① sip和H323协议的区别
H.323是国际电信联盟(ITU)用于音频、视频和在数据包(IP)网络上共享数据的总括标准。这个标准已经在广泛应用并且拥有了巨大的市场份额。
SIP(会话起始协议)是IETF(互联网工程任务组)制定的多媒体信号协议。由于这个协议具有简单和模块化的特点,这个协议正在受到关注,但是,到目前为止的商业性应用还很少。
企业一般都把SIP解决方案与H.323 (和/或者TDM协议)协议一起部署,以便保护投资,保证更有效地向新技术转变,向能够从中受益的用户提供SIP应用。
H.323和SIP的相同之处
H.323和SIP协议原来都是用于在IP网络上提供多媒体服务的。这两个协议都在IP网络上运行,使用TCP和UDP会话发出信号并且使用RTP(实时协议)传输语音/视频流。这两种协议都不产生新的编码/解码方式,而是利用现有的其它协议(如G.711和G.729)。
这两个协议一般都是利用一台服务器作为建立会话的中间人。在H.323协议中,一个看门人(gatekeeper)通过发送和接收信号保持活跃状态,并且向各个终端发送数据包,然后各个终端建立自己的通向PSTN网关的媒体流。采用SIP协议,一个代理服务器能够处理和发送用户代理的请求,直接与其它用户代理建立会话,或者通过网关呼叫传统的PSTN成员。这就是说,SIP能够在有限的范围内以点对点的方式实施,因为用户代理不用中间的服务器就可以建立会话,就像在one-X Quick Edition平台中一样。
两个协议的区别
虽然这两个协议在概念上是相同的,但是,它们在结构和提供的服务方面有很大的区别。H.323协议是在1996年首次为VoIP应用扩展的协议,现在是第五个版本,是以ISDN Q.931等电话协议为基础的。IETF的思想家最初在90年代中期接受了SIP协议,并且从那以后发表了两个RFC,最新版本的RFC 3261是在2002年发表的。SIP同HTTP和SMTP一样,是一种基于文本的协议。许多程序员都非常了解这个协议。他们发现SIP协议非常简单并且很容易排除故障。H.323协议是用二进制代码编写的,没有丰富经验和开发工具的程序员都不熟悉这个协议。
这两个协议之间的主要区别是,SIP协议用来建立和断开媒体会话,而H.323协议用来具体指定用哪一个协议提供媒体服务。使用H.323协议,媒体本身是不依赖于信号传输协议的。事实上,SIP是依赖另一种会话描述协议来定义、协商和处理媒体流的。因此,SIP能够像它建立游戏或者即时消息会话一样方便地用来建立一个语音或者视频会话。换句话说,SIP不是一个VoIP协议。由于SIP协议在许多领域都有用,开发人员对于SIP协议的熟悉程度和创造性都要高于他们对H.323协议的情况。
创建服务 SIP协议的关键属性
SIP协议允许开发人员创建更多的新服务,比他们使用H.323协议创建的新服务还要多。SIP是IETF工具集的一部分,这就意味着对于这个协议的接口和扩展没有明确定义的要求。除了建立和中断传统的媒体流之外,已经增加了一些使用SIP协议的扩展功能。像蜂窝运营商提供的一键通服务等新型的媒体会话就是以SIP协议为基础的。使用一种名为SIMPLE (SIP for Instant Messaging and Presence Leveraging Extensions)的SIP扩展协议能够实现即时消息服务。SIMPLE协议提供了一种即时消息实施结构。这种即时消息服务是基于传统的好友名单的,并拥有一个基于标准核心的在线状态显示应用程序。
SIP协议本身对在线状态的支持将扩展到其它设备中,实现类似于一号连接和多种设备(也就是说PC、桌面电话和手机)在线状态可见性等令人激动的新功能。这些功能将允许主叫方在最合适的时间使用最佳的设备连接被叫方,而不是仅仅观察即时消息客户端软件中的状态和猜测这个人是否在电话机旁。这个功能将减少在即时消息中频繁地输入的“我能给你打电话吗?”的信息。
更有趣的是,SIP和开放式Web服务提供了把在线状态显示和通讯集成到传统的企业应用程序中的许多选择。例如,在商业应用程序中发生的事件(如存货短缺)能够启动一个相关的管理人员(如产品线经理和零件供应商)的会议,利用在线状态显示(在他们的掌上电脑、台式电脑或者手机上的显示)确定联系相关管理人员的最佳方式。
② TCP/IP、SIP协议
TCP/IP协议 (传输控制协议/网间协议)
TCP/IP 协议集确立了 Internet 的技术基础。TCP/IP 的发展始于美国 DOD (国防部)方案。 IAB (Internet 架构委员会)的下属工作组 IETF (Internet 工程任务组)研发了其中多数协议。 IAB 最初由美国政府发起,如今转变为公开而自治的机构。IAB 协同研究和开发 TCP/IP 协议集的底层结构,并引导着 Internet 的发展。TCP/IP 协议集记录在请求注解(RFC)文件中,RFC 文件均由 IETF 委员会起草、讨论、传阅及核准。所有这些文件都是公开且免费的,且能在 IETF 网站上列出的参考文献中找到。
TCP/IP 协议覆盖了 OSI 网络结构七层模型中的六层,并支持从交换(第二层)诸如多协议标记交换,到应用程序诸如邮件服务方面的功能。TCP/IP 的核心功能是寻址和路由选择(网络层的 IP/IPV6 )以及传输控制(传输层的 TCP、UDP)。
IP (网际协议)
在网络通信中,网络组件的寻址对信息的路由选择和传输来说是相当关键的。相同网络中的两台机器间的消息传输有各自的技术协定。LAN 是通过提供6字节的唯一标识符(“MAC”地址)在机器间发送消息的。SNA 网络中的每台机器都有一个逻辑单元及与其相应的网络地址。DECNET、AppleTalk 和 Novell IPX 均有一个用来分配编号到各个本地网和工作站的配置。
除了本地或特定提供商的网络地址,IP 为世界范围内的各个网络设备都分配了一个唯一编号,即 IP 地址。IPV4 的 IP 地址为4字节,按照惯例,将每个字节转化成十进制(0-255)并以点分隔各字节。IPV6 的 IP 地址已经增加到16字节。关于 IP 和 IPV6 协议的详细说明,在相关文件中再另作介绍。
TCP (传输控制协议)
通过序列化应答和必要时重发数据包,TCP 为应用程序提供了可靠的传输流和虚拟连接服务。TCP 主要提供数据流转送,可靠传输,有效流控制,全双工操作和多路传输技术。可查阅 TCP 部分获取更多详细资料。
在下面的 TCP/IP 协议表格中,我们根据协议功能和其在 OSI 七层网络通信参考模型的映射关系将其全部列出。然而,TCP/IP 并不完全遵循 OSI 模型,例如:大多数 TCP/IP 应用程序是直接在传输层协议 TCP 和 UDP 上运行,而不涉及其中的表示层和会话层。
主要协议表
IP TCP UDP IPsec HTTP POP3 SNMP MPLS DNS SMTP
应用层(Application Layer)
--------------------------------------------------------------------------------
BOOTP:引导协议 (BOOTP:Bootstrap Protocol)
DCAP:数据转接客户访问协议 (DCAP:Data Link Switching Client Access Protocol)
DHCP:动态主机配置协议 (DHCP:Dynamic Host Configuration Protocol)
DNS:域名系统(服务)系统 (DNS:Domain Name Systems)
Finger:用户信息协议 (Finger:User Information Protocol)
FTP:文件传输协议 (FTP:File Transfer Protocol)
HTTP:超文本传输协议 (HTTP:Hypertext Transfer Protocol)
S-HTTP:安全超文本传输协议 (S-HTTP:Secure Hypertext Transfer Protocol)
IMAP & IMAP4:信息访问协议 & 信息访问协议第4版 (IMAP & IMAP4:Internet Message Access Protocol)
IPDC:IP 设备控制 (IPDC:IP Device Control)
IRCP/IRC:因特网在线聊天协议 (IRCP/IRC:Internet Relay Chat Protocol)
LDAP:轻量级目录访问协议 (LDAP:Lightweighted Directory Access Protocol)
MIME/S-MIME/Secure MIME:多用途网际邮件扩充协议 (MIME/S-MIME/Secure MIME:Multipurpose Internet Mail Extensions)
NAT:网络地址转换 (NAT:Network Address Translation)
NNTP:网络新闻传输协议 (NNTP:Network News Transfer Protocol)
NTP:网络时间协议 (NTP:Network Time Protocol)
POP&POP3:邮局协议 (POP & POP3:Post Office Protocol)
RLOGIN:远程登录命令 (RLOGIN:Remote Login in Unix)
RMON:远程监控 (RMON:Remote Monitoring MIBs in SNMP)
RWhois:远程目录访问协议 (RWhois Protocol)
SLP:服务定位协议 (SLP:Service Location Protocol)
SMTP:简单邮件传输协议 (SMTP:Simple Mail Transfer Protocol)
SNMP:简单网络管理协议 (SNMP:Simple Network Management Protocol)
SNTP:简单网络时间协议 (SNTP:Simple Network Time Protocol)
TELNET:TCP/IP 终端仿真协议 (TELNET:TCP/IP Terminal Emulation Protocol)
TFTP:简单文件传输协议 (TFTP:Trivial File Transfer Protocol)
URL:统一资源管理 (URL:Uniform Resource Locator)
X-Window/X Protocol:X 视窗 或 X 协议(X-Window:X Window or X Protocol or X System)
表示层(Presentation Layer)
--------------------------------------------------------------------------------
LPP:轻量级表示协议 (LPP:Lightweight Presentation Protocol)
会话层(Session Layer)
--------------------------------------------------------------------------------
RPC:远程过程调用协议 (RPC:Remote Procere Call protocol)
传输层(Transport Layer)
--------------------------------------------------------------------------------
ITOT:基于TCP/IP 的 ISO 传输协议 (ITOT:ISO Transport Over TCP/IP)
RDP:可靠数据协议 (RDP:Reliable Data Protocol)
RUDP:可靠用户数据报协议 (RUDP:Reliable UDP)
TALI:传输适配层接口 (TALI:Transport Adapter Layer Interface)
TCP:传输控制协议 (TCP:Transmission Control Protocol)
UDP:用户数据报协议 (UDP:User Datagram Protocol)
Van Jacobson:压缩 TCP 协议 (Van Jacobson:Compressed TCP)
网络层(Network Layer)
--------------------------------------------------------------------------------
路由选择(Routing)
BGP/BGP4:边界网关协议 (BGP/BGP4:Border Gateway Protocol)
EGP:外部网关协议(EGP:Exterior Gateway Protocol)
IP:网际协议 (IP:Internet Protocol)
IPv6:网际协议第6版 (IPv6:Internet Protocol version 6)
ICMP/ICMPv6:Internet 信息控制协议 (ICMP/ICMPv6:Internet Control Message Protocol)
IRDP:ICMP 路由器发现协议 (IRDP:ICMP Router Discovery Protocol)
Mobile IP: 移动 IP (Mobile IP:IP Mobility Support Protocol for IPv4 & IPv6)
NARP:NBMA 地址解析协议 (NARP:NBMA Address Resolution Protocol)
NHRP:下一跳解析协议 (NHRP:Next Hop Resolution Protocol)
OSPF:开放最短路径优先 (OSPF:Open Shortest Path First)
RIP/RIP2:路由选择信息协议 (RIP/RIP2:Routing Information Protocol)
RIPng:路由选择信息协议下一代 (RIPng:RIP for IPv6)
RSVP:资源预留协议 (RSVP:Resource ReSerVation Protocol)
VRRP:虚拟路由器冗余协议 (VRRP:Virtual Router Rendancy Protocol)
组播(Multicast)
BGMP:边界网关组播协议 (BGMP:Border Gateway Multicast Protocol)
DVMRP:距离矢量组播路由协议 (DVMRP:Distance Vector Multicast Routing Protocol)
IGMP:Internet 组管理协议 (IGMP:Internet Group Management Protocol)
MARS:组播地址解析服务 (MARS:Multicast Address Resolution Server)
MBGP:组播协议边界网关协议 (MBGP:Multiprotocol BGP)
MOSPF:组播OSPF (MOSPF:Multicast OSPF)
MSDP:组播源发现协议 (MSDP:Multicast Source Discovery Protocol)
MZAP:组播区域范围公告协议 (MZAP:Multicast Scope Zone Announcement Protocol)
PGM:实际通用组播协议 (PGM:Pragmatic General Multicast Protocol)
PIM-DM:密集模式独立组播协议 (PIM-DM:Protocol Independent Multicast - Dense Mode)
PIM-SM:稀疏模式独立组播协议 (PIM-SM:Protocol Independent Multicast - Sparse Mode)
MPLS 协议(MPLS Protocols)
CR-LDP:基于路由受限标签分发协议 (CR-LDP: Constraint-Based Label Distribution Protocol)
GMPLS:通用多协议标志交换协议 (GMPLS:Generalized Multiprotocol Label Switching)
LDP:标签分发协议 (LDP:Label Distribution Protocol)
MPLS:多协议标签交换 (MPLS:Multi-Protocol Label Switching)
RSVP-TE:基于流量工程扩展的资源预留协议 (RSVP-TE:Resource ReSerVation Protocol-Traffic Engineering)
数据链路层(Data Link Layer)
--------------------------------------------------------------------------------
ARP and InARP:地址转换协议和逆向地址转换协议 (ARP and InARP:Address Resolution Protocol and Inverse ARP)
IPCP and IPv6CP:IP控制协议和IPV6控制协议 (IPCP and IPv6CP:IP Control Protocol and IPv6 Control Protocol)
RARP:反向地址转换协议 (RARP:Reverse Address Resolution Protocol)
SLIP:串形线路 IP (SLIP:Serial Line IP)
SIP
介绍
新一代的服务
历史回顾
SIP 的优点:类似 Web 的可扩展开放通信
SIP 会话构成
介绍
通信提供商及其合作伙伴和用户越来越渴求新一代基于 IP 的服务。现在有了 SIP(会话启动协议),一解燃眉之急。SIP 是不到十年前在计算机科学实验室诞生的一个想法。它是第一个适合各种媒体内容而实现多用户会话的协议,现在已成了 Internet 工程任务组 (IETF) 的规范。
今天,越来越多的运营商、CLEC(竞争本地运营商)和 ITSP(IP 电话服务商)都在提供基于 SIP 的服务,如市话和长途电话技术、在线信息和即时消息、IP Centrex/Hosted PBX、语音短信、push-to-talk(按键通话)、多媒体会议等等。独立软件供应商 (ISV) 正在开发新的开发工具,用来为运营商网络构建基于 SIP 的应用程序以及 SIP 软件。网络设备供应商 (NEV) 正在开发支持 SIP 信令和服务的硬件。现在,有众多 IP 电话、用户代理、网络代理服务器、VOIP 网关、媒体服务器和应用服务器都在使用 SIP。
SIP 从类似的权威协议--如 Web 超文本传输协议 (HTTP) 格式化协议以及简单邮件传输协议 (SMTP) 电子邮件协议--演变而来并且发展成为一个功能强大的新标准。但是,尽管 SIP 使用自己独特的用户代理和服务器,它并非自成一体地封闭工作。SIP 支持提供融合的多媒体服务,与众多负责身份验证、位置信息、语音质量等的现有协议协同工作。
本白皮书对 SIP 及其作用进行了概括性的介绍。它还介绍了 SIP 从实验室开发到面向市场的过程。本白皮书说明 SIP 提供哪些服务以及正在实施哪些促进发展的方案。它还详细介绍了 SIP 与各种协议不同的重要特点并说明如何建立 SIP 会话。
返回页首
新一代的服务
SIP 较为灵活,可扩展,而且是开放的。它激发了 Internet 以及固定和移动 IP 网络推出新一代服务的威力。SIP 能够在多台 PC 和电话上完成网络消息,模拟 Internet 建立会话。
与存在已久的国际电信联盟 (ITU) SS7 标准(用于呼叫建立)和 ITU H.323 视频协议组合标准不同,SIP 独立工作于底层网络传输协议和媒体。它规定一个或多个参与方的终端设备如何能够建立、修改和中断连接,而不论是语音、视频、数据或基于 Web 的内容。
SIP 大大优于现有的一些协议,如将 PSTN 音频信号转换为 IP 数据包的媒体网关控制协议 (MGCP)。因为 MGCP 是封闭的纯语音标准,所以通过信令功能对其进行增强比较复杂,有时会导致消息被破坏或丢弃,从而妨碍提供商增加新的服务。而使用 SIP,编程人员可以在不影响连接的情况下在消息中增加少量新信息。
例如,SIP 服务提供商可以建立包含语音、视频和聊天内容的全新媒体。如果使用 MGCP、H.323 或 SS7 标准,则提供商必须等待可以支持这种新媒体的协议新版本。而如果使用 SIP,尽管网关和设备可能无法识别该媒体,但在两个大陆上设有分支机构的公司可以实现媒体传输。
而且,因为 SIP 的消息构建方式类似于 HTTP,开发人员能够更加方便便捷地使用通用的编程语言(如 Java)来创建应用程序。对于等待了数年希望使用 SS7 和高级智能网络 (AIN) 部署呼叫等待、主叫号码识别以及其他服务的运营商,现在如果使用 SIP,只需数月时间即可实现高级通信服务的部署。
这种可扩展性已经在越来越多基于 SIP 的服务中取得重大成功。Vonage 是针对用户和小企业用户的服务提供商。它使用 SIP 向用户提供 20,000 多条数字市话、长话及语音邮件线路。Deltathree 为服务提供商提供 Internet 电话技术产品、服务和基础设施。它提供了基于 SIP 的 PC 至电话解决方案,使 PC 用户能够呼叫全球任何一部电话。Denwa Communications 在全球范围内批发语音服务。它使用 SIP 提供 PC 至 PC 及电话至 PC 的主叫号码识别、语音邮件,以及电话会议、统一通信、客户管理、自配置和基于 Web 的个性化服务。
某些权威人士预计,SIP 与 IP 的关系将发展成为类似 SMTP 和 HTTP 与 Internet 的关系,但也有人说它可能标志着 AIN 的终结。迄今为止,3G 界已经选择 SIP 作为下一代移动网络的会话控制机制。Microsoft 已经选择 SIP 作为其实时通信策略并在 Microsoft XP、Pocket PC 和 MSN Messenger 中进行了部署。Microsoft 同时宣布 CE.net 的下一个版本将使用基于 SIP 的 VoIP 应用接口层,并承诺向用户 PC 提供基于 SIP 的语音和视频呼叫。
另外,MCI 正在使用 SIP 向 IP 通信用户部署高级电话技术服务。用户将能够通知主叫方自己是否有空以及首选的通信方式,如电子邮件、电话或即时消息。利用在线信息,用户还能够即时建立聊天会话和召开音频会议。使用 SIP 将不断地实现各种功能。
返回页首
历史回顾
SIP 出现于二十世纪九十年代中期,源于哥伦比亚大学计算机系副教授 Henning Schulzrinne 及其研究小组的研究。Schulzrinne 教授除与人共同提出通过 Internet 传输实时数据的实时传输协议 (RTP) 外,还与人合作编写了实时流传输协议 (RTSP) 标准提案,用于控制音频视频内容在 Web 上的流传输。
Schulzrinne 本来打算编写多方多媒体会话控制 (MMUSIC) 标准。1996 年,他向 IETF 提交了一个草案,其中包含了 SIP 的重要内容。1999 年,Shulzrinne 在提交的新标准中删除了有关媒体内容方面的无关内容。随后,IETF 发布了第一个 SIP 规范,即 RFC 2543。虽然一些供应商表示了担忧,认为 H.323 和 MGCP 协议可能会大大危及他们在 SIP 服务方面的投资,IETF 继续进行这项工作,于 2001 年发布了 SIP 规范 RFC 3261。
RFC 3261 的发布标志着 SIP 的基础已经确立。从那时起,已发布了几个 RFC 增补版本,充实了安全性和身份验证等领域的内容。例如,RFC 3262 对临时响应的可靠性作了规定。RFC 3263 确立了 SIP 代理服务器的定位规则。RFC 3264 提供了提议/应答模型,RFC 3265 确定了具体的事件通知。
早在 2001 年,供应商就已开始推出基于 SIP 的服务。今天,人们对该协议的热情不断高涨。Sun Microsystems 的 Java Community Process 等组织正在使用通用的 Java 编程语言定义应用编程接口 (API),以便开发商能够为服务提供商和企业构建 SIP 组件和应用程序。最重要的是,越来越多的竞争者正在借助前途光明的新服务进入 SIP 市场。SIP 正在成为自 HTTP 和 SMTP 以来最为重要的协议之一。
返回页首
SIP 的优点:类似 Web 的可扩展开放通信
使用 SIP,服务提供商可以随意选择标准组件,快速驾驭新技术。不论媒体内容和参与方数量,用户都可以查找和联系对方。SIP 对会话进行协商,以便所有参与方都能够就会话功能达成一致以及进行修改。它甚至可以添加、删除或转移用户。
不过,SIP
不是万能的。它既不是会话描述协议,也不提供会议控制功能。为了描述消息内容的负载情况和特点,SIP 使用 Internet 的会话描述协议 (SDP) 来描述终端设备的特点。SIP 自身也不提供服务质量 (QoS),它与负责语音质量的资源保留设置协议 (RSVP) 互操作。它还与若干个其他协议进行协作,包括负责定位的轻型目录访问协议 (LDAP)、负责身份验证的远程身份验证拨入用户服务 (RADIUS) 以及负责实时传输的 RTP 等多个协议。
SIP 规定了以下基本的通信要求:
1. 用户定位服务
2. 会话建立
3. 会话参与方管理
4. 特点的有限确定
SIP 的一个重要特点是它不定义要建立的会话的类型,而只定义应该如何管理会话。有了这种灵活性,也就意味着 SIP 可以用于众多应用和服务中,包括交互式游戏、音乐和视频点播以及语音、视频和 Web 会议。
下面是 SIP 在新的信令协议中出类拔萃的一些其他特点
SIP 消息是基于文本的,因而易于读取和调试。新服务的编程更加简单,对于设计人员而言更加直观。
SIP 如同电子邮件客户机一样重用 MIME 类型描述,因此与会话相关的应用程序可以自动启动。
SIP 重用几个现有的比较成熟的 Internet 服务和协议,如 DNS、RTP、RSVP 等。不必再引入新服务对 SIP 基础设施提供支持,因为该基础设施很多部分已经到位或现成可用。
对 SIP 的扩充易于定义,可由服务提供商在新的应用中添加,不会损坏网络。网络中基于 SIP 的旧设备不会妨碍基于 SIP 的新服务。例如,如果旧 SIP 实施不支持新的 SIP 应用所用的方法/标头,则会将其忽略。
SIP 独立于传输层。因此,底层传输可以是采用 ATM 的 IP。SIP 使用用户数据报协议 (UDP) 以及传输控制协议 (TCP),将独立于底层基础设施的用户灵活地连接起来。
SIP 支持多设备功能调整和协商。如果服务或会话启动了视频和语音,则仍然可以将语音传输到不支持视频的设备,也可以使用其他设备功能,如单向视频流传输功能。
返回页首
SIP 会话构成
SIP 会话使用多达四个主要组件:SIP 用户代理、SIP 注册服务器、SIP 代理服务器和 SIP 重定向服务器。这些系统通过传输包括了 SDP 协议(用于定义消息的内容和特点)的消息来完成 SIP 会话。下面概括性地介绍各个 SIP 组件及其在此过程中的作用。
SIP 用户代理 (UA) 是终端用户设备,如用于创建和管理 SIP 会话的移动电话、多媒体手持设备、PC、PDA 等。用户代理客户机发出消息。用户代理服务器对消息进行响应。
SIP 注册服务器是包含域中所有用户代理的位置的数据库。在 SIP 通信中,这些服务器会检索参与方的 IP 地址和其他相关信息,并将其发送到 SIP 代理服务器。
SIP 代理服务器接受 SIP UA 的会话请求并查询 SIP 注册服务器,获取收件方 UA 的地址信息。然后,它将会话邀请信息直接转发给收件方 UA(如果它位于同一域中)或代理服务器(如果 UA 位于另一域中)。
SIP 重定向服务器允许 SIP 代理服务器将 SIP 会话邀请信息定向到外部域。SIP 重定向服务器可以与 SIP 注册服务器和 SIP 代理服务器同在一个硬件上。
以下几个情景说明 SIP 组件之间如何进行协调以在同一域和不同域中的 UA 之间建立 SIP 会话:
在同一域中建立 SIP 会话
下图说明了在预订同一个 ISP 从而使用同一域的两个用户之间建立 SIP 会话的过程。用户 A 使用 SIP 电话。用户 B 有一台 PC,运行支持语音和视频的软客户程序。加电后,两个用户都在 ISP 网络中的 SIP 代理服务器上注册了他们的空闲情况和 IP 地址。用户 A 发起此呼叫,告诉 SIP 代理服务器要联系用户 B。然后,SIP 代理服务器向 SIP 注册服务器发出请求,要求提供用户 B 的 IP 地址,并收到用户 B 的 IP 地址。SIP 代理服务器转发用户 A 与用户 B 进行通信的邀请信息(使用 SDP),包括用户 A 要使用的媒体。用户 B 通知 SIP 代理服务器可以接受用户 A 的邀请,且已做好接收消息的准备。SIP 代理服务器将此消息传达给用户 A,从而建立 SIP 会话。然后,用户创建一个点到点 RTP 连接,实现用户间的交互通信。
1.呼叫用户 B
2.查询捻没?B 在哪里??br> 3.响应捻没?B 的 SIP 地址?br> 4.挚�顶呼叫
5. 响应
6. 响应
7. 多媒体通道已建立
返回页首
在不同的域中建立 SIP 会话
本情景与第一种情景的不同之处如下。用户 A 邀请正在使用多媒体手持设备的用户 B 进行 SIP 会话时,域 A 中的 SIP 代理服务器辨别出用户 B 不在同一域中。然后,SIP 代理服务器在 SIP 重定向服务器上查询用户 B 的 IP 地址。SIP 重定向服务器既可在域 A 中,也可在域 B 中,也可既在域 A 中又在域 B 中。SIP 重定向服务器将用户 B 的联系信息反馈给 SIP 代理服务器,该服务器再将 SIP 会话邀请信息转发给域 B 中的 SIP 代理服务器。域 B 中的 SIP 代理服务器将用户 A 的邀请信息发送给用户 B。用户 B 再沿邀请信息经由的同一路径转发接受邀请的信息。
1. 呼叫用户 B 2. 询问撑胰绾谓油ㄓ?B 中的用户 B?? 3. 响应挚�砜刂破鞯挠虻刂窋 4. 挚�顶呼叫域 B 的 SIP 代理 5. 查询捻没?B 在哪里?? 6. 用户 B 的地址 7. 代理呼叫 8. 响应 9. 响应 10.响应 11.多媒体通道已建立
无缝、灵活、可扩展:展望 SIP 未来
SIP 能够连接使用任何 IP 网络(有线 LAN 和 WAN、公共 Internet 骨干网、移动 2.5G、3G 和 Wi-Fi)和任何 IP 设备(电话、PC、PDA、移动手持设备)的用户,从而出现了众多利润丰厚的新商机,改进了企业和用户的通信方式。基于 SIP 的应用(如 VOIP、多媒体会议、push-to-talk(按键通话)、定位服务、在线信息和 IM)即使单独使用,也会为服务提供商、ISV、网络设备供应商和开发商提供许多新的商机。不过,SIP 的根本价值在于它能够将这些功能组合起来,形成各种更大规模的无缝通信服务。
使用 SIP,服务提供商及其合作伙伴可以定制和提供基于 SIP 的组合服务,使用户可以在单个通信会话中使用会议、Web 控制、在线信息、IM 等服务。实际上,服务提供商可以创建一个满足多个最终用户需求的灵活应用程序组合,而不是安装和支持依赖于终端设备有限特定功能或类型的单一分散的应用程序。
通过在单一、开放的标准 SIP 应用架构下合并基于 IP 的通信服务,服务提供商可以大大降低为用户设计和部署基于 IP 的新的创新性托管服务的成本。它是 SIP 可扩展性促进本行业和市场发展的强大动力,是我们所有人的希望所在。
③ IP数据广播指的是采用( )协议,基于DVB标准来传送数据流
IP数据广播指的是采用IP协议,基于DVB标准来传送数据流。
常见的IP地址分为IPv4与IPv6两大类,但是也有其他不常用的小分类。
IP地址,IP协议提供的一种统一的地址格式,它为互联网上的每一个网络和每一台主机分配一个逻辑地址,以此来屏蔽物理地址的差异。
一个TCP/IP互联网提供了三组服务。最底层提供无连接的传送服务为其他层的服务提供了基础。第二层一个可靠的传送服务为应用层提供了一个高层平台。最高层是应用层服务。
(3)网络音频信号传输协议扩展阅读
数字IP网络广播系统的优势:
1、更强的功能
纯数字广播系统,涵盖了传统广播系统的所有功能。并充分利用了广域网资源,可随时随地获取网络上的音频资源。由于每个终端有独立的IP地址,因而可以控制任意一个终端播放不同的节目
2、更好的音质
由于采用了网络传输技术,使音频信号无传输干扰及失真。
3、更简单的安装
安装简单。只要各厂房具备以下2个条件:
1)有ADSL拨号上网;
2)有交流220V插座和标准以太网络接入RJ45插座。
④ 网络中音频信号是如何传输的(以哪种形式)
不是信号,数字形式的文件
网络中传输的音乐文件,都是以数字形式保存的文件。
网络传输中不会有什么音频信号\视频信号,所有上网传输的文件都使用数字传输数据的。
网络上传过来的”声音“都是通过电脑数字处理过后放出来的。呵呵
⑤ IP网络广播
世邦数字IP网络公共广播与传统的广播系统区别?:
高音质:全程数字化提供高保真音质,采用类CD质量的数据文件格式,与电脑输出完全一致。
个性化:基于IP数据网络,每个语音终端可以自由选择任一路节目来播放且播放进程可调,完全实现点对点的个性化节目。
网络化:教师课件制作与编排、领导讲话、节目定时播放都可以通过网络远程操作。
远程化:可以真正实现远程广播,不同城市,不同国家,只要通过网络,就可以进行广播。
数字IP网络公共广播可以运用在那些工程项目?:学校(特别是有校园网络的学校),高速公路收费站,连锁超市,大型企业,楼宇大厦,交通路口(平安城市项目),村村通等一切有网络连通的地方。
数字IP网络广播系统运用在高速公路的实用化特点?:背景音乐:音乐播放,政策学习,领导讲话等情况通报:日常活动安排,重大活动注意事项,有重要车队通过等紧急插话:紧急拦截违章车辆,放行特种车辆,指挥现场秩序紧急寻呼:收费岗亭遇突发状况,可向控制中心或临近收费站进行一键式紧急呼叫,以获得帮助
数字IP网络广播支持的音频格式有哪些?占用带宽有多少?:
数字IP网络广播可支持的音频格式有:MP2、MP3、AAC等,其中MP2和AAC为中国国家数字广播(DAB)标准指定的音频格式。占用带宽比较:MP2:256K—512KMP3:64K—128K
数字IP网络广播系统采用“双主控系统”的好处有哪些?:优势1:可连续365天×24小时运行,稳定可靠。
优势2:采用嵌入式LINUX系统平台,启动速度快,工作效率高,是专门为网络广播量身订做的主机。
优势3:独立于采用WINDOWS平台的PC主控制机,实现对系统的广播控制。即使电脑出现故障,也不影响广播正常播放,双系统=双保险
优势4:可屏蔽目前已知的所有电脑病毒的入侵,传送数据不受网络上病毒的影响。
优势5:提供多个编码通道,方便在主控制室接入多个模拟节目源。
怎样快速区别数字IP网络广播和准数字网络广播产品?:数字IP网络广播采用共网传输方式,即可以和其他类型的计算机网络兼容共用一个传输通道,不需要改造已有的网络设备,也不用布设专门的广播网线。准数字网络广播需用专门的广播线路,甚至是专用的广播交换机,无法和已有的计算机网络兼容。
怎样看待“网络不稳定”现象,以及“网络不稳定”对网络广播可能造成的影响?:
网络由网络设备和联网的计算机构成,人们一般将网络设备的不稳定和联网的计算机不稳定统一称做网络不稳定,事实上,在实际运用中,由网络设备故障引起的网络问题发生的可能性很低,因为现在市场上的主流网络设备均为世界级的名厂设计生产,已广泛的应用于电信、军事、电力等高标准要求的行业,不论是设计思想还是加工技术决非一般的国内广播生产商可以比拟的。可以说,目前绝大部分的网络不稳定现象均是由联网的计算机引发的,如计算机病毒、黑客、软件故障、电脑的硬件故障等,因此,排开计算机因素的影响,网络其实是相当稳定!找到网络不稳定的本质,我们再来评估“网络不稳定”对网络广播可能造成的影响:由于网络广播终端均为嵌入式产品,所以不受网络病毒、黑客的影响。系统唯一的薄弱点就是——主控制计算机(当然主控制计算机的稳定性问题并非数字IP网络广播才有),这个可以通过加强管理来部分解决,如:严禁一机多用,加装防火墙等,但还是不能根本解决问题,最彻底的方式就是采用非PC架构的嵌入式专用数字广播主机,这样整套数字IP网络广播系统就完全避开了电脑病毒、黑客的影响,稳定性得到了空前的保证!所以“网络不稳定”对采用嵌入式专用广播主机的数字IP网络广播系统可能造成的影响微乎其微!
⑥ 实现流媒体传输的主要协议有哪些各自的功能和任务是什么
基于Windows Media技术的流媒体系统的设计与实现
摘要:本文在简介流媒体技术及其中的Windows Media技术的基础上,结合实际简述了Windows Media服务器的安装、ASF文件的制作以及“点播单播发布点”、“广播单播发布点”、“多播广播站”的创建方法,从实践角度阐述了在网络中实现流媒体服务的技术和方法。
关键词:Windows Media 流媒体 网络视频
Windows Media-based streaming media technology, Design and Implementation
Abstract: This article profiles in streaming media technology in its Windows Media technology on the basis of the actual combined on a Windows Media server installation, ASF, as well as the proction of documents "on-demand unicast release point," "Broadcast Unicast release point," "Multicast broadcast stations," the creation of methods, and through links to web pages, etc. They may be related to the test, from the perspective of the practice described in the network to achieve streaming media services technologies and methods.
Key words: Windows Media streaming video network
1. 流媒体技术概述
流媒体简单地说就是应用流式传输技术在Internet/Intranet上传输的连续时基媒体,如:音频、视频或多媒体文件。流式媒体在播放前并不下载整个文件,只将开始部分内容存入内存,流式媒体的数据流随时传送随时播放,只是在开始时有一些延迟。流媒体实现的关键技术就是流式传输。流式传输主要指通过网络传送媒体(如视频、音频)的技术总称。其特定含义为通过Internet将影视节目传送到PC机。流媒体技术是包含了采集、编码、传输、储存、解码等多项技术的综合技术。
2. Windows Media技术简介
2.1 特点
Microsoft公司推出的Windows Media技术具有方便性、先进性、集成性、低费用等特点,而且其制作、发布和播放软件与Windows NT/2000/9x集成在一起,不需要额外购买。Microsoft的流视频解决方案在Microsoft视窗平台上是免费的,制作端与播放器的视音频质量都上佳,而且易于使用。
2.2 Windows Media播放方式
Windows Media播放方式包括单播、多播、点播与广播。它们的含义如下表所示:
单播:是客户端与服务器之间的点到点连接。在客户端媒体服务器之间建立一个单独的数据通道,1台服务器送出的每个数据包只能传送给1个客户机。
多播:是通过启用多播的网络传递内容流,网络中的所有客户端共享同一流。由多播技术构建的网络,允许路由器一次将数据包复制到多个通道上。采用多播方式,媒体服务器只需要发送一个信息包,所有发出请求的客户端即可同时收到连续的数据流而无延时。多播不会复制数据包的多个拷贝传输到网络上,也不会将数据包发送给不需要它的那些客户,保证了网络上多媒体应用占用网络的最小带宽,是理想的播放方式。
点播:是客户端与服务器之间的主动的连接。用户通过选择内容项目来初始化客户端连接。用户可以开始、停止、后退、快进或暂停流。点播连接提供了对流的最大控制,但这种方式由于每个客户端各自连接服务器,却会迅速用完网络带宽。
广播:指的是用户被动接收流。在广播过程中,客户端接收流,但不能控制流。例如,用户不能暂停、快进或后退该流。广播方式中数据包的单独一个拷贝将发送给网络上的所有用户,而不管用户是否需要。此种传输方式会非常浪费网络带宽。
2.3 Windows Media视频技术组成
Windows Media视频服务器系统包括以下几个部分:Windows Media服务器组件、Windows Media工具、Windows Media Player。
2.4 Windows Media编码器
Windows Media编码器用于转换实时和存储的视频和音频内容为ASF流,然后通过Windows Media服务器在网络中传送。
2.5 Windows Media Player
Windows Media客户端软件称为Windows Media Player,由Windows Media服务器接收并播放流内容。Windows Media服务使用Windows Media Player以播放包含视频、音频、图像、URL和脚本内容的ASF流。Windows Media Player 9系列是最新版本。
2.6 Microsoft高级流格式ASF简介
Microsoft公司的Windows Media的核心是ASF(Advanced Stream Format)。 Microsoft将ASF定义为“同步媒体的统一容器文件格式”。ASF是一种数据格式,音频、视频、图像以及控制命令脚本等多媒体信息通过这种格式,以网络数据包的形式传输,实现流式多媒体内容发布。
3. Windows Media校园流媒体系统的设计
3.1 网络结构设计
Windows Media流媒体系统包括服务器端和用户端两部分。服务器端包括Windows Media服务器、制作计算机。Windows Media服务器用于存储和发布流媒体信息。制作计算机安装视频采集卡、声卡及摄像机,用于制作流媒体文件。用户端安装Windows Media Player软件。数据传输依托校园网。
3.2 软硬件要求
3.2.1服务器
服务器硬件配置一般是PIII400以上CPU,内存在128~512M左右。操作系统Windows 2000 Server及Windows Media服务组件。
3.2.2制作计算机
制作计算机硬件配置一般是PIII400以上CPU,内存在128~512M,需要声卡、视频采集卡以及VCD或录像机。软件为Windows 98或Windows 2000 Professional,安装Windows Media编辑工具。
4. Windows Media校园流媒体系统的实现
4.1 ASF文件的制作
笔者在微机上安装了Broadway视频采集卡,并通过录像机采集了两段AVI格式的录像,分别命名为LX1.AVI和LX2.AVI。通过Windows 2000 Server自带的编码器Windows Media Encoder可以很容易地将两个AVI文件转换为ASF文件:LX1. ASF、 LX2. ASF。在F盘上建立文件夹ASF,将两个ASF文件存入(为表述方便,文中所用文件名、路径、计算机名称、IP等,皆为笔者实际实验过程所用,读者可根据自己实际环境确定这些内容)。也可用Windows Media编码器9系列存为WMV格式文件,但要求客户端播放器必须为7.0以上版本
4.2 使用“快速启动向导”创建“点播单播发布点”
在F盘上建立文件夹“asx”并设为共享,以便在后续操作中放置“.asx”通知文件。
在 Windows Media 管理器菜单框中单击“单播发布点”,出现“单播发布点”页。确保选择了“使用向导创建新的点播单播发布点”复选框,单击“点播”,然后单击“新建”, 出现“配置和发布单播点播流快速启动向导”。
在“选择一个发布点”屏幕中,选择“创建一个发布点”。在“创建一个新的发布点”屏幕中,在“别名”框中键入别名为“asf”。在“路径”框中,键入“F:\asf\”。在"查找目标 .asf 文件"屏幕,输入“F:\asf\lx1.asf”。在“选择发布方法”屏,选择“MMS协议”和“创建一个.asx文件”,然后选择 “下一步”。在“准备发布”屏幕中,选择 “完成”。
将“lx1.asx”通知文件保存到“F:\asx\”里面。在“发布完成”屏幕中,单击“测试 URL”、“测试 .asx”可以在 Windows Media Player 中传递点播单播发布点的流式化内容“lx1.asf”。
⑦ 蓝牙音频传输协议那么多。。谁能帮忙整理一下音质和延时的排序
蓝牙耳机的音频解码主要分为sbc,aac,aptx,ldac,Ihac等几种。下面是简单的介绍。
1、sbc是通用的最基本的解码方式,蓝牙耳机都支持,支持44khz/16bit的音频,最高码率是328kbps,延时大约220ms,所以音质一般。
2、aac是苹果产品通用的解码方式,跟sbc差不多,支持44khz/16bit的音频,最高码率512kbps,延时大约100ms,音质略好于sbc。
3、aptx是高通的专利,支持48khz/16bit的音频,最高码率352kbps,延时约40ms,音质好于sbc,但相比sbc提升并不大。
4、ldac是真正的高音质解码,索尼出品,支持96khz/24bit的音频,最高码率达990kbps,接近无损解码。
7、lhac(hwa)也是接近无损解码,华为主推,支持96khz/24bit的音频,最高码率900kbps,可以媲美ldac
以flac格式的无损音乐为例,FLAC 24bit/96kHz典型压缩编码码率在2350kbps左右,我们网上下载的flac无损音质一般是44khz/16bit的,码率大约990kbps,网上下载的wav无损音乐一般也是44khz/16bit的,码率大约1400kbps。所以高品质的无损音乐体积是比较大的。
无论是aac还是aptx,aptx hd都不能做到无损解码,我们在选购蓝牙耳机时,一般音乐爱好者对音质没有过多要求的选择普通的支持sbc解码的耳机就够了。对音质有一定要求的可以选择支持aptx的蓝牙耳机,音质接近cd。对音质要求比较高的,可以选择支持aptx hd的蓝牙耳机。音乐发烧友可以选择支持ldac的蓝牙耳机,品质好的价格一般在2000元以上,几百的也有。
望采纳谢谢
⑧ 请问什么是SIP协议
SIP(Session Initiation Protocol,会话初始协议)是由IETF(Internet Engineering Task Force,因特网工程任务组)制定的多媒体通信协议。它是一个基于文本的应用层控制协议,用于创建、修改和释放一个或多个参与者的会话。广泛应用于CS(Circuit Switched,电路交换)、NGN(Next Generation Network,下一代网络)以及IMS(IP Multimedia Subsystem,IP多媒体子系统)的网络中,可以支持并应用于语音、视频、数据等多媒体业务,同时也可以应用于Presence(呈现)、Instant Message(即时消息)等特色业务。可以说,有IP网络的地方就有SIP协议的存在。[1-2] SIP是类似于HTTP。SIP可以减少应用特别是高级应用的开发时间。由于基于IP协议的SIP利用了IP网络,固定网运营商也会逐渐认识到SIP技术对于他们的远意义。中文名会话初始化协议外文名Session Initiation Protocol出现时间二十世纪九十年代中期发布机构IETF发布时间1999年目录1会话协议
▪ 压缩机制▪ 应用
2发展历程
3通信要求
4会话构成
▪ 用户代理▪ 注册服务器▪ 代理服务器▪ 重定向服务器
5常用消息
6协议比较
▪ 标准应用目标▪ 标准体系结构▪ 系统组成结构▪ 实现难易性▪ 总 结
7相关技术▪ 开源项目▪ 5Java1会话协议SIPSIP(Session Initiation Protocol)是一个应用层的信令控制协议。用于创建、修改和释放一个或多个参与者的会话。这些会话可以是Internet多媒体会议[3] 、IP电话或多媒体分发。会话的参与者可以通过组播(multicast)、网状单播(unicast)或两者的混合体进行通信。SIP与负责语音质量的资源预留协议(RSVP) 互操作。它还与若干个其他协议进行协作,包括负责定位的轻型目录访问协议(LDAP)、负责身份验证的远程身份验证拨入用户服务 (RADIUS) 以及负责实时传输的 RTP 等多个协议。SIP 的一个重要特点是它不定义要建立的会话的类型,而只定义应该如何管理会话。有了这种灵活性,也就意味着SIP可以用于众多应用和服务中,包括交互式游戏、音乐和视频点播以及语音、视频和 Web 会议。SIP消息是基于文本的,因而易于读取和调试。新服务的编程更加简单,对于设计人员而言更加直观。SIP如同电子邮件客户机一样重用 MIME 类型描述,因此与会话相关的应用程序可以自动启动。SIP 重用几个现有的比较成熟的 Internet 服务和协议,如 DNS、RTP、RSVP 等。不必再引入新服务对 SIP 基础设施提供支持,因为该基础设施很多部分已经到位或现成可用。对 SIP 的扩充易于定义,可由服务提供商在新的应用中添加,不会损坏网络。网络中基于 SIP 的旧设备不会妨碍基于 SIP 的新服务。例如,如果旧 SIP 实施不支持新的 SIP 应用所用的方法/标头,则会将其忽略。SIP 独立于传输层。因此,底层传输可以是采用 ATM 的 IP。SIP 使用用户数据报协议(UDP) 以及传输控制协议(TCP),将独立于底层基础设施的用户灵活地连接起来。SIP 支持多设备功能调整和协商。如果服务或会话启动了视频和语音,则仍然可以将语音传输到不支持视频的设备,也可以使用其他设备功能,如单向视频流传输功能。通信提供商及其合作伙伴和用户越来越渴求新一代基于 IP 的服务。如今有了 SIP(The Session Initiation Protocol 会话启动协议),一解燃眉之急。SIP 是不到十年前在计算机科学实验室诞生的一个想法。它是第一个适合各种媒体内容而实现多用户会话的协议,如今已成了 Internet 工程任务组 (IETF) 的规范。今天,越来越多的运营商、CLEC(竞争本地运营商)和 ITSP(IP 电话服务商)都在提供基于 SIP 的服务,如市话和长途电话技术、在线信息和即时消息、IP Centrex/Hosted PBX、语音短信、push-to-talk(按键通话)、多媒体会议等等。独立软件供应商 (ISV) 正在开发新的开发工具,用来为运营商网络构建基于 SIP 的应用程序以及 SIP 软件。网络设备供应商 (NEV) 正在开发支持 SIP 信令和服务的硬件。如今,有众多 IP 电话、用户代理、网络代理服务器、VOIP网关、媒体服务器和应用服务器都在使用 SIP。SIP 从类似的权威协议--如 Web超文本传输协议(HTTP) 格式化协议以及简单邮件传输协议(SMTP) 电子邮件协议--演变而来并且发展成为一个功能强大的新标准。但是,尽管 SIP 使用自己独特的用户代理和服务器,它并非自成一体地封闭工作。SIP 支持提供融合的多媒体服务,与众多负责身份验证、位置信息、语音质量等的现有协议协同工作。SIP 较为灵活,可扩展,而且是开放的。它激发了 Internet 以及固定和移动 IP 网络推出新一代服务的威力。SIP 能够在多台 PC 和电话上完成网络消息,模拟 Internet 建立会话。与存在已久的国际电信联盟(ITU) SS7 标准(用于呼叫建立)和 ITU H.323 视频协议组合标准不同,SIP 独立工作于底层网络传输协议和媒体。它规定一个或多个参与方的终端设备如何能够建立、修改和中断连接,而不论是语音、视频、数据或基于 Web 的内容。SIP 大大优于现有的一些协议,如将 PSTN 音频信号转换为 IP 数据包的媒体网关控制协议(MGCP)。因为 MGCP 是封闭的纯语音标准,所以通过信令功能对其进行增强比较复杂,有时会导致消息被破坏或丢弃,从而妨碍提供商增加新的服务。而使用 SIP,编程人员可以在不影响连接的情况下在消息中增加少量新信息。例如,SIP 服务提供商可以建立包含语音、视频和聊天内容的全新媒体。如果使用 MGCP、H.323 或 SS7 标准,则提供商必须等待可以支持这种新媒体的协议新版本。而如果使用 SIP,尽管网关和设备可能无法识别该媒体,但在两个大陆上设有分支机构的公司可以实现媒体传输。而且,因为 SIP 的消息构建方式类似于 HTTP,开发人员能够更加方便便捷地使用通用的编程语言(如 Java)来创建应用程序。对于等待了数年希望使用 SS7 和高级智能网络(AIN) 部署呼叫等待、主叫号码识别以及其他服务的运营商,现在如果使用 SIP[4] ,只需数月时间即可实现高级通信服务的部署。这种可扩展性已经在越来越多基于 SIP 的服务中取得重大成功。Vonage 是针对用户和小企业用户的服务提供商。它使用 SIP 向用户提供 20,000 多条数字市话、长话及语音邮件线路。Deltathree 为服务提供商提供 Internet 电话技术产品、服务和基础设施。它提供了基于 SIP 的 PC 至电话解决方案,使 PC 用户能够呼叫全球任何一部电话。Denwa Communications 在全球范围内批发语音服务。它使用 SIP 提供 PC 至 PC 及电话至 PC 的主叫号码识别、语音邮件,以及电话会议、统一通信、客户管理、自配置和基于 Web 的个性化服务。某些权威人士预计,SIP 与 IP 的关系将发展成为类似 SMTP 和 HTTP 与 Internet 的关系,但也有人说它可能标志着 AIN 的终结。迄今为止,3G 界已经选择 SIP 作为下一代移动网络的会话控制机制。Microsoft 已经选择 SIP 作为其实时通信策略并在 Microsoft XP、Pocket PC 和 MSN Messenger 中进行了部署。Microsoft 同时宣布 CE dot net 的下一个版本将使用基于 SIP 的 VoIP 应用接口层,并承诺向用户 PC 提供基于 SIP 的语音和视频呼叫。另外,MCI 正在使用 SIP 向 IP 通信用户部署高级电话技术服务。用户将能够通知主叫方自己是否有空以及首选的通信方式,如电子邮件、电话或即时消息。利用在线信息,用户还能够即时建立聊天会话和召开音频会议。使用 SIP 将不断地实现各种功能。压缩机制SIP 压缩机制主要是通过改变 SIP 消息的长度来降低时延。典型的 SIP 消息的大小由几百到几千字节,为了适合在窄带无线信道上传输,IMS对SIP进行了扩展,支持SIP消息的压缩。当无线信道一定时, 一条SIP消息所含帧数 k仅取决于消息大小。从时延模型可以看出,不仅影响 SIP 消息传输时延, 还影响SIP重传的概率, 对自适应的定时器来说,k还成了影响定时器初值的关键因素。[5] 应用google 发布世界上首个开源的Html5 sip 客户端HTML5 SIP客户端是一款开源的,完全利用JavaScript编写的集社交(FaceBook,Twitter,Google+),在线游戏,电子商务等应用于一体。无扩展,无插件或是必备的网关,视频堆栈技术依赖于WebRTC。如同主页
目前,SIP是类似于HTTP的基于文本的协议。SIP可以减少应用特别是高级应用的开发时间。由于基于IP协议的SIP利用了IP网络,固定网运营商也会逐渐认识到SIP技术对于他们的深远意义。
市场上几乎所有的IP语音相关产品都遵循了ITU-T组织所公布的H.323协议。虽然这些产品的开发和制作都将H.323标准作为了实际的制作标准,但是由于H.323主要是是对局域网中的数据传输进行了描述,但是其中很少有设计IP电话方面的描述,并且各个厂商在实际的开发与实现过程中,所选取的H.323协议中的内容也并不相同,也就是说虽然各大厂商都遵循H.323协议,但是所遵循的协议并不相同。因此,也导致了各大厂商之间的IP电话并不能够进行相互之间的通话。导致了企业内部IP语音通信系统在进行设计时就必须选取同一个厂商生产的网关等设备。这对IP语音通信系统的发展产生了很大的制约。目前,大家都己经认识到了这个问题,并且都纷纷要求能够有一个真正统一的一个标准,并且,各大厂商都进行了一定程度的联盟,来研究IP语音通信系统真正标准的制定。
⑨ internet上传输信息至少遵循三个协议分别是什么
网际协议、传输协议和应用程序协议。
网际协议(Internet Protocol,缩写:IP),或互联网协议,是用于报文交换网络的一种面向数据的协议。
传输协议中各层都为上一层提供业务功能。为了提供这种业务功能,下一层将上一层中的数据并入到本层的数据域中,然后通过加入报头或报尾来实现该层业务功能,该过程叫做数据封装。用户的数据要经过一次次包装,最后转化成可以在网络上传输的信号,发送到网络上。
应用协议(application protocol),全称“无线应用协议(WAP)”是指实现网络应用的协议。其内容包括定义消息的内容、消息类型的语法结构、域所包含的信息的含义,确定通信程序何时发送消息和接收消息的规则。
⑩ 视频会议中常用的视、音频编、解码协议名称有哪些
MPEG-4、H.263、H.264等等
还好 刚部署了视高视频会议系统 他们的介绍上都有 非常详细
他们系统支持这些主流的音视频编解码协议 系统确实非常稳定、好用的