網路協議(Protocol)是一種特殊的軟體,是計算機網路實現其功能的最基本機制。網路協議的本質是規則,即各種硬體和軟體必須遵循的共同守則。網路協議並不是一套單獨的軟體,它融合於其他所有的軟體系統中,因此可以說,協議在網路中無所不在。網路協議遍及OSI通信模型的各個層次,從我們非常熟悉的TCP/IP、HTTP、FTP協議,到OSPF、IGP等協議,有上千種之多。對於普通用戶而言,不需要關心太多的底層通信協議,只需要了解其通信原理即可。在實際管理中,底層通信協議一般會自動工作,不需要人工干預。但是對於第三層以上的協議,就經常需要人工干預了,比如TCP/IP協議就需要人工配置它才能正常工作。
區域網常用的三種通信協議分別是TCP/IP協議、NetBEUI協議和IPX/SPX協議。
TCP/IP協議毫無疑問是這三大協議中最重要的一個,作為互聯網的基礎協議,沒有它就根本不可能上網,任何和互聯網有關的操作都離不開TCP/IP協議。不過TCP/IP協議也是這三大協議中配置起來最麻煩的一個,單機上網還好,而通過區域網訪問互聯網的話,就要詳細設置IP地址,網關,子網掩碼,DNS伺服器等參數。
TCP/IP協議族中包括上百個互為關聯的協議,不同功能的協議分布在不同的協議層,
幾個常用協議如下:
1、Telnet(Remote
Login):提供遠程登錄功能,一台計算機用戶可以登錄到遠程的另一台計算機上,如同在遠程主機上直接操作一樣。
2、FTP(File
Transfer
Protocol):遠程文件傳輸協議,允許用戶將遠程主機上的文件拷貝到自己的計算機上。
3、SMTP(Simple
Mail
transfer
Protocol):簡單郵政傳輸協議,用於傳輸電子郵件。
4、NFS(Network
File
Server):網路文件伺服器,可使多台計算機透明地訪問彼此的目錄。
5、UDP(User
Datagram
Protocol):用戶數據包協議,它和TCP一樣位於傳輸層,和IP協議配合使用,在傳輸數據時省去包頭,但它不能提供數據包的重傳,所以適合傳輸較短的文件。
HTTP協議簡介
HTTP是一個屬於應用層的面向對象的協議,由於其簡捷、快速的方式,適用於分布式超媒體信息系統。它於1990年提出,經過幾年的使用與發展,得到不斷地完善和擴展。目前在WWW中使用的是HTTP/1.0的第六版,HTTP/1.1的規范化工作正在進行之中,而且HTTP-NG(Next
Generation
of
HTTP)的建議已經提出。
HTTP協議的主要特點可概括如下:
1.支持客戶/伺服器模式。
2.簡單快速:客戶向伺服器請求服務時,只需傳送請求方法和路徑。請求方法常用的有GET、HEAD、POST。每種方法規定了客戶與伺服器聯系的類型不同。
由於HTTP協議簡單,使得HTTP伺服器的程序規模小,因而通信速度很快。
3.靈活:HTTP允許傳輸任意類型的數據對象。正在傳輸的類型由Content-Type加以標記。
4.無連接:無連接的含義是限制每次連接只處理一個請求。伺服器處理完客戶的請求,並收到客戶的應答後,即斷開連接。採用這種方式可以節省傳輸時間。
5.無狀態:HTTP協議是無狀態協議。無狀態是指協議對於事務處理沒有記憶能力。缺少狀態意味著如果後續處理需要前面的信息,則它必須重傳,這樣可能導致每次連接傳送的數據量增大。另一方面,在伺服器不需要先前信息時它的應答就較快。
⑵ 常見的網路協議有哪些
第一章 概述
電信網、計算機網和有線電視網 三網合一
TCP/IP是當前的網際網路協議簇的總稱,TCP和 IP是其中的兩個最重要的協議。
RFC標准軌跡由3個成熟級構成:提案標准、草案標准和標准。
第二章 計算機網路與網際網路體系結構
根據拓撲結構:計算機網路可以分為匯流排型網、環型網、星型網和格狀網。
根據覆蓋范圍:計算機網路可以分為廣域網、城域網、區域網和個域網。
網路可以劃分成:資源子網和通信子網兩個部分。
網路協議是通信雙方共同遵守的規則和約定的集合。網路協議包括三個要素,即語法、語義和同步規則。
通信雙方對等層中完成相同協議功能的實體稱為對等實體 ,對等實體按協議進行通信。
有線接入技術分為銅線接入、光纖接入和混合光纖同軸接入技術。
無線接入技術主要有衛星接入技術、無線本地環路接入和本地多點分配業務。
網關實現不同網路協議之間的轉換。
網際網路採用了網路級互聯技術,網路級的協議轉換不僅增加了系統的靈活性,而且簡化了網路互聯設備。
網際網路對用戶隱藏了底層網路技術和結構,在用戶看來,網際網路是一個統一的網路。
網際網路將任何一個能傳輸數據分組的通信系統都視為網路,這些網路受到網路協議的平等對待。
TCP/IP 協議分為 4 個協議層 :網路介面層、網路層、傳輸層和應用層。
IP 協議既是網路層的核心協議 ,也是 TCP/IP 協議簇中的核心協議。
第四章 地址解析
建立邏輯地址與物理地址之間 映射的方法 通常有靜態映射和動態映射。動態映射是在需要獲得地址映射關系時利用網路通信協議直接從其他主機上獲得映射信息。 網際網路採用了動態映射的方法進行地址映射。
獲得邏輯地址與物理地址之間的映射關系稱為地址解析 。
地址解析協議 ARP 是將邏輯地址( IP 地址)映射到物理地址的動態映射協議。
ARP 高速緩存中含有最近使用過的 IP 地址與物理地址的映射列表。
在 ARP 高速緩存中創建的靜態表項是永不超時的地址映射表項。
反向地址解析協議 RARP 是將給定的物理地址映射到邏輯地址( IP地址)的動態映射。RARP需要有RARP 伺服器幫助完成解析。
ARP請求和 RARP請求,都是採用本地物理網路廣播實現的。
在代理ARP中,當主機請求對隱藏在路由器後面的子網中的某一主機 IP 地址進行解析時,代理 ARP路由器將用自己的物理地址作為解析結果進行響應。
第五章 IP協議
IP是不可靠的無連接數據報協議,提供盡力而為的傳輸服務。
TCP/IP 協議的網路層稱為IP層.
IP數據報在經過路由器進行轉發時一般要進行三個方面的處理:首部校驗、路由選擇、數據分片
IP層通過IP地址實現了物理地址的統一,通過IP數據報實現了物理數據幀的統一。 IP 層通過這兩個方面的統一屏蔽了底層的差異,向上層提供了統一的服務。
IP 數據報由首部和數據兩部分構成 。首部分為定長部分和變長部分。選項是數據報首部的變長部分。定長部分 20 位元組,選項不超過40位元組。
IP 數據報中首部長度以 32 位字為單位 ,數據報總長度以位元組為單位,片偏移以 8 位元組( 64 比特)為單位。數據報中的數據長度 =數據報總長度-首部長度× 4。
IP 協議支持動態分片 ,控制分片和重組的欄位是標識、標志和片偏移, 影響分片的因素是網路的最大傳輸單元 MTU ,MTU 是物理網路幀可以封裝的最大數據位元組數。通常不同協議的物理網路具有不同的MTU 。分片的重組只能在信宿機進行。
生存時間TTL是 IP 數據報在網路上傳輸時可以生存的最大時間,每經過一個路由器,數據報的TTL值減 1。
IP數據報只對首部進行校驗 ,不對數據進行校驗。
IP選項用於網路控制和測試 ,重要包括嚴格源路由、寬松源路由、記錄路由和時間戳。
IP協議的主要功能 包括封裝 IP 數據報,對數據報進行分片和重組,處理數據環回、IP選項、校驗碼和TTL值,進行路由選擇等。
在IP 數據報中與分片相關的欄位是標識欄位、標志欄位和片偏移欄位。
數據報標識是分片所屬數據報的關鍵信息,是分片重組的依據
分片必須滿足兩個條件: 分片盡可能大,但必須能為幀所封裝 ;片中數據的大小必須為 8 位元組的整數倍 ,否則 IP 無法表達其偏移量。
分片可以在信源機或傳輸路徑上的任何一台路由器上進行,而分片的重組只能在信宿機上進行片重組的控制主要根據 數據報首部中的標識、標志和片偏移欄位
IP選項是IP數據報首部中的變長部分,用於網路控制和測試目的 (如源路由、記錄路由、時間戳等 ),IP選項的最大長度 不能超過40位元組。
1、IP 層不對數據進行校驗。
原因:上層傳輸層是端到端的協議,進行端到端的校驗比進行點到點的校驗開銷小得多,在通信線路較好的情況下尤其如此。另外,上層協議可以根據對於數據可靠性的要求, 選擇進行校驗或不進行校驗,甚至可以考慮採用不同的校驗方法,這給系統帶來很大的靈活性。
2、IP協議對IP數據報首部進行校驗。
原因: IP 首部屬於 IP 層協議的內容,不可能由上層協議處理。
IP 首部中的部分欄位在點到點的傳遞過程中是不斷變化的,只能在每個中間點重新形成校驗數據,在相鄰點之間完成校驗。
3、分片必須滿足兩個條件:
分片盡可能大,但必須能為幀所封裝 ;
片中數據的大小必須為8位元組的整數倍,否則IP無法表達其偏移量。
第六章 差錯與控制報文協議(ICMP)
ICMP 協議是 IP 協議的補充,用於IP層的差錯報告、擁塞控制、路徑控制以及路由器或主機信息的獲取。
ICMP既不向信宿報告差錯,也不向中間的路由器報告差錯,而是 向信源報告差錯 。
ICMP與 IP協議位於同一個層次,但 ICMP報文被封裝在IP數據報的數據部分進行傳輸。
ICMP 報文可以分為三大類:差錯報告、控制報文和請求 /應答報文。
ICMP 差錯報告分為三種 :信宿不可達報告、數據報超時報告和數據報參數錯報告。數據報超時報告包括 TTL 超時和分片重組超時。
數據報參數錯包括數據報首部中的某個欄位的值有錯和數據報首部中缺少某一選項所必須具有的部分參數。
ICMP控制報文包括源抑制報文和重定向報文。
擁塞是無連接傳輸時缺乏流量控制機制而帶來的問題。ICMP 利用源抑制的方法進行擁塞控制 ,通過源抑制減緩信源發出數據報的速率。
源抑制包括三個階段 :發現擁塞階段、解決擁塞階段和恢復階段。
ICMP 重定向報文由位於同一網路的路由器發送給主機,完成對主機的路由表的刷新。
ICMP 回應請求與應答不僅可以被用來測試主機或路由器的可達性,還可以被用來測試 IP 協議的工作情況。
ICMP時間戳請求與應答報文用於設備間進行時鍾同步 。
主機利用 ICMP 路由器請求和通告報文不僅可以獲得默認路由器的 IP 地址,還可以知道路由器是否處於活動狀態。
第七章 IP 路由
數據傳遞分為直接傳遞和間接傳遞 ,直接傳遞是指直接傳到最終信宿的傳輸過程。間接傳遞是指在信
源和信宿位於不同物理網路時,所經過的一些中間傳遞過程。
TCP/IP 採用 表驅動的方式 進行路由選擇。在每台主機和路由器中都有一個反映網路拓撲結構的路由表,主機和路由器能夠根據 路由表 所反映的拓撲信息找到去往信宿機的正確路徑。
通常路由表中的 信宿地址採用網路地址 。路徑信息採用去往信宿的路徑中的下一跳路由器的地址表示。
路由表中的兩個特殊表目是特定主機路由和默認路由表目。
路由表的建立和刷新可以採用兩種不同 的方式:靜態路由和動態路由。
自治系統 是由獨立管理機構所管理的一組網路和路由器組成的系統。
路由器自動獲取路徑信息的兩種基本方法是向量—距離演算法和鏈路 —狀態演算法。
1、向量 — 距離 (Vector-Distance,簡稱 V—D)演算法的基本思想 :路由器周期性地向與它相鄰的路由器廣播路徑刷新報文,報文的主要內容是一組從本路由器出發去往信宿網路的最短距離,在報文中一般用(V,D)序偶表示,這里的 V 代表向量,標識從該路由器可以到達的信宿 (網路或主機 ),D 代表距離,指出從該路由器去往信宿 V 的距離, 距離 D 按照去往信宿的跳數計。 各個路由器根據收到的 (V ,D)報文,按照最短路徑優先原則對各自的路由表進行刷新。
向量 —距離演算法的優點是簡單,易於實現。
缺點是收斂速度慢和信息交換量較大。
2、鏈路 — 狀態 (Link-Status,簡稱 L-S)演算法的基本思想 :系統中的每個路由器通過從其他路由器獲得的信息,構造出當前網路的拓撲結構,根據這一拓撲結構,並利用 Dijkstra 演算法形成一棵以本路由器為根的最短路徑優先樹, 由於這棵樹反映了從本節點出發去往各路由節點的最短路徑, 所以本節點就可以根據這棵最短路徑優先樹形成路由表。
動態路由所使用的路由協議包括用於自治系統內部的 內部網關協 議和用於自治系統之間的外部網關協議。
RIP協議在基本的向量 —距離演算法的基礎上 ,增加了對路由環路、相同距離路徑、失效路徑以及慢收斂問題的處理。 RIP 協議以路徑上的跳數作為該路徑的距離。 RIP 規定,一條有效路徑的距離不能超過
RIP不適合大型網路。
RIP報文被封裝在 UDP 數據報中傳輸。RIP使用 UDP 的 520 埠號。
3、RIP 協議的三個要點
僅和相鄰路由器交換信息。
交換的信息是當前本路由器所知道的全部信息,即自己的路由表。
按固定的時間間隔交換路由信息,例如,每隔30秒。
4、RIP 協議的優缺點
RIP 存在的一個問題是當網路出現故障時,要經過比較長的時間才能將此信息傳送到所有的路由器。
RIP 協議最大的優點就是實現簡單,開銷較小。
RIP 限制了網路的規模,它能使用的最大距離為15(16表示不可達)。
路由器之間交換的路由信息是路由器中的完整路由表,因而隨著網路規模的擴大,開銷也就增加。
5、為了防止計數到無窮問題,可以採用以下三種技術。
1)水平 分割 法(Split Horizon) 水平分割法的基本思想:路由器從某個介面接收到的更新信息不允許再從這個介面發回去。在圖 7-9 所示的例子中, R2 向 R1 發送 V-D 報文時,不能包含經過 R1 去往 NET1的路徑。因為這一信息本身就是 R1 所產生的。
2) 保持法 (Hold Down) 保持法要求路由器在得知某網路不可到達後的一段時間內,保持此信息不變,這段時間稱為保持時間,路由器在保持時間內不接受關於此網路的任何可達性信息。
3) 毒性逆轉法 (Poison Reverse)毒性逆轉法是水平分割法的一種變化。當從某一介面發出信息時,凡是從這一介面進來的信息改變了路由表表項的, V-D 報文中對應這些表目的距離值都設為無窮 (16)。
OSPF 將自治系統進一步劃分為區域,每個區域由位於同一自治系統中的一組網路、主機和路由器構成。區域的劃分不僅使得廣播得到了更好的管理,而且使 OSPF能夠支持大規模的網路。
OSPF是一個鏈路 —狀態協議。當網路處於收斂狀態時, 每個 OSPF路由器利用 Dijkstra 演算法為每個網路和路由器計算最短路徑,形成一棵以本路由器為根的最短路徑優先 (SPF)樹,並根據最短路徑優先樹構造路由表。
OSPF直接使用 IP。在IP首部的協議欄位, OSPF協議的值為 89。
BGP 是採用路徑 —向量演算法的外部網關協議 , BGP 支持基於策略的路由,路由選擇策略與政治、經濟或安全等因素有關。
BGP 報文分為打開、更新、保持活動和通告 4 類。BGP 報文被封裝在 TCP 段中傳輸,使用TCP的179 號埠 。
第八章 傳輸層協議
傳輸層承上啟下,屏蔽通信子網的細節,向上提供通用的進程通信服務。傳輸層是對網路層的加強與彌補。 TCP 和 UDP 是傳輸層 的兩大協議。
埠分配有兩種基本的方式:全局埠分配和本地埠分配。
在網際網路中採用一個 三元組 (協議,主機地址,埠號)來全局惟一地標識一個進程。用一個五元組(協議 ,本地主機地址 ,本地埠號 ,遠地主機地址 ,遠地埠號)來描述兩個進程的關聯。
TCP 和 UDP 都是提供進程通信能力的傳輸層協議。它們各有一套埠號,兩套埠號相互獨立,都是從0到 65535。
TCP 和 UDP 在計算校驗和時引入偽首部的目的是為了能夠驗證數據是否傳送到了正確的信宿端。
為了實現數據的可靠傳輸, TCP 在應用進程間 建立傳輸連接 。TCP 在建立連接時採用 三次握手方法解決重復連接的問題。在拆除連接時採用 四次握手 方法解決數據丟失問題。
建立連接前,伺服器端首先被動打開其熟知的埠,對埠進行監聽。當客戶端要和伺服器建立連接時,發出一個主動打開埠的請求,客戶端一般使用臨時埠。
TCP 採用的最基本的可靠性技術 包括流量控制、擁塞控制和差錯控制。
TCP 採用 滑動窗口協議 實現流量控制,滑動窗口協議通過發送方窗口和接收方窗口的配合來完成傳輸控制。
TCP 的 擁塞控制 利用發送方的窗口來控制注入網路的數據流的速度。發送窗口的大小取通告窗口和擁塞窗口中小的一個。
TCP通過差錯控制解決 數據的毀壞、重復、失序和丟失等問題。
UDP 在 IP 協議上增加了進程通信能力。此外 UDP 通過可選的校驗和提供簡單的差錯控制。但UDP不提供流量控制和數據報確認 。
1、傳輸層( Transport Layer)的任務 是向用戶提供可靠的、透明的端到端的數據傳輸,以及差錯控制和流量控制機制。
2 「傳輸層提供應用進程間的邏輯通信 」。「邏輯通信 」的意思是:傳輸層之間的通信好像是沿水平方向傳送數據。但事實上這兩個傳輸層之間並沒有一條水平方向的物理連接。
TCP 提供的可靠傳輸服務有如下五個特徵 :
面向數據流 ; 虛電路連接 ; 有緩沖的傳輸 ; 無結構的數據流 ; 全雙工連接 .
3、TCP 採用一種名為 「帶重傳功能的肯定確認 ( positive acknowledge with retransmission ) 」的技術作為提供可靠數據傳輸服務的基礎。
第九章 域名系統
字元型的名字系統為用戶提供了非常直觀、便於理解和記憶的方法,非常符合用戶的命名習慣。
網際網路採用層次型命名機制 ,層次型命名機制將名字空間分成若乾子空間,每個機構負責一個子空間的管理。 授權管理機構可以將其管理的子名字空間進一步劃分, 授權給下一級機構管理。名字空間呈一種樹形結構。
域名由圓點 「.」分開的標號序列構成 。若域名包含從樹葉到樹根的完整標號串並以圓點結束,則稱該域名為完全合格域名FQDN。
常用的三塊頂級域名 為通用頂級域名、國家代碼頂級域名和反向域的頂級域名。
TCP/IP 的域名系統是一個有效的、可靠的、通用的、分布式的名字 —地址映射系統。區域是 DNS 伺服器的管理單元,通常是指一個 DNS 伺服器所管理的名字空間 。區域和域是不同的概念,域是一個完整的子樹,而區域可以是子樹中的任何一部分。
名字伺服器的三種主要類型是 主名字伺服器、次名字伺服器和惟高速緩存名字伺服器。主名字伺服器擁有一個區域文件的原始版本,次名字伺服器從主名字伺服器那裡獲得區域文件的拷貝,次名字伺服器通過區域傳輸同主名字伺服器保持同步。
DNS 伺服器和客戶端屬於 TCP/IP 模型的應用層, DNS 既可以使用 UDP,也可以使用 TCP 來進行通信。 DNS 伺服器使用 UDP 和 TCP 的 53 號熟知埠。
DNS 伺服器能夠使用兩種類型的解析: 遞歸解析和反復解析 。
DNS 響應報文中的回答部分、授權部分和附加信息部分由資源記錄構成,資源記錄存放在名字伺服器的資料庫中。
頂級域 cn 次級域 e.cn 子域 njust.e.cn 主機 sery.njust.e.cn
TFTP :普通文件傳送協議( Trivial File Transfer Protocol )
RIP: 路由信息協議 (Routing Information Protocol)
OSPF 開放最短路徑優先 (Open Shortest Path First)協議。
EGP 外部網關協議 (Exterior Gateway Protocol)
BGP 邊界網關協議 (Border Gateway Protocol)
DHCP 動態主機配置協議( Dynamic Host Configuration Protocol)
Telnet工作原理 : 遠程主機連接服務
FTP 文件傳輸工作原理 File Transfer Protocol
SMTP 郵件傳輸模型 Simple Message Transfer Protocol
HTTP 工作原理
⑶ 常用的網路協議有哪些
常用的網路協議有TCP/IP協議、IPX/SPX協議、NetBEUI協議等。
1.TCP/IP協議
TCP/IP協議用得最多,只有TCP/IP協議允許與internet進行完全連接。現今流行的網路軟體和游戲大都支持TCP/IP協議。
2.IPX/SPX協議
IPX/SPX協議是Novell開發的專用於NetWare網路的協議,大部分可以聯機的游戲都支持IPX/SPX協議,例如星際、cs。雖然這些游戲都支持TCP/IP協議,但通過IPX/SPX協議更省事,不需要任何設置。IPX/SPX協議在區域網中的用途不大。它和TCP/IP協議的一個顯著不同是它不使用ip地址,而是使用mac地址。
為了能進行通信,規定每個終端都要將各自字元集中的字元先變換為標准字元集的字元後,才進入網路傳送,到達目的終端之後,再變換為該終端字元集的字元。當然,對於不相容終端,除了需變換字元集字元外還需轉換其他特性,如顯示格式、行長、行數、屏幕滾動方式等也需作相應的變換。
⑷ 常見的網路協議有哪幾種,分別是如何定義的
常見的網路協議有TCP/IP協議、NetBEUI、IPX/SPX協議。
1、TCP/IP協議,是這三大協議中最重要的一個,是互聯網的基礎協議,任何和互聯網有關的操作都離不開TCP/IP協議。但TCP/IP協議在區域網中的通信效率不高,使用它在瀏覽「網上鄰居」中的計算機時,會出現不能正常瀏覽的現象。
2、NetBEUI,即NetBios增強用戶介面。它是NetBIOS協議的增強版本,曾被許多操作系統採用。NETBEUI協議在許多情形下很有用,是WINDOWS98之前的操作系統的預設協議。NetBEUI協議是一種短小精悍、通信效率高的廣播型協議。
3,、IPX/SPX協議,是Novell開發的專用於NetWare網路中的協議,但大部分可以聯機的游戲都支持IPX/SPX協議。雖然這些游戲通過TCP/IP協議也能聯機,但顯然還是通過IPX/SPX協議更省事,因為根本不需要任何設置。
(4)網路配置協議有哪些擴展閱讀:
由於網路節點之間聯系的復雜性,在制定協議時,通常把復雜成分分解成一些簡單成分,然後再將它們復合起來。網路協議的層次結構如下:
1、結構中的每一層都規定有明確的服務及介面標准。
2、把用戶的應用程序作為最高層
3、除了最高層外,中間的每一層都向上一層提供服務,同時又是下一層的用戶。
⑸ 常用的網路協議有哪些
常用的網路協議有TCP/IP協議、HTTP協議、FTP協議、Telnet協議、FTP協議、SMTP協議、NFS協議、UDP協議等。
⑹ 什麼是網路協議有那些常見的網路協議其中又包含那些層次
網路協議的定義:為計算機網路中進行數據交換而建立的規則、標准或約定的集合。例如,網路中一個微機用戶和一個大型主機的操作員進行通信,由於這兩個數據終端所用字元集不同,因此操作員所輸入的命令彼此不認識。為了能進行通信,規定每個終端都要將各自字元集中的字元先變換為標准字元集的字元後,才進入網路傳送,到達目的終端之後,再變換為該終端字元集的字元。當然,對於不相容終端,除了需變換字元集字元外。其他特性,如顯示格式、行長、行數、屏幕滾動方式等也需作相應的變換。
常見的網路協議有:
TCP/IP協議:毫無疑問是這三大協議中最重要的一個,作為互聯網的基礎協議,沒有它就根本不可能上網,任何和互聯網有關的操作都離不開TCP/IP協議。不過TCP/IP協議也是這三大協議中配置起來最麻煩的一個,單機上網還好,而通過區域網訪問互聯網的話,就要詳細設置IP地址,網關,子網掩碼,DNS伺服器等參數。
TCP/IP盡管是目前最流行的網路協議,但TCP/IP協議在區域網中的通信效率並不高,使用它在瀏覽「網上鄰居」中的計算機時,經常會出現不能正常瀏覽的現象。此時安裝NetBEUI協議就會解決這個問題。
NetBEUI協議:即NetBios Enhanced User Interface ,或NetBios增強用戶介面。它是NetBIOS協議的增強版本,曾被許多操作系統採用,例如Windows for Workgroup、Win 9x系列、Windows NT等。NETBEUI協議在許多情形下很有用,是WINDOWS98之前的操作系統的預設協議。NetBEUI協議是一種短小精悍、通信效率高的廣播型協議,安裝後不需要進行設置,特別適合於在「網路鄰居」傳送數據。所以建議除了TCP/IP協議之外,小型區域網的計算機也可以安上NetBEUI協議。另外還有一點要注意,如果一台只裝了TCP/IP協議的WINDOWS98機器要想加入到WINNT域,也必須安裝NetBEUI協議。
IPX/SPX協議:本來就是Novell開發的專用於NetWare網路中的協議,但是也非常常用--大部分可以聯機的游戲都支持IPX/SPX協議,比如星際爭霸,反恐精英等等。雖然這些游戲通過TCP/IP協議也能聯機,但顯然還是通過IPX/SPX協議更省事,因為根本不需要任何設置。除此之外,IPX/SPX協議在非區域網絡中的用途似乎並不是很大.如果確定不在區域網中聯機玩游戲,那麼這個協議可有可無。
包含的層次有:
為了使不同計算機廠家生產的計算機能夠相互通信,以便在更大的范圍內建立計算機網路,國際標准化組織(ISO)在1978年提出了「開放系統互聯參考模型」,即著名的OSI/RM模型(Open System Interconnection/Reference Model)。它將計算機網路體系結構的通信協議劃分為七層,自下而上依次為:物理層(Physics Layer)、數據鏈路層(Data Link Layer)、網路層(Network Layer)、傳輸層(Transport Layer)、會話層(Session Layer)、表示層(Presentation Layer)、應用層(Application Layer)。
其中第四層完成數據傳送服務,上面三層面向用戶。對於每一層,至少制定兩項標准:服務定義和協議規范。前者給出了該層所提供的服務的准確定義,後者詳細描述了該協議的動作和各種有關規程,以保證服務的提供。
⑺ 常見的網路協議有那些
當今區域網中最常見的三個協議是MICROSOFT的NETBEUI、NOVELL的IPX/SPX和交叉平台TCP/IP。一:NETBEUINETBEUI是為IBM開發的非路由協議,用於攜帶NETBIOS通信。NETBEUI缺乏路由和網路層定址功能,既是其最大的優點,也是其最大的缺點。因為它不需要附加的網路地址和網路層頭尾,所以很快並很有效且適用於只有單個網路或整個環境都橋接起來的小工作組環境。因為不支持路由,所以NETBEUI永遠不會成為企業網路的主要協議。NETBEUI幀中唯一的地址是數據鏈路層媒體訪問控制(MAC)地址,該地址標識了網卡但沒有標識網路。路由器靠網路地址將幀轉發到最終目的地,而NETBEUI幀完全缺乏該信息。網橋負責按照數據鏈路層地址在網路之間轉發通信,但是有很多缺點。因為所有的廣播通信都必須轉發到每個網路中,所以網橋的擴展性不好。NETBEUI特別包括了廣播通信的記數並依賴它解決命名沖突。一般而言,橋接NETBEUI網路很少超過100台主機。近年來依賴於第二層交換器的網路變得更為普遍。完全的轉換環境降低了網路的利用率,盡管廣播仍然轉發到網路中的每台主機。事實上,聯合使用100-BASE-T Ethernet,允許轉換NetBIOS網路擴展到350台主機,才能避免廣播通信成為嚴重的問題。二:IPX/SPXIPX是NOVELL用於NETWARE客戶端/伺服器的協議群組,避免了NETBEUI的弱點。但是,IPX具有完全的路由能力,可用於大型企業網。它允許有許多路由網路。包括32位網路地址,在單個環境中帶來了新的不同弱點。IPX的可擴展性受到其高層廣播通信和高開銷的限制。服務廣告協議(ServiceAdvertising Protocol,SAP)將路由網路中的主機數限制為幾千。盡管SAP的局限性已經被智能路由器和伺服器配置所克服,但是,大規模IPX網路的管理員仍是非常困難的工作。三:TCP/IP每種網路協議都有自己的優點,但是只有TCP/IP允許與Internet完全的連接。TCP/IP是在60年代由麻省理工學院和一些商業組織為美國國防部開發的,即便遭到核攻擊而破壞了大部分網路,TCP/IP仍然能夠維持有效的通信。ARPANET就是由基於協議開發的,並發展成為作為科學家和工程師交流媒體的Internet。TCP/IP同時具備了可擴展性和可靠性的需求。不幸的是犧牲了速度和效率(可是:TCP/IP的開發受到了政府的資助)。Internet公用化以後,人們開始發現全球網的強大功能。Internet的普遍性是TCP/IP至今仍然使用的原因。常常在沒有意識到的情況下,用戶就在自己的PC上安裝了TCP/IP棧,從而使該網路協議在全球應用最廣。TCP/IP的32位定址功能方案不足以支持即將加入Internet的主機和網路數。因而可能代替當前實現的標準是IPv6。 (希望能幫到你,麻煩點擊 「好評」,謝謝你啦^_^)
⑻ 網路協議有哪些
常用的協議有TCP/IP協議、NetBEUI協議和IPX/SPX協議。
⑼ 計算機網路協議有哪些,具體作用什麼
目前網路協議有許多種,但是最基本的協議是TCP/IP協議,許多協議都是它的子協議。下面我們就對TCP/IP協議作一下簡單介紹。
1 TCP/IP協議基礎
TCP/IP協議包括兩個子協議:一個是TCP協議(Transmission Control Protocol,傳輸控制協議),另一個是IP協議(Internet Protocol,互聯網協議),它起源於20世紀60年代末。
在TCP/IP協議中,TCP協議和IP協議各有分工。TCP協議是IP協議的高層協議,TCP在IP之上提供了一個可靠的,連接方式的協議。TCP協議能保證數據包的傳輸以及正確的傳輸順序,並且它可以確認包頭和包內數據的准確性。如果在傳輸期間出現丟包或錯包的情況,TCP負責重新傳輸出錯的包,這樣的可靠性使得TCP/IP協議在會話式傳輸中得到充分應用。IP協議為TCP/IP協議集中的其它所有協議提供「包傳輸」功能,IP協議為計算機上的數據提供一個最有效的無連接傳輸系統,也就是說IP包不能保證到達目的地,接收方也不能保證按順序收到IP包,它僅能確認IP包頭的完整性。最終確認包是否到達目的地,還要依靠TCP協議,因為TCP協議是有連接服務。
在計算機服務中如果按連接方式來分的話,可分為「有連接服務」和「無連接服務」兩種。「有連接服務」必須先建立連接才能提供相應服務,而「無連接服務」則不需先建立連接。TCP協議是一種典型的有連接協議,而UDP協議則是典型的無連接服務。
TCP/IP協議所包括的協議和工具
TCP/IP協議是一組網路協議的集合,它主要包括以下幾方面的協議和工具。
·TCP/IP協議核心協議
這些核心協議除了自身外,還包括用戶數據報協議(UDP協議)、地址代理協議(ARP協議)以及網間控制協議(ICMP協議)。這組協議提供了一系列計算機互連和網路互連的標准協議。
·應用介面協議
這類協議主要包括Windows套接字(Socket,用於開發網路應用程序)、遠程調用、NetBIOS協議(用於建立邏輯名和網路上的會話)和網路動態數據交換(Network,用於通過網路共享嵌入在文本中的信息)。
·基本的TCP/IP協議互連應用協議
主要包括finger、ftp、rep、rsh、telnet、tftp等協議。這些工具協議使得Windows系統用戶使用非Microsoft系統計算機上(如UNIX系統計算機)的資源成為可能。
·TCP/IP協議診斷工具
這些工具包括arp、hostname、ipconfig、nbstat、netstat、ping和route,它們可用來檢測並恢復TCP/IP協議網路故障。
·有關服務和管理工具
這些服務和管理工具包括FTP伺服器服務(用於在兩個遠程計算機之間傳輸文件,這是遠程式控制制通信中的關鍵功能)、網際命名服務WINS(用於在一個網際上動態記錄和詢問計算機的名字)、動態計算機配置協議DHCP(用於在Windows NT計算機上自動配置TCP/IP協議)以及TCP/IP協議列印(主要用於遠程列印和網路列印)。
·簡單網路管理協議代理(SNMP)
這個工具允許通過使用管理工具(如「Sun Net Manages」 或「HP Open View」),從遠程管理Windows NT計算機。
(2)TCP/IP的主要協議簡述
為了使讀者能全面了解一些基本的網路通信協議和服務,本節就對TCP/IP協議所包括的幾種主要協議進行簡要說明。
·遠程登錄協議(Telnet)
Telnet協議是用來登錄到遠程計算機上,並進行信息訪問,通過它可以訪問所有的資料庫、聯機游戲、對話服務以及電子公告牌,如同與被訪問的計算機在同一房間中工作一樣,但只能進行些字元類操作和會話。
·文件傳輸協議(Ftp)
這是文件傳輸的基本協議,有了FTP協議就可以把的文件進行上傳,也可從網上得到許多應用程序和信息(下載),有許多軟體站點就是通過FTP協議來為用戶提供下載任務的,俗稱「FTP伺服器」。最初的FTP程序是工作在UNIX系統下的,而目前的許多FTP程序是工作在Windows系統下的。FTP程序除了完成文件的傳送之外,還允許用戶建立與遠程計算機的連接,登錄到遠程計算機上,並可在遠程計算機上的目錄間移動。
·電子郵件服務(Email)
電子郵件服務是目前最常見、應用最廣泛的一種到聯網服務。通過電子郵件,可以與Internet上的任何人交換信息。電子郵件的快速、高效、方便以及價廉,越來越得到了廣泛的應用,目前只要是上過網的網民就肯定用過電子郵件這種服務。目前,全球平均每天約有幾千萬份電子郵件在網上傳輸。
·WWW服務
WWW服務(3W服務)也是目前應用最廣的一種基本互聯網應用,我們每天上網都要用到這種服務。通過WWW服務,只要用滑鼠進行本地操作,就可以到達世界上的任何地方。由於WWW服務使用的是超文本鏈接(HTML),所以可以很方便的從一個信息頁轉換到另一個信息頁。它不僅能查看文字,還可以欣賞圖片、音樂、動畫。最流行的WWW服務的程序就是微軟的IE瀏覽器。
·簡單郵件傳輸協議(SMTP)
SMTP是TCP/IP協議族的一個成員,這種協議認為你的計算機是永久連接在Internet上的,而且認為你在網路上的計算機在任何時候是可以被訪問的。它適用於永久連接在Internet的計算機,但無法使用通過SLIP/PPP協議連接的用戶接收電子郵件。解決這個問題的辦法是在郵件計算機上同時運行SMTP和POP協議的程序,SMTP負責郵件的發送和在郵件計算機上的分揀和存儲,POP協議負責將郵件通過SLIP/PPP協議連接傳送到用戶計算機上。
·信息服務(Gopher)
Gopher最早出現在1991年,它是第一個操作簡便、使用廣泛的從Internet伺服器上獲取信息的客戶應用程序。除了操作簡便外,它的另一個特點是速度快。Gopher運行時,將顯示一個互動式的供用戶選擇的菜單,菜單中的選項由簡單的短句組成,每個短句通常指向另一個菜單,並最終指向有用的文件。Gopher是幫助用戶在Internet信息海洋中搜索有用信息的導航器。用戶只要關心瀏覽的內容,而不必關心具體的伺服器。
·文件檢索服務(Archie)
它是一個從整個Internet上匿名FTP伺服器獲取文件的服務。其完全依賴於匿名FTP系統的管理員,他們將站點在全世界的Archie伺服器進行了注冊,Archie僅通過文件名進行檢索。
2 IP協議
目前正在使用的IP協議是第4版的,稱之為「IPv4」,新版本的IP協議正在完善過程中,它就是經常可以在各大IT媒體中見到的IPv6。IPv6所要解決的主要是IPv4協議中IP地址遠遠不夠的現象。IPv4所採用的是32位,而IPv6則是128位,是原來的4倍。IPv6所提供的IP地址數已可算是天文數字了,據專家們分析,這個數字的IP地址可以使全球的每一個人都可擁有10以上的IP地址,這么多的IP地址相信再也不會出現IPv4那樣除了美國外,各國都出現IP地址短缺現象,為將來實現移動上網打下了堅實的基礎。但這屬於較新技術,在此就不作詳細介紹,本文仍以目前主流的IPv4協議為基礎進行介紹。
IP協議的功能是把數據報在互聯的網路上傳送,通過將數據報在一個個IP協議模塊間傳送,直到目的模塊。網路中每個計算機和網關上都有IP協議模塊。數據報在一個個模塊間通過路由處理網路地址傳送到目的地址,因此搜尋網路地址對於IP協議十分重要的功能。另外,因為各個網路上的數據報大小可能不同,所以數據報的分段也是IP協議的不可或缺的功能,不然對於一些網路帶寬較窄的網路,大的數據報就無法正確傳輸了。下面主要介紹我們初級學者所關心的現行方面問題。
(1)IP地址
在計算機定址中經常會遇到「名字」、「地址」和「路由」這三個術語,它們之間是有較大區別的。名字是要找的,就像的人名一樣;而地址是用來指出這個名字在什麼地方,就像人的住址一樣;路由是解決如何到達目的地址的問題,就像已經知道了某個人住在什麼地方,現在要考慮走什麼路線、採用什麼交通工具到達目的地方最為簡便。
這里所介紹的IP協議主要是解決地址的問題。名字和地址進行解析的工作是由其上層協議--TCP協議完成。IP協議模塊將地址和本地網路地址加以映射(就像寫信一樣,IP協議只負責把收、發信人的地址寫上,把信投進郵箱就可不管了),而將本地網路地址和路由進行映射則是低層協議(如路由協議)的任務,所以說IP協議是一個無連接的服務。
IP協議要尋找的「地址」是32位長(4個分段的16進制組成),由網路號(網路ID)和主機號(主機ID)兩部分構成,按照IP協議規定網際網路上的地址共有A、B、C、D、E五類.
按照IP協議規定網際網路上的地址共有A、B、C、D、E五類·A類IP地址:用前面8位來標識網路號,其中規定最前面一位為「0」,24位標識主機地址,即A類地址的第一段取值(也即網路號)可以是「00000001 ̄01111111」之間任一數字,轉換為十進制後即為1~128之間。主機號沒有做硬性規定,所以它的IP地址范圍為「1.0.0.0-128.255.255.255」。A類地址是為大型政府網路而提供,因為A地址中有10.0.0.0-10.255.255.254和127.0.0.0-127.255.255.254這兩段地址有專門用途,所以全世界總共只有126個可能的A類網路。每個A類網路最多可以連接16777214台計算機,這類地址數是最少的,但這類網路所允許連接的計算機是最多的。
·B類IP地址:用前面16位來標識網路號,其中最前面兩位規定為「10」,16位標識主機號,也就是說B類地址的第一段「10000000 ̄10111111」,轉換成十進制後即為128~191之間,第一段和第二段合在一起表示網路地址,它的地址范圍為「128.0.0.0-191.255.255.255」。B類地址適用於中等規模的網路,全世界大約有16000個B類網路,每個B類網路最多可以連接65534台計算機。這類IP地址通常為中等規模的網路提供。其中172.16.0.0-172.31.255.254地址段有專門用途。
·C類IP地址:用前面24位來標識網路號,其中最前面三位規定為「110」,8位標識主機號。這樣C類地址的第一段取值為「11000000 ̄11011111」之間,轉換成十進制後即為192~223。第一段、第二段、第三段合在一起表示網路號,最後一段標識網路上的主機號,它的地址范圍為「192.0.0.0-223.255.255.255」。C類地址適用於校園網等小型網路,每個C類網路最多可以有254台計算機。這類地址是所有的地址類型中地址數最多的,但這類網路所允許連接的計算機是最少的。這類IP地址可分配給任何有需要的人。其中192.168.0.0-192.168.255.255為企業區域網專用地址段。
·D類地址:它用於多重廣播組,一個多重廣播組可能包括1台或更多主機,或根本沒有。D類地址的最高位為1110,第一段八位體為「11100000 ̄11101111」,轉換成十進制即為224 ̄239,剩餘的位設計客戶機參加的特定組,它的地址范圍為「224.0.1.1-239.255.255.255」。在多重廣播操作中沒有網路或主機位,數據包將傳送到網路中選定的主機子集中,只有注冊了多重廣播地址的主機才能接收到數據包。Microsoft支持D類地址,用於應用程序將多重廣播數據發送到網路間的主機上,包括WINS和Microsoft NetShow。
·E類地址:這是一個通常不用的實驗性地址,保留作為以後使用。E類地址的最高位為11110,第一段八位體為「11110000 ̄11110111」,轉換成十進制即為240 ̄247。
IPv4協議中對首段位為248 ̄254 的地址段暫無規定。
其實還有一類IP地址,就是以「127」開頭的IP地址,這類IP地址也是屬於保留使用的,這類地址屬於環路測試類IP地址。這類IP地址不能作為計算機的IP地址用,也就不能在網路上使用這樣的IP地址來標識計算機的位置,更不能通過在瀏覽器或者其他搜索位置輸入這樣的IP地址,來搜索想要查找的計算機,因為它只能在本地計算機上用於測試使用。
其實還有一類IP地址,就是以「127」開頭的IP地址,這類IP地址也是屬於保留使用的,這類地址屬於環路測試類IP地址。這類IP地址不能作為計算機的IP地址用,也就不能在網路上使用這樣的IP地址來標識計算機的位置,更不能通過在瀏覽器或者其他搜索位置輸入這樣的IP地址,來搜索想要查找的計算機,因為它只能在本地計算機上用於測試使用。
其實還有一類IP地址,就是以「127」開頭的IP地址,這類IP地址也是屬於保留使用的,這類地址屬於環路測試類IP地址。這類IP地址不能作為計算機的IP地址用,也就不能在網路上使用這樣的IP地址來標識計算機的位置,更不能通過在瀏覽器或者其他搜索位置輸入這樣的IP地址,來搜索想要查找的計算機,因為它只能在本地計算機上用於測試使用。
(2) 子網掩碼和域名
以上介紹的是網路IP地址,但隨著網路的發展,IPv4標准中的IP地址遠不夠用,為了解決這一矛盾,於是又在IP地址加上子網掩碼來進一步識別。在TCP/IP協議中規定,A類網路的子網掩碼格式為「255.0.0.0」形式,後面的「0」可以為「0 ̄254」之間任一數字。B類網路的子網掩碼格式為「255.255.0.0」,C類網路的子網掩碼為格式為「255.255.255.0」,同樣其中的「0」可以是「0 ̄254」之間任一數字。如果沒有子網,可以為「0」,也可以不配置,如果有子網則一定要配置。
前面介紹的IP地址都是以數字形式表示計算機的地址,這種IP地址人們記憶起來是非常困難的。對非計算機和網路的專業人士來說,記住這種地址是很不現實的。因此,Internet還採用域名地址來表示每台計算機。通過為每台計算機建立IP地址與域名地址之間的映射關系,用戶可以在網上避開難以記憶的IP地址,而用域名地址來唯一標記網上的計算機。域名地址與IP地址的關系類似於一個人的姓名與身份證號碼之間的關系。
要把計算機連入Internet,必須獲得網上唯一的IP地址與對應的域名地址。域名地址由域名系統(DNS)管理。每個連到Internet的網路中都有至少一個DNS伺服器,其中存有該網路中所有計算機的域名和對應的IP地址,通過與其他網路的DNS伺服器相連就可以找到其他站點。這也是在TCP/IP協議屬性中要進行DNS配置的原因。
域名地址也是分段表示的,每段分別授權給不同的機構管理,各段之間用圓點(.)分隔。與IP地址相反,各段自左至右級別是越來越高。
⑽ 網路協議都有哪些
ATM協議 即非同步傳輸模式,ATM協議是以高速分組傳送模式為主,綜合電路傳輸模式優 先的一種寬頻傳輸模式。 BGP協議 BGP協議即邊界網關協議,BGP協議是不同自治系統路由器之間進行通信的外部網關協議 DHCP協議 主要用在路由器中給區域網各主機分配IP DNS協議 域名系統(服務)協議 DSL協議 高速數字用戶線,已經是歷史了 EIGRP協議 增強的內部網關路由選擇協議 FDDI協議 FDDI(光纖分布數據介面)是目前成熟的LAN技術中傳輸速率最高的一種 FTP協議 地球人都知道 HTTP協議 地球人都知道 IGRP協議 IGRP (Interior Gateway Routing Protocol)是一種動態距離向量路由協議,它由Cisco公司八十年代中期設計。使用組合用戶配置尺度,包括延遲、帶寬、可靠性和負載。 IPV6協議 目前的全球網際網路所採用的協議族是TCP/IP協議族。IP是TCP/IP協議族中網路層的協議,是TCP/IP協議族的核心協議。目前IP協議的版本號是4(簡稱為IPv4,v是version——版本),它的下一個版本就是IPv6。IPv6正處在不斷發展和完善的過程中,它在不久的將來將取代目前被廣泛使用的IPv4。 MPLS協議 MPLS(Multi-Propocol Label Switching)即多協議標記交換。 IPX協議 IPX協議是Novell NetWare自帶的最底層網路協議,主要用來控制區域網內或區域網之間數據包的定址和路由,只負責數據包在區域網中的傳送,並不保證消息的完整性,也不提供糾錯服務。 OSPF協議 OSPF(Open Shortest Path First)是一個內部網關協議(Interior Gateway Protocol,簡稱IGP),用於在單一自治系統(autonomous system,AS)內決策路由。 POP3協議 POP 即為 Post Office Protocol 的簡稱,是一種電子郵局傳輸協議,而 POP3 是它的第三個版本 PPP協議 PPP協議中提供了一整套方案來解決鏈路建立、維護、拆除、上層協議協商、認證等問題。 RIP協議 距離向量路由協議。 SMTP協議 SMTP(Simple Mail Transfer Protocol)即簡單郵件傳輸協議,它是一組用於由源地址到目的地址傳送郵件的規則,由它來控制信件的中轉方式。 SNMP協議 簡單網路管理協議(SNMP)首先是由Internet工程任務組織(Internet Engineering Task Force)(IETF)的研究小組為了解決Internet上的路由器管理問題而提出的。它可以在IP,IPX,AppleTalk,OSI以及其他用到的傳輸協議上被使用。 TCP/IP協議 TCP/IP(Transmission Control Protocol/Internet Protocol的簡寫,中文譯名為傳輸控制協議/互聯網路協議)協議是Internet最基本的協議,簡單地說,就是由底層的IP協議和TCP協議組成的。 TELNET協議 用於遠程登錄 TFTP協議 TFTP全稱為Trivial File Transfer Protocol,中文名叫簡單文件傳輸協議。 UDP協議 用戶數據報協議是定義用來在互連網路環境中提供包交換的計算機通信的協議。 VLAN協議 VLAN是為解決乙太網的廣播問題和安全性而提出的一種協議,它在乙太網幀的基礎上增加了VLAN頭 VOIP協議 VoIP(Voice over Internet Protocol)是一種以IP電話為主,並推出相應的增值業務的技術 WINS協議 WINS是Windows Internet Name Server(Windows網際名字服務)的簡稱。WINS為NetBIOS名字提供名字注冊、更新、釋放和轉換服務,這些服務允許WINS伺服器維護一個將NetBIOS名鏈接到IP地址的動態資料庫,大大減輕了對網路交通的負擔。 WLAN協議 WLAN是無線區域網的首字母縮寫詞。 乙太網協議 乙太網協議有兩種,一種是IEEE802.2/IEEE802.3,還有一種是乙太網的封裝格式。 WAP (無線通訊協議)是在數字行動電話、互聯網或其他個人數字助理機(PDA)、計算機應用乃至未來的信息家電之間進行通訊的全球性開放標准。 ICMP 是「Internet Control Message Protocol」(Internet控制消息協議)的縮寫。它是TCP/IP協議族的一個子協議,用於在IP主機、路由器之間傳遞控制消息。 BGP 邊界網關協議。