速率、帶寬、吞吐量、時延、時延帶寬積、往返時間rtt、利用率
計算機發送出的信號都是數字形式的。比特(bit)是計算機中的數據量的單位,也是資訊理論中使用的信息量單位。英文字bit來源binary
digit(一個二進制數字),因此一個比特就是二進制數字中的一個1或0。網路技術中的速率指的是鏈接在計算機網路上的主機在數字信道上傳送數據的速率,也稱為數據率(data
rate)或者比特率(bit
rate)。速率的單位是b/s(比特每秒)或者bit/s,也可以寫為bps,即bit
per
second。當數據率較高時,可以使用kb/s(k=10^3=千)、mb/s(m=10^6=兆)、gb/s(g=10^9=吉)或者tb/s(t=10^12=太)。現在一般常用更簡單並不是很嚴格的記法來描述網路的速率,如100m乙太網,而省略了b/s,意思為數據率為100mb/s的乙太網。這里的數據率通常指額定速率。
⑵ 計算機網路主要的性能指標有哪些
1、速率
2、帶寬
3、吞吐量
4、時延
5、時延帶寬積
6、往返時間RTT
7、利用率
⑶ 計算機網路的常用性能指標中,速率,帶寬和吞吐量 有何不同
1、速率是一個動態的指標,單位為mbps,實際速率受到具體網路應用和網路擁堵情況影響;
2、帶寬是指信道的理論最大數據傳輸速率,單位也為Mbps;
3、吞吐量是指在沒有幀丟失的情況下,設備能夠接受並轉發的最大數據速率。
⑷ 計算機網路的性能參數及指標主要有哪些
計算機網路的性能主要包括:
速率:b/s(bps)。如100M乙太網,實際是指100Mb/s。往往是指額定速率或標稱速率。
帶寬:數字信道所能傳送的最高速率。
吞吐量:單位時間內通過某個網路(或信道、介面)的數據量。其絕對上限值等於帶寬。
時延(delay或latency):數據(一個報文或分組,甚至比特)從網路(或鏈路)的一段傳送到另一端的時間。也稱延遲。
發送時延:主機或路由器發送數據幀所需的時間,也就是從發送數據幀的第一個比特算起,到該幀的最後一個比特發送完畢所需的時間。也成傳輸時延。
發送時延 = 數據幀長度(b) / 信道帶寬(b/s)
傳播時延:電磁波在信道中傳輸一定距離所需劃分的時間。
傳播時間 = 信道長度(m) / 傳輸速率(m/s)
處理時延:主機或路由器處理收到的分組所花費的時間。
排隊時延:分組在輸入隊列中等待處理的時間加上其在輸出隊列中等待轉發的時間。
總時延 = 發送時延 + 傳播時延 + 處理時延 + 排隊時延。對於高速網路鏈路,提高的是發送速率而不是傳播速率。
時延帶寬積:傳播時延 * 帶寬。表示鏈路的容量。
5.往返時間RTT:從發送方發送數據開始,到發送發收到接收方的確認為止,所花費的時間。 6.利用率:某信道有百分之幾是被利用的(有數據通過)。而信道或網路利用率過高會產生非常大的時延。 當前時延=空閑時時延/(1-利用率)
⑸ 計算機網路的非性能特徵是什麼
1、費用 2、質量 3、標准化 4、可靠性 5、可擴展性和可升級性 6、易於管理和維護
⑹ 計算機網路有哪些常用的性能指標
速率、帶寬、吞吐量、時延、時延帶寬積、往返時間RTT、利用率等。
計算機網路是指將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞的計算機系統。
關於計算機網路的最簡單定義是:一些相互連接的、以共享資源為目的的、自治的計算機的集合。若按此定義,則早期的面向終端的網路都不能算是計算機網路,而只能稱為聯機系統(因為那時的許多終端不能算是自治的計算機)。
但隨著硬體價格的下降,許多終端都具有一定的智能,因而「終端」和「自治的計算機」逐漸失去了嚴格的界限。若用微型計算機作為終端使用,按上述定義,則早期的那種面向終端的網路也可稱為計算機網路。
相關信息
數據通信是計算機網路的最主要的功能之一。數據通信是依照一定的通信協議,利用數據傳輸技術在兩個終端之間傳遞數據信息的一種通信方式和通信業務。它可實現計算機和計算機、計算機和終端以及終端與終端之間的數據信息傳遞。
是繼電報、電話業務之後的第三種最大的通信業務。數據通信中傳遞的信息均以二進制數據形式來表現,數據通信的另一個特點是總是與遠程信息處理相聯系,是包括科學計算、過程式控制制、信息檢索等內容的廣義的信息處理。
⑺ 計算機網路的主要性能指標有哪些
速率、帶寬、吞吐量、時延、時延帶寬積、往返時間RTT、利用率
⑻ 計算機網路的計算機網路的性能
計算機網路的性能一般是指它的幾個重要的性能指標。但除了這些重要的性能指標外,還有一些非性能特徵,它們對計算機網路的性能也有很大的影響。 性能指標從不同的方面來度量計算機網路的性能。
(1)速率
計算機發送出的信號都是數字形式的。比特是計算機中數據量的單位,也是資訊理論中使用的信息量的單位。英文字bit來源於binary digit,意思是一個「二進制數字」,因此一個比特就是二進制數字中的一個1或0。網路技術中的速率指的是連接在計算機網路上的主機在數字信道上傳送數據的速率,它也稱為數據率(data rate)或比特率(bit rate)。速率是計算機網路中最重要的一個性能指標。速率的單位是bit/s(比特每秒)(即bit per second)。現在人們常用更簡單的並且是很不嚴格的記法來描述網路的速率,如100M乙太網,它省略了單位中的bit/s,意思是速率為100Mbit/s的乙太網。
(2)帶寬
「帶寬」有以下兩種不同的意義。
① 帶寬本來是指某個信號具有的頻帶寬度。信號的帶寬是指該信號所包含的各種不同頻率成分所佔據的頻率范圍。例如,在傳統的通信線路上傳送的電話信號的標准帶寬是3.1kHz(從300Hz到3.4kHz,即話音的主要成分的頻率范圍)。這種意義的帶寬的單位是赫(或千赫,兆赫,吉赫等)。
② 在計算機網路中,帶寬用來表示網路的通信線路所能傳送數據的能力,因此網路帶寬表示在單位時間內從網路中的某一點到另一點所能通過的「最高數據率」。這里一般說到的「帶寬」就是指這個意思。這種意義的帶寬的單位是「比特每秒」,記為bit/s。
(3)吞吐量
吞吐量表示在單位時間內通過某個網路(或信道、介面)的數據量。吞吐量更經常地用於對現實世界中的網路的一種測量,以便知道實際上到底有多少數據量能夠通過網路。顯然,吞吐量受網路的帶寬或網路的額定速率的限制。例如,對於一個100Mbit/s的乙太網,其額定速率是100Mbit/s,那麼這個數值也是該乙太網的吞吐量的絕對上限值。因此,對100Mbit/s的乙太網,其典型的吞吐量可能也只有70Mbit/s。有時吞吐量還可用每秒傳送的位元組數或幀數來表示。
(4)時延
時延是指數據(一個報文或分組,甚至比特)從網路(或鏈路)的一端傳送到另一端所需的時間。時延是個很重要的性能指標,它有時也稱為延遲或遲延。網路中的時延是由以下幾個不同的部分組成的。
① 發送時延。
發送時延是主機或路由器發送數據幀所需要的時間,也就是從發送數據幀的第一個比特算起,到該幀的最後一個比特發送完畢所需的時間。
因此發送時延也叫做傳輸時延。發送時延的計算公式是:
發送時延=數據幀長度(bit/s)/信道帶寬(bit/s)
由此可見,對於一定的網路,發送時延並非固定不變,而是與發送的幀長(單位是比特)成正比,與信道帶寬成反比。
② 傳播時延。
傳播時延是電磁波在信道中傳播一定的距離需要花費的時間。傳播時延的計算公式是:
傳播時延=信道長度(m)/電磁波在信道上的傳播速率(m/s)
電磁波在自由空間的傳播速率是光速,即3.0×10km/s。電磁波在網路傳輸媒體中的傳播速率比在自由空間要略低一些。
③ 處理時延。
主機或路由器在收到分組時要花費一定的時間進行處理,例如分析分組的首部,從分組中提取數據部分,進行差錯檢驗或查找適當的路由等,這就產生了處理時延。
④ 排隊時延。
分組在經過網路傳輸時,要經過許多的路由器。但分組在進入路由器後要先在輸入隊列中排隊等待處理。在路由器確定了轉發介面後,還要在輸出隊列中排隊等待轉發。這就產生了排隊時延。
這樣,數據在網路中經歷的總時延就是以上四種時延之和:
總時延=發送時延+傳播時延+處理時延+排隊時延
(5)時延帶寬積
把以上討論的網路性能的兩個度量—傳播時延和帶寬相乘,就得到另一個很有用的度量:傳播時延帶寬積,即時延帶寬積=傳播時延×帶寬。
(6)往返時間(RTT)
在計算機網路中,往返時間也是一個重要的性能指標,它表示從發送方發送數據開始,到發送方收到來自接收方的確認(接受方收到數據後便立即發送確認)總共經歷的時間。
當使用衛星通信時,往返時間(RTT)相對較長。
(7)利用率
利用率有信道利用率和網路利用率兩種。信道利用率指某信道有百分之幾的時間是被利用的(有數據通過),完全空閑的信道的利用率是零。網路利用率是全網路的信道利用率的加權平均值。 這些非性能特徵與前面介紹的性能指標有很大的關系。
(1)費用
即網路的價格(包括設計和實現的費用)。網路的性能與其價格密切相關。一般說來,網路的速率越高,其價格也越高。
(2)質量
網路的質量取決於網路中所有構件的質量,以及這些構件是怎樣組成網路的。網路的質量影響到很多方面,如網路的可靠性、網路管理的簡易性,以及網路的一些性能。但網路的性能與網路的質量並不是一回事,例如,有些性能也還可以的網路,運行一段時間後就出現了故障,變得無法再繼續工作,說明其質量不好。高質量的網路往往價格也較高。
(3)標准化
網路的硬體和軟體的設計既可以按照通用的國際標准,也可以遵循特定的專用網路標准。最好採用國際標準的設計,這樣可以得到更好的互操作性,更易於升級換代和維修,也更容易得到技術上的支持。
(4)可靠性
可靠性與網路的質量和性能都有密切關系。速率更高的網路,其可靠性不一定會更差。但速率更高的網路要可靠地運行,則往往更加困難,同時所需的費用也會較高。
(5)可擴展性和可升級性
網路在構造時就應當考慮到今後可能會需要擴展(即規模擴大)和升級(即性能和版本的提高)。網路的性能越高,其擴展費用往往也越高,難度也會相應增加。
(6)易於管理和維護
網路如果沒有良好的管理和維護,就很難達到和保持所設計的性能。
⑼ 計算機網路的性能指標有哪些簡述其概念。
對網路性能分析的方法有三種:測量監測技術、數學分析方法、計算機模擬模擬分析。
因此,我們可把網路性能評估模型分為三大類:
(1)測量模型
(2)模擬模型
(3)分析模型
⑽ 計算機系統的主要性能指標有哪些
計算機的主要性能指標有以下幾項:
1、字長:字長是CPU能夠直接處理的二進制數據位數,它直接關繫到計算機的計算精度、功能和速度。字長越長處理能力就越強。常見的微機字長有8位、16位和32位。
2.運算速度:運算速度是指計算機每秒中所能執行的指令條數,一般用MIPS為單位。
3.主頻:主頻是指計算機的時鍾頻率,單位用MHz表示。
4.內存儲器的容量:內存儲器是CPU可以直接訪問的存儲器,需要執行的程序與需要處理的數據就是存放在主存中的。內存的性能指標主要包括存儲容量和存取速度。
5.外設配置:外設是指計算機的輸入/輸出設備。
6.CPU主頻:CPU是決定筆記本電腦的性能的最主要因素,計算機運算速度是指計算機在每秒鍾所能執行的指令條數,即中央處理器在單位時間內平均運行的次數。
(10)計算機網路的性能與非性能擴展閱讀
衡量計算機系統性能可採用各種尺度,但最為可靠的衡量尺度是時間。時間可根據計算方法給以不同的定義,如響應時間、CPU 時間等。
響應時間是指用戶向計算機系統送入一個任務後,直到獲得他所需要的結果所需的等待時間。其中包括了訪問磁碟和訪問主存器時間、CPU 運算時間、I/O動作時間以及操作系統工作的時間開銷等。