❶ 我想问一下什么是神经网络
神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。
❷ 人工神经网络有哪些类型
人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:
(1)前向网络 网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。
(2)反馈网络 网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。
学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。
研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。
❸ 卷积神经网络和深度神经网络的区别是什么
作者:杨延生
链接:
来源:知乎
着作权归作者所有,转载请联系作者获得授权。
"深度学习"是为了让层数较多的多层神经网络可以训练,能够work而演化出来的一系列的 新的结构和新的方法。
新的网络结构中最着名的就是CNN,它解决了传统较深的网络参数太多,很难训练的问题,使用了逗局部感受野地和逗权植共享地的概念,大大减少了网络参数的数量。关键是这种结构确实很符合视觉类任务在人脑上的工作原理。
新的结构还包括了:LSTM,ResNet等。
新的方法就多了:新的激活函数:ReLU,新的权重初始化方法(逐层初始化,XAVIER等),新的损失函数,新的防止过拟合方法(Dropout, BN等)。这些方面主要都是为了解决传统的多层神经网络的一些不足:梯度消失,过拟合等。
---------------------- 下面是原答案 ------------------------
从广义上说深度学习的网络结构也是多层神经网络的一种。
传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。
而深度学习中最着名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。
输入层 - 卷积层 -降维层 -卷积层 - 降维层 -- .... -- 隐藏层 -输出层
简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。
深度学习做的步骤是 信号->特征->值。 特征是由网络自己选择。
❹ 人工神经网络概念梳理与实例演示
人工神经网络概念梳理与实例演示
神经网络是一种模仿生物神经元的机器学习模型,数据从输入层进入并流经激活阈值的多个节点。
递归性神经网络一种能够对之前输入数据进行内部存储记忆的神经网络,所以他们能够学习到数据流中的时间依赖结构。
如今机器学习已经被应用到很多的产品中去了,例如,siri、Google Now等智能助手,推荐引擎——亚马逊网站用于推荐商品的推荐引擎,Google和Facebook使用的广告排名系统。最近,深度学习的一些进步将机器学习带入公众视野:AlphaGo 打败围棋大师李世石事件以及一些图片识别和机器翻译等新产品的出现。
在这部分中,我们将介绍一些强大并被普遍使用的机器学习技术。这当然包括一些深度学习以及一些满足现代业务需求传统方法。读完这一系列的文章之后,你就掌握了必要的知识,便可以将具体的机器学习实验应用到你所在的领域当中。
随着深层神经网络的精度的提高,语音和图像识别技术的应用吸引了大众的注意力,关于AI和深度学习的研究也变得更加普遍了。但是怎么能够让它进一步扩大影响力,更受欢迎仍然是一个问题。这篇文章的主要内容是:简述前馈神经网络和递归神经网络、怎样搭建一个递归神经网络对时间系列数据进行异常检测。为了让我们的讨论更加具体化,我们将演示一下怎么用Deeplearning4j搭建神经网络。
一、什么是神经网络?
人工神经网络算法的最初构思是模仿生物神经元。但是这个类比很不可靠。人工神经网络的每一个特征都是对生物神经元的一种折射:每一个节点与激活阈值、触发的连接。
连接人工神经元系统建立起来之后,我们就能够对这些系统进行训练,从而让他们学习到数据中的一些模式,学到之后就能执行回归、分类、聚类、预测等功能。
人工神经网络可以看作是计算节点的集合。数据通过这些节点进入神经网络的输入层,再通过神经网络的隐藏层直到关于数据的一个结论或者结果出现,这个过程才会停止。神经网络产出的结果会跟预期的结果进行比较,神经网络得出的结果与正确结果的不同点会被用来更正神经网络节点的激活阈值。随着这个过程的不断重复,神经网络的输出结果就会无限靠近预期结果。
二、训练过程
在搭建一个神经网络系统之前,你必须先了解训练的过程以及网络输出结果是怎么产生的。然而我们并不想过度深入的了解这些方程式,下面是一个简短的介绍。
网络的输入节点收到一个数值数组(或许是叫做张量多维度数组)就代表输入数据。例如, 图像中的每个像素可以表示为一个标量,然后将像素传递给一个节点。输入数据将会与神经网络的参数相乘,这个输入数据被扩大还是减小取决于它的重要性,换句话说,取决于这个像素就不会影响神经网络关于整个输入数据的结论。
起初这些参数都是随机的,也就是说神经网络在建立初期根本就不了解数据的结构。每个节点的激活函数决定了每个输入节点的输出结果。所以每个节点是否能够被激活取决于它是否接受到足够的刺激强度,即是否输入数据和参数的结果超出了激活阈值的界限。
在所谓的密集或完全连接层中,每个节点的输出值都会传递给后续层的节点,在通过所有隐藏层后最终到达输出层,也就是产生输入结果的地方。在输出层, 神经网络得到的最终结论将会跟预期结论进行比较(例如,图片中的这些像素代表一只猫还是狗?)。神经网络猜测的结果与正确结果的计算误差都会被纳入到一个测试集中,神经网络又会利用这些计算误差来不断更新参数,以此来改变图片中不同像素的重要程度。整个过程的目的就是降低输出结果与预期结果的误差,正确地标注出这个图像到底是不是一条狗。
深度学习是一个复杂的过程,由于大量的矩阵系数需要被修改所以它就涉及到矩阵代数、衍生品、概率和密集的硬件使用问题,但是用户不需要全部了解这些复杂性。
但是,你也应该知道一些基本参数,这将帮助你理解神经网络函数。这其中包括激活函数、优化算法和目标函数(也称为损失、成本或误差函数)。
激活函数决定了信号是否以及在多大程度上应该被发送到连接节点。阶梯函数是最常用的激活函数, 如果其输入小于某个阈值就是0,如果其输入大于阈值就是1。节点都会通过阶梯激活函数向连接节点发送一个0或1。优化算法决定了神经网络怎么样学习,以及测试完误差后,权重怎么样被更准确地调整。最常见的优化算法是随机梯度下降法。最后, 成本函数常用来衡量误差,通过对比一个给定训练样本中得出的结果与预期结果的不同来评定神经网络的执行效果。
Keras、Deeplearning4j 等开源框架让创建神经网络变得简单。创建神经网络结构时,需要考虑的是怎样将你的数据类型匹配到一个已知的被解决的问题,并且根据你的实际需求来修改现有结构。
三、神经网络的类型以及应用
神经网络已经被了解和应用了数十年了,但是最近的一些技术趋势才使得深度神经网络变得更加高效。
GPUs使得矩阵操作速度更快;分布式计算结构让计算能力大大增强;多个超参数的组合也让迭代的速度提升。所有这些都让训练的速度大大加快,迅速找到适合的结构。
随着更大数据集的产生,类似于ImageNet 的大型高质量的标签数据集应运而生。机器学习算法训练的数据越大,那么它的准确性就会越高。
最后,随着我们理解能力以及神经网络算法的不断提升,神经网络的准确性在语音识别、机器翻译以及一些机器感知和面向目标的一些任务等方面不断刷新记录。
尽管神经网络架构非常的大,但是主要用到的神经网络种类也就是下面的几种。
3.1前馈神经网络
前馈神经网络包括一个输入层、一个输出层以及一个或多个的隐藏层。前馈神经网络可以做出很好的通用逼近器,并且能够被用来创建通用模型。
这种类型的神经网络可用于分类和回归。例如,当使用前馈网络进行分类时,输出层神经元的个数等于类的数量。从概念上讲, 激活了的输出神经元决定了神经网络所预测的类。更准确地说, 每个输出神经元返回一个记录与分类相匹配的概率数,其中概率最高的分类将被选为模型的输出分类。
前馈神经网络的优势是简单易用,与其他类型的神经网络相比更简单,并且有一大堆的应用实例。
3.2卷积神经网络
卷积神经网络和前馈神经网络是非常相似的,至少是数据的传输方式类似。他们结构大致上是模仿了视觉皮层。卷积神经网络通过许多的过滤器。这些过滤器主要集中在一个图像子集、补丁、图块的特征识别上。每一个过滤器都在寻找不同模式的视觉数据,例如,有的可能是找水平线,有的是找对角线,有的是找垂直的。这些线条都被看作是特征,当过滤器经过图像时,他们就会构造出特征图谱来定位各类线是出现在图像的哪些地方。图像中的不同物体,像猫、747s、榨汁机等都会有不同的图像特征,这些图像特征就能使图像完成分类。卷积神经网络在图像识别和语音识别方面是非常的有效的。
卷积神经网络与前馈神经网络在图像识别方面的异同比较。虽然这两种网络类型都能够进行图像识别,但是方式却不同。卷积神经网络是通过识别图像的重叠部分,然后学习识别不同部分的特征进行训练;然而,前馈神经网络是在整张图片上进行训练。前馈神经网络总是在图片的某一特殊部分或者方向进行训练,所以当图片的特征出现在其他地方时就不会被识别到,然而卷积神经网络却能够很好的避免这一点。
卷积神经网络主要是用于图像、视频、语音、声音识别以及无人驾驶的任务。尽管这篇文章主要是讨论递归神经网络的,但是卷积神经网络在图像识别方面也是非常有效的,所以很有必要了解。
3.3递归神经网络
与前馈神经网络不同的是,递归神经网络的隐藏层的节点里有内部记忆存储功能,随着输入数据的改变而内部记忆内容不断被更新。递归神经网络的结论都是基于当前的输入和之前存储的数据而得出的。递归神经网络能够充分利用这种内部记忆存储状态处理任意序列的数据,例如时间序列。
递归神经网络经常用于手写识别、语音识别、日志分析、欺诈检测和网络安全。
递归神经网络是处理时间维度数据集的最好方法,它可以处理以下数据:网络日志和服务器活动、硬件或者是医疗设备的传感器数据、金融交易、电话记录。想要追踪数据在不同阶段的依赖和关联关系需要你了解当前和之前的一些数据状态。尽管我们通过前馈神经网络也可以获取事件,随着时间的推移移动到另外一个事件,这将使我们限制在对事件的依赖中,所以这种方式很不灵活。
追踪在时间维度上有长期依赖的数据的更好方法是用内存来储存重要事件,以使近期事件能够被理解和分类。递归神经网络最好的一点就是在它的隐藏层里面有“内存”可以学习到时间依赖特征的重要性。
接下来我们将讨论递归神经网络在字符生成器和网络异常检测中的应用。递归神经网络可以检测出不同时间段的依赖特征的能力使得它可以进行时间序列数据的异常检测。
递归神经网络的应用
网络上有很多使用RNNs生成文本的例子,递归神经网络经过语料库的训练之后,只要输入一个字符,就可以预测下一个字符。下面让我们通过一些实用例子发现更多RNNs的特征。
应用一、RNNs用于字符生成
递归神经网络经过训练之后可以把英文字符当做成一系列的时间依赖事件。经过训练后它会学习到一个字符经常跟着另外一个字符(“e”经常跟在“h”后面,像在“the、he、she”中)。由于它能预测下一个字符是什么,所以它能有效地减少文本的输入错误。
Java是个很有趣的例子,因为它的结构包括很多嵌套结构,有一个开的圆括号必然后面就会有一个闭的,花括号也是同理。他们之间的依赖关系并不会在位置上表现的很明显,因为多个事件之间的关系不是靠所在位置的距离确定的。但是就算是不明确告诉递归神经网络Java中各个事件的依赖关系,它也能自己学习了解到。
在异常检测当中,我们要求神经网络能够检测出数据中相似、隐藏的或许是并不明显的模式。就像是一个字符生成器在充分地了解数据的结构后就会生成一个数据的拟像,递归神经网络的异常检测就是在其充分了解数据结构后来判断输入的数据是不是正常。
字符生成的例子表明递归神经网络有在不同时间范围内学习到时间依赖关系的能力,它的这种能力还可以用来检测网络活动日志的异常。
异常检测能够使文本中的语法错误浮出水面,这是因为我们所写的东西是由语法结构所决定的。同理,网络行为也是有结构的,它也有一个能够被学习的可预测模式。经过在正常网络活动中训练的递归神经网络可以监测到入侵行为,因为这些入侵行为的出现就像是一个句子没有标点符号一样异常。
应用二、一个网络异常检测项目的示例
假设我们想要了解的网络异常检测就是能够得到硬件故障、应用程序失败、以及入侵的一些信息。
模型将会向我们展示什么呢?
随着大量的网络活动日志被输入到递归神经网络中去,神经网络就能学习到正常的网络活动应该是什么样子的。当这个被训练的网络被输入新的数据时,它就能偶判断出哪些是正常的活动,哪些是被期待的,哪些是异常的。
训练一个神经网络来识别预期行为是有好处的,因为异常数据不多,或者是不能够准确的将异常行为进行分类。我们在正常的数据里进行训练,它就能够在未来的某个时间点提醒我们非正常活动的出现。
说句题外话,训练的神经网络并不一定非得识别到特定事情发生的特定时间点(例如,它不知道那个特殊的日子就是周日),但是它一定会发现一些值得我们注意的一些更明显的时间模式和一些可能并不明显的事件之间的联系。
我们将概述一下怎么用 Deeplearning4j(一个在JVM上被广泛应用的深度学习开源数据库)来解决这个问题。Deeplearning4j在模型开发过程中提供了很多有用的工具:DataVec是一款为ETL(提取-转化-加载)任务准备模型训练数据的集成工具。正如Sqoop为Hadoop加载数据,DataVec将数据进行清洗、预处理、规范化与标准化之后将数据加载到神经网络。这跟Trifacta’s Wrangler也相似,只不过它更关注二进制数据。
开始阶段
第一阶段包括典型的大数据任务和ETL:我们需要收集、移动、储存、准备、规范化、矢量话日志。时间跨度的长短是必须被规定好的。数据的转化需要花费一些功夫,这是由于JSON日志、文本日志、还有一些非连续标注模式都必须被识别并且转化为数值数组。DataVec能够帮助进行转化和规范化数据。在开发机器学习训练模型时,数据需要分为训练集和测试集。
训练神经网络
神经网络的初始训练需要在训练数据集中进行。
在第一次训练的时候,你需要调整一些超参数以使模型能够实现在数据中学习。这个过程需要控制在合理的时间内。关于超参数我们将在之后进行讨论。在模型训练的过程中,你应该以降低错误为目标。
但是这可能会出现神经网络模型过度拟合的风险。有过度拟合现象出现的模型往往会在训练集中的很高的分数,但是在遇到新的数据时就会得出错误结论。用机器学习的语言来说就是它不够通用化。Deeplearning4J提供正则化的工具和“过早停止”来避免训练过程中的过度拟合。
神经网络的训练是最花费时间和耗费硬件的一步。在GPUs上训练能够有效的减少训练时间,尤其是做图像识别的时候。但是额外的硬件设施就带来多余的花销,所以你的深度学习的框架必须能够有效的利用硬件设施。Azure和亚马逊等云服务提供了基于GPU的实例,神经网络还可以在异构集群上进行训练。
创建模型
Deeplearning4J提供ModelSerializer来保存训练模型。训练模型可以被保存或者是在之后的训练中被使用或更新。
在执行异常检测的过程中,日志文件的格式需要与训练模型一致,基于神经网络的输出结果,你将会得到是否当前的活动符合正常网络行为预期的结论。
代码示例
递归神经网络的结构应该是这样子的:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder(
.seed(123)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.weightInit(WeightInit.XAVIER)
.updater(Updater.NESTEROVS).momentum(0.9)
.learningRate(0.005)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.(0.5)
.list()
.layer(0, new GravesLSTM.Builder().activation("tanh").nIn(1).nOut(10).build())
.layer(1, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation("softmax").nIn(10).nOut(numLabelClasses).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
下面解释一下几行重要的代码:
.seed(123)
随机设置一个种子值对神经网络的权值进行初始化,以此获得一个有复验性的结果。系数通常都是被随机的初始化的,以使我们在调整其他超参数时仍获得一致的结果。我们需要设定一个种子值,让我们在调整和测试的时候能够用这个随机的权值。
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
决定使用哪个最优算法(在这个例子中是随机梯度下降法)来调整权值以提高误差分数。你可能不需要对这个进行修改。
.learningRate(0.005)
当我们使用随机梯度下降法的时候,误差梯度就被计算出来了。在我们试图将误差值减到最小的过程中,权值也随之变化。SGD给我们一个让误差更小的方向,这个学习效率就决定了我们该在这个方向上迈多大的梯度。如果学习效率太高,你可能是超过了误差最小值;如果太低,你的训练可能将会永远进行。这是一个你需要调整的超参数。
❺ 神经网络,什么过拟合,什么是欠拟合
欠拟合是指模型不能在训练集上获得足够低的误差。而过拟合是指训练误差和测试误差之间的差距太大。
考虑过多,超出自变量的一般含义维度,过多考虑噪声,会造成过拟合。
可以认为预测准确率、召回率都比理论上最佳拟合函数低很多,则为欠拟合。
简介
人工神经网络按其模型结构大体可以分为前馈型网络(也称为多层感知机网络)和反馈型网络(也称为Hopfield网络)两大类,前者在数学上可以看作是一类大规模的非线性映射系统,后者则是一类大规模的非线性动力学系统。
按照学习方式,人工神经网络又可分为有监督学习、非监督和半监督学习三类;按工作方式则可分为确定性和随机性两类;按时间特性还可分为连续型或离散型两类,等等。
❻ 请问大神:函数拟合神经网络(fitnet)是BP神经网络吗在线等待中。
只能说BP神经网络具有拟合非线性函数的功能,属于一种函数拟合神经网络。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
❼ 通过哪些参数看神经网络拟合出来的函数效果神经网络拟合时如何确定隐藏的节点数
主要看均方误差和其百分比(准确率)。假如你拟合出来是ui,计算(yi-ui)^2的平均值,然后计算这个平均值与yi平均值的比(也就是均方误差百分比),当然用1减去这个百分比就是准确率了。一般也会画一幅图,把yi和ui分别用不同的颜色或者符号表示出来,直观对比。
拟合时的隐含层节点数目前没有一个通行的公式进行确定,只能凭借经验和试凑。一般情况下,问题的复杂程度(非线性程度和维度)越高,隐含层节点数越多。这里介绍一个小经验:先用不太大的节点数进行预测,如果增加节点数测试集准确率和训练集准确率都有所提升,则应该继续增加。如果增加节点数测试集准确率增加很不明显,而训练集准确率还是有所提升,则不应该继续增加,当前的就是很理想的,继续增加节点数只会起到反效果。
❽ 什么是BP神经网络
BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。
❾ 神经网络,什么过拟合,什么是欠拟合
欠拟合是指模型不能在训练集上获得足够低的误差。而过拟合是指训练误差和测试误差之间的差距太大。
通过调整模型的容量(capacity),我们可以控制模型是否偏向于过拟合或者欠拟合。通俗地,模型的容量是指其拟合各种函数的能力。容量低的模型可能很难拟合训练集。容量高的模型可能会过拟合,因为记住了不适用于测试集的训练集性质。
❿ 什么是神经网络
隐层节点数在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。 目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。在确定隐层节点数时必须满足下列条件:(1)隐层节点数必须小于N-1(其中N为训练样本数),否则,网络模型的系统误差与训练样本的特性无关而趋于零,即建立的网络模型没有泛化能力,也没有任何实用价值。同理可推得:输入层的节点数(变量数)必须小于N-1。(2) 训练样本数必须多于网络模型的连接权数,一般为2~10倍,否则,样本必须分成几部分并采用“轮流训练”的方法才可能得到可靠的神经网络模型。 总之,若隐层节点数太少,网络可能根本不能训练或网络性能很差;若隐层节点数太多,虽然可使网络的系统误差减小,但一方面使网络训练时间延长,另一方面,训练容易陷入局部极小点而得不到最优点,也是训练时出现“过拟合”的内在原因。因此,合理隐层节点数应在综合考虑网络结构复杂程度和误差大小的情况下用节点删除法和扩张法确定。