路仪内装一个超声波发射器,盲人带着它可以发现电杆、台阶、桥上的人等.如今,有类似作用的“超声眼镜”也已制成.
模拟蓝藻的不完全光合器,将设计出仿生光解水的装置,从而可获得大量的氢气.
根据对人体骨胳肌肉系统和生物电控制的研究,已仿制了人力增强器——步行机.
现代起重机的挂钩起源于许多动物的爪子.
屋顶瓦楞模仿动物的鳞甲.
船桨模仿的是鱼的鳍.
锯子学的是螳螂臂,或锯齿草.
苍耳属植物获取灵感发明了尼龙搭扣.
嗅觉灵敏的龙虾为人们制造气味探测仪提供了思路.
壁虎脚趾对制造能反复使用的粘性录音带提供了令人鼓舞的前景.
贝用它的蛋白质生成的胶体非常牢固,这样一种胶体可应用在从外科手术的缝合到补船等一切事情上根据蝙蝠,研究了雷达 根据鱼类,研究了潜水艇 根据鸟类,研究了飞机根据荧火虫,研究了荧光灯,
早在一百万年前,植物就作为最古老的生命形式在地球上出现,并且已经和人类相伴多年.但今天的科学家们大都谦虚地认为:对于植物,人类了解的还远远不够,诸如开花结实、生长发育这些最基本的生理过程,人类的教科书中还无法具体描述.
因此,世界各国的植物学家都致力于对植物生理活动微观过程的研究.
植物体内的接力赛
在我们眼里,扎根于土壤的植物是平静的.但科学家们却发现;植物体内却充满了纷繁复杂的运动.
中国的科学家正在试图描述植物体内的一场田径比赛.这是一场被冠名为光合作用的接力赛.光信号是接力棒,它首先被植物体内的光线接受体接收,“接力棒”随后通过下面的蛋白质“接力手”层层传递,最终到达植物细胞的信息处理中心.
到目前为止,科学家们已经发现了传递蓝光信号的一号和二号“接力手”,但都是哪些蛋白质接力手参与了比赛?每一位“接力手”承担了什么功能?目前还不清楚.如果能找到所有的光信号传导的“接力手”,那么就能构建起一个植物体内的光信号传导网络.那时,人类将能通过调节网络中光信号的传递,按照植物育种的各种需要来改良农作物.
花开随人意
光合作用是一场激烈的接力赛.实际上,据生物学家们的统计,一种植物体内有数万种生物反应,那植物体内可以称得上是一场门类复杂的奥运赛场.
比赛离不开裁判,花儿的绽放依靠的是植物生长细胞的分裂,这场比赛的裁判是阳光和温度,只有适宜的光照和温度才能保证细胞分裂的正常进行.但究竟阳光和温度怎样影响着这场比赛,一直是生物学研究的一大挑战.
今天计算机模拟技术帮助生物学家了解了这个过程.在对植物开花过程的研究中,科学家们对控制开花时间的基因做标志,并通过阳光照射强度控制它的活跃程度.不同时期,这个基因在花朵的哪个部位,呈现什么状态,把这些信息输入计算机,通过计算机的模拟,这个基因在整个开花过程中发挥的功效就一清二楚了.
科学家们相信,通过调控这类基因,可以改良某些经济作物.在那些日照时间短的地方,可以缩短开花期,保证农业的丰收.那时,细胞分裂赛事的裁判不再是阳光、温度而是人类了.
植物哨兵
植物体内的生理活动,让生物学家们着迷.而另外一些科学家则看上了植物扎根土壤,忠于职守的特性.
由于不少植物对环境的变化都非常敏感,并能通过颜色、形状、生长习性的变化上表现出来.人们就依靠对植物状态的监测,来对有害物质进行预警.这为现代战争中的环境监测提供了意想不到的帮助.在战争地带前进的士兵,正尝试用电子装置来监测植物,以此判断当地是否遭受过化学毒气的攻击.
植物扎根地面不会逃跑,它们就成了忠于职守的哨兵.
科学家们已经培养成功了几种植物哨兵,他们对化学、辐射等环境的变化特别敏感,用于警示有毒的生物制剂化学制剂的出现.同时,某些植物对某种有害物质还有净化清除的功能.
可以想象,将来我们刚刚完成装修的居室,或者空气污浊的办公环境,也能摆上一两盆这样的植物哨兵.那么充盈眼帘的绿色,还为我们担当着保护环境、清除空气垃圾的责任.
对于生物学研究来说;植物留给人类的迷太多太多,但每一个谜语的破解,都将给人类认识植物改变生活带来莫大的

‘拾’ 不同植物激素之间的信号传导和串扰如何运作

首先是不同植物激素的信号通路之间存在着复杂的调控网络。但不同的激素信号通路如何通过蛋白质网络相互作用尚不完全清楚。植物激素在调节植物生长发育和环境适应方面发挥着重要作用。主要植物激素的生物合成途径已经比较明确,大部分信号转导途径也已经阐明。现有研究发现,不同植物激素之间存在大量相互作用。一种激素可以调节另一种植物激素的合成。

最后要知道脱落素Ⅱ和休眠是同一种物质,统称为脱落酸。脱落酸会随着缺水和种子成熟而积累。ABA控制气孔大小和应激反应基因表达,从而减少二氧化碳进入叶片,限制光合作用并增强植物对不利条件的耐受性。一些种子、枝条和果实含有高水平的ABA和ABA代谢物,它们与维持休眠和种子发育有关。此外,ABA还参与植物病原体反应。

阅读全文

与简述植物磷饥饿信号调控网络相关的资料

热点内容
郑州没有网络信号 浏览:721
为什么电脑网络很好却老是卡顿 浏览:344
该怎么制作网络游戏 浏览:555
如何查看自己的网络被谁连了 浏览:151
网络设计模型一般在哪个层 浏览:341
手机移动网络老是掉什么情况 浏览:115
移动网络和wifi自动关闭 浏览:177
光猫怎么连光猫无线网络 浏览:479
计算机网络在日常生活带来的便利 浏览:282
有手机没网络用什么方法解决 浏览:638
网络盒子多少带宽 浏览:26
哪里有免费的网络平台 浏览:214
网络明明有却光信号一直闪红点儿 浏览:771
如何成为网络网络炒作热点 浏览:138
如何建成一个网络品牌 浏览:504
5g网络nsa和ns选哪个模式 浏览:862
中国移动网络晚上就卡 浏览:887
qq连接失败请检查网络设置 浏览:347
华三和锐捷网络哪个好 浏览:134
网络电视盒子是什么样子的 浏览:303

友情链接