❶ 卷積神經網路主要做什麼用的
卷積網路的特點主要是卷積核參數共享,池化操作。
參數共享的話的話是因為像圖片等結構化的數據在不同的區域可能會存在相同的特徵,那麼就可以把卷積核作為detector,每一層detect不同的特徵,但是同層的核是在圖片的不同地方找相同的特徵。然後把底層的特徵組合傳給後層,再在後層對特徵整合(一般深度網路是說不清楚後面的網路層得到了什麼特徵的)。
而池化主要是因為在某些任務中降采樣並不會影響結果。所以可以大大減少參數量,另外,池化後在之前同樣大小的區域就可以包含更多的信息了。
綜上,所有有這種特徵的數據都可以用卷積網路來處理。有卷積做視頻的,有卷積做文本處理的(當然這兩者由於是序列信號,天然更適合用lstm處理)
另外,卷積網路只是個工具,看你怎麼使用它,有必要的話你可以隨意組合池化和卷積的順序,可以改變網路結構來達到自己所需目的的,不必太被既定框架束縛。
❷ 卷積神經網路 有哪些改進的地方
卷積神經網路的研究的最新進展引發了人們完善立體匹配重建熱情。從概念看,基於學習演算法能夠捕獲全局的語義信息,比如基於高光和反射的先驗條件,便於得到更加穩健的匹配。目前已經探求一些兩視圖立體匹配,用神經網路替換手工設計的相似性度量或正則化方法。這些方法展現出更好的結果,並且逐步超過立體匹配領域的傳統方法。事實上,立體匹配任務完全適合使用CNN,因為圖像對是已經過修正過的,因此立體匹配問題轉化為水平方向上逐像素的視差估計。
與雙目立體匹配不同的是,MVS的輸入是任意數目的視圖,這是深度學習方法需要解決的一個棘手的問題。而且只有很少的工作意識到該問題,比如SurfaceNet事先重建彩色體素立方體,將所有像素的顏色信息和相機參數構成一個3D代價體,所構成的3D代價體即為網路的輸入。然而受限於3D代價體巨大的內存消耗,SurfaceNet網路的規模很難增大:SurfaceNet運用了一個啟發式的「分而治之」的策略,對於大規模重建場景則需要花費很長的時間。
❸ 卷積神經網路的Java實現有哪些
卷積神經網路有以下幾種應用可供研究:
1、基於卷積網路的形狀識別
物體的形狀是人的視覺系統分析和識別物體的基礎,幾何形狀是物體的本質特徵的表現,並具有平移、縮放和旋轉不變等特點,所以在模式識別領域,對於形狀的分析和識別具有十分重要的意義,而二維圖像作為三維圖像的特例以及組成部分,因此二維圖像的識別是三維圖像識別的基礎。
2、基於卷積網路的人臉檢測
卷積神經網路與傳統的人臉檢測方法不同,它是通過直接作用於輸入樣本,用樣本來訓練網路並最終實現檢測任務的。它是非參數型的人臉檢測方法,可以省去傳統方法中建模、參數估計以及參數檢驗、重建模型等的一系列復雜過程。本文針對圖像中任意大小、位置、姿勢、方向、膚色、面部表情和光照條件的人臉。
3、文字識別系統
在經典的模式識別中,一般是事先提取特徵。提取諸多特徵後,要對這些特徵進行相關性分析,找到最能代表字元的特徵,去掉對分類無關和自相關的特徵。然而,這些特徵的提取太過依賴人的經驗和主觀意識,提取到的特徵的不同對分類性能影響很大,甚至提取的特徵的順序也會影響最後的分類性能。同時,圖像預處理的好壞也會影響到提取的特徵。
❹ 如何訓練一個簡單的分類卷積神經網路
卷積神經網路有以下幾種應用可供研究:
1、基於卷積網路的形狀識別
物體的形狀是人的視覺系統分析和識別物體的基礎,幾何形狀是物體的本質特徵的表現,並具有平移、縮放和旋轉不變等特點,所以在模式識別領域,對於形狀的分析和識別具有十分重要的意義,而二維圖像作為三維圖像的特例以及組成部分,因此二維圖像的識別是三維圖像識別的基礎。
2、基於卷積網路的人臉檢測
卷積神經網路與傳統的人臉檢測方法不同,它是通過直接作用於輸入樣本,用樣本來訓練網路並最終實現檢測任務的。它是非參數型的人臉檢測方法,可以省去傳統方法中建模、參數估計以及參數檢驗、重建模型等的一系列復雜過程。本文針對圖像中任意大小、位置、姿勢、方向、膚色、面部表情和光照條件的人臉。
3、文字識別系統
在經典的模式識別中,一般是事先提取特徵。提取諸多特徵後,要對這些特徵進行相關性分析,找到最能代表字元的特徵,去掉對分類無關和自相關的特徵。然而,這些特徵的提取太過依賴人的經驗和主觀意識,提取到的特徵的不同對分類性能影響很大,甚至提取的特徵的順序也會影響最後的分類性能。同時,圖像預處理的好壞也會影響到提取的特徵。
❺ 前饋神經網路、BP神經網路、卷積神經網路的區別與聯系
一、計算方法不同
1、前饋神經網路:一種最簡單的神經網路,各神經元分層排列。每個神經元只與前一層的神經元相連。接收前一層的輸出,並輸出給下一層.各層間沒有反饋。
2、BP神經網路:是一種按照誤差逆向傳播演算法訓練的多層前饋神經網路。
3、卷積神經網路:包含卷積計算且具有深度結構的前饋神經網路。
二、用途不同
1、前饋神經網路:主要應用包括感知器網路、BP網路和RBF網路。
2、BP神經網路:
(1)函數逼近:用輸入向量和相應的輸出向量訓練一個網路逼近一個函數;
(2)模式識別:用一個待定的輸出向量將它與輸入向量聯系起來;
(3)分類:把輸入向量所定義的合適方式進行分類;
(4)數據壓縮:減少輸出向量維數以便於傳輸或存儲。
3、卷積神經網路:可應用於圖像識別、物體識別等計算機視覺、自然語言處理、物理學和遙感科學等領域。
聯系:
BP神經網路和卷積神經網路都屬於前饋神經網路,三者都屬於人工神經網路。因此,三者原理和結構相同。
三、作用不同
1、前饋神經網路:結構簡單,應用廣泛,能夠以任意精度逼近任意連續函數及平方可積函數.而且可以精確實現任意有限訓練樣本集。
2、BP神經網路:具有很強的非線性映射能力和柔性的網路結構。網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。
3、卷積神經網路:具有表徵學習能力,能夠按其階層結構對輸入信息進行平移不變分類。
(5)卷積神經網路的常用應用有哪些擴展閱讀:
1、BP神經網路優劣勢
BP神經網路無論在網路理論還是在性能方面已比較成熟。其突出優點就是具有很強的非線性映射能力和柔性的網路結構。網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。但是BP神經網路也存在以下的一些主要缺陷。
①學習速度慢,即使是一個簡單的問題,一般也需要幾百次甚至上千次的學習才能收斂。
②容易陷入局部極小值。
③網路層數、神經元個數的選擇沒有相應的理論指導。
④網路推廣能力有限。
2、人工神經網路的特點和優越性,主要表現在以下三個方面
①具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、效益預測,其應用前途是很遠大的。
②具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。
③具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。
❻ 為什麼卷積神經網路可以用於文本
卷積神經網路(Convolutional Neural Network,CNN)是一種前饋神經網路,它的人工神經元可以響應一部分覆蓋范圍內的周圍單元,對於大型圖像處理有出色表現。[1] 它包括卷積層(alternating convolutional layer)和池層(pooling layer)。
卷積神經網路是近年發展起來,並引起廣泛重視的一種高效識別方法。20世紀60年代,Hubel和Wiesel在研究貓腦皮層中用於局部敏感和方向選擇的神經元時發現其獨特的網路結構可以有效地降低反饋神經網路的復雜性,繼而提出了卷積神經網路(Convolutional Neural Networks-簡稱CNN)。現在,CNN已經成為眾多科學領域的研究熱點之一,特別是在模式分類領域,由於該網路避免了對圖像的復雜前期預處理,可以直接輸入原始圖像,因而得到了更為廣泛的應用。 K.Fukushima在1980年提出的新識別機是卷積神經網路的第一個實現網路。隨後,更多的科研工作者對該網路進行了改進。其中,具有代表性的研究成果是Alexander和Taylor提出的「改進認知機」,該方法綜合了各種改進方法的優點並避免了耗時的誤差反向傳播。
❼ 卷積神經網路只適用於圖像處理么
❽ 如何利用卷積神經網路提取圖像特徵
卷積神經網路有以下幾種應用可供研究: 1、基於卷積網路的形狀識別 物體的形狀是人的視覺系統分析和識別物體的基礎,幾何形狀是物體的本質特徵的表現,並具有平移、縮放和旋轉不變等特點,所以在模式識別領域,對於形狀的分析和識別具有十分重要的意義,而二維圖像作為三維圖像的特例以及組成部分,因此二維圖像的識別是三維圖像識別的基礎。 2、基於卷積網路的人臉檢測 卷積神經網路與傳統的人臉檢測方法不同,它是通過直接作用於輸入樣本,用樣本來訓練網路並最終實現檢測任務的。它是非參數型的人臉檢測方法,可以省去傳統方法中建模、參數估計以及參數檢驗、重建模型等的一系列復雜過程。本文針對圖像中任意大小、位置、姿勢、方向、膚色、面部表情和光照條件的人臉。 3、文字識別系統 在經典的模式識別中,一般是事先提取特徵。提取諸多特徵後,要對這些特徵進行相關性分析,找到最能代表字元的特徵,去掉對分類無關和自相關的特徵。然而,這些特徵的提取太過依賴人的經驗和主觀意識,提取到的特徵的不同對分類性能影響很大,甚至提取的特徵的順序也會影響最後的分類性能。同時,圖像預處理的好壞也會影響到提取的特徵。
❾ 什麼是卷積神經網路為什麼它們很重要
卷積神經網路(Convolutional Neural Network,CNN)是一種前饋神經網路,它的人工神經元可以響應一部分覆蓋范圍內的周圍單元,對於大型圖像處理有出色表現。[1]它包括卷積層(alternating convolutional layer)和池層(pooling layer)。
卷積神經網路是近年發展起來,並引起廣泛重視的一種高效識別方法。20世紀60年代,Hubel和Wiesel在研究貓腦皮層中用於局部敏感和方向選擇的神經元時發現其獨特的網路結構可以有效地降低反饋神經網路的復雜性,繼而提出了卷積神經網路(Convolutional Neural Networks-簡稱CNN)。現在,CNN已經成為眾多科學領域的研究熱點之一,特別是在模式分類領域,由於該網路避免了對圖像的復雜前期預處理,可以直接輸入原始圖像,因而得到了更為廣泛的應用。 K.Fukushima在1980年提出的新識別機是卷積神經網路的第一個實現網路。隨後,更多的科研工作者對該網路進行了改進。其中,具有代表性的研究成果是Alexander和Taylor提出的「改進認知機」,該方法綜合了各種改進方法的優點並避免了耗時的誤差反向傳播。