計算機網路就是由多台計算機(或其它計算機網路設備)通過傳輸介質和軟體物理(或邏輯)連接在一起組成的。總的來說計算機網路的組成基本上包括:計算機、網路操作系統、傳輸介質(可以是有形的,也可以是無形的,如無線網路的傳輸介質就是空間)以及相應的應用軟體四部分。
從整體上來說計算機網路就是把分布在不同地理區域的計算機與專門的外部設備用通信線路互聯成一個規模大、功能強的系統,從而使眾多的計算機可以方便地互相傳遞信息,共享硬體、軟體、數據信息等資源。簡單來說,計算機網路就是由通信線路互相連接的許多自主工作的計算機構成的集合體。
最簡單的計算機網路就只有兩台計算機和連接它們的一條鏈路,即兩個節點和一條鏈路。
(1)網路結構形式由哪些網元組成擴展閱讀
20世紀60年代中期之前的第一代計算機網路是以單個計算機為中心的遠程聯機系統,典型應用是由一台計算機和全美范圍內2000多個終端組成的飛機訂票系統,終端是一台計算機的外圍設備,包括顯示器和鍵盤,無CPU和內存。
隨著遠程終端的增多,在主機前增加了前端機(FEP)。當時,人們把計算機網路定義為「以傳輸信息為目的而連接起來,實現遠程信息處理或進一步達到資源共享的系統」,這樣的通信系統已具備網路的雛形。
20世紀60年代中期至70年代的第二代計算機網路是以多個主機通過通信線路互聯起來,為用戶提供服務,興起於60年代後期,典型代表是美國國防部高級研究計劃局協助開發的ARPANET。
主機之間不是直接用線路相連,而是由介面報文處理機(IMP)轉接後互聯的。IMP和它們之間互聯的通信線路一起負責主機間的通信任務,構成了通信子網。
通信子網互聯的主機負責運行程序,提供資源共享,組成資源子網。這個時期,網路概念為「以能夠相互共享資源為目的互聯起來的具有獨立功能的計算機之集合體」,形成了計算機網路的基本概念。
⑵ 計算機網路由哪幾部分組成
計算機網路的組成基本上包括:計算機、網路操作系統、傳輸介質(可以是有形的,也可以是無形的,如無線網路的傳輸介質就是空間)以及相應的應用軟體四部分。
計算機網路的分類與一般的事物分類方法一樣,可以按事物所具有的不同性質特點(即事物的屬性)分類。計算機網路通俗地講就是由多台計算機(或其它計算機網路設備)通過傳輸介質和軟體物理(或邏輯)連接在一起組成的。
雖然網路類型的劃分標准各種各樣,但是從地理范圍劃分是一種大家都認可的通用網路劃分標准。按這種標准可以把各種網路類型劃分為區域網、城域網、廣域網和互聯網四種。區域網一般來說只
能是一個較小區域內,城域網是不同地區的網路互聯,不過在此要說明的一點就是這里的網路劃分並沒有嚴格意義上地理范圍的區分,只能是一個定性的概念。
(2)網路結構形式由哪些網元組成擴展閱讀:
計算機網路按廣義分類:
計算機網路也稱計算機通信網。關於計算機網路的最簡單定義是:一些相互連接的、以共享資源為目的的、自治的計算機的集合。若按此定義,則早期的面向終端的網路都不能算是計算機網路,而
只能稱為聯機系統(因為那時的許多終端不能算是自治的計算機)。但隨著硬體價格的下降,許多終端都具有一定的智能,因而「終端」和「自治的計算機」逐漸失去了嚴格的界限。若用微型計算
機作為終端使用,按上述定義,則早期的那種面向終端的網路也可稱為計算機網路。
另外,從邏輯功能上看,計算機網路是以傳輸信息為基礎目的,用通信線路將多個計算機連接起來的計算機系統的集合,一個計算機網路組成包括傳輸介質和通信設備。
從用戶角度看,計算機網路是這樣定義的:存在著一個能為用戶自動管理的網路操作系統。由它調用完成用戶所調用的資源,而整個網路像一個大的計算機系統一樣,對用戶是透明的。
一個比較通用的定義是:利用通信線路將地理上分散的、具有獨立功能的計算機系統和通信設備按不同的形式連接起來,以功能完善的網路軟體及協議實現資源共享和信息傳遞的系統。
從整體上來說計算機網路就是把分布在不同地理區域的計算機與專門的外部設備用通信線路互聯成一個規模大、功能強的系統,從而使眾多的計算機可以方便地互相傳遞信息,共享硬體、軟體、數
據信息等資源。簡單來說,計算機網路就是由通信線路互相連接的許多自主工作的計算機構成的集合體。
最簡單的計算機網路就只有兩台計算機和連接它們的一條鏈路,即兩個節點和一條鏈路。
參考資料:網路--計算機網路
⑶ 2G/3G網路結構分為幾層每層名稱是什麼都有哪些網元
分為無線接入網和核心網
無線接入部分有基站控制器和基站
核心網包括交換機msc,sgsn,ggsn,hlr,vlr,auc,smsc等
⑷ 求問計算機網路由哪幾個部分組成
它的功能最主要的表現在兩個方面:一是實現資源共享(包括硬體資源和軟體資源的共享);二是在用戶之間交換信息。計算機網路的作用是:不僅使分散在網路各處的計算機能共享網上的所有資源,並且為用戶提供強有力的通信手段和盡可能完善的服務,從而極大的方便用戶。從網管的角度來講,說白了就是運用技術手段實現網路間的信息傳遞,同時為用戶提供服務。
計算機網路通常由三個部分組成,它們是資源子網、通信子網和通信協議.所謂通信子網就是計算機網路中負責數據通信的部分;資源子網是計算機網路中面向用戶的部分,負責全網路面向應用的數據處理工作;而通信雙方必須共同遵守的規則和約定就稱為通信協議,它的存在與否是計算機網路與一般計算機互連系統的根本區別。所以從這一點上來說,我們應該更能明白計算機網路為什麼是計算機技術和通信技術發展的產物了。
現在最常見的劃分方法是:按計算機網路覆蓋的地理范圍的大小,一般分為廣域網(WAN)和區域網(LAN)(也有的劃分再增加一個城域網(MAN))。顧名思義,所謂廣域網無非就是地理上距離較遠的網路連接形式,例如著名的Internet網,Chinanet網就是典型的廣域網。而一個區域網的范圍通常不超過10公里,並且經常限於一個單一的建築物或一組相距很近的建築物.Novell網是目前最流行的計算機區域網。
在計算機網路技術中,網路的體系結構指的是通信系統的整體設計,它的目的是為網路硬體、軟體、協議、存取控制和拓撲提供標准.現在廣泛採用的是開放系統互連OSI(Open System Interconnection)的參考模型,它是用物理層、數據鏈路層、網路層、傳送層、對話層、表示層和應用層七個層次描述網路的結構.你應該注意的是,網路體系結構的優劣將直接影響匯流排、介面和網路的性能.而網路體系結構的關鍵要素恰恰就是協議和拓撲。目前最常見的網路體系結構有FDDI、乙太網、令牌環網和快速乙太網等。
剛才說過網路體系結構的關鍵要素之一就是網路協議。而所謂協議(Protocol)就是對數據格式和計算機之間交換數據時必須遵守的規則的正式描述,它的作用和普通話的作用如出一轍。依據網路的不同通常使用Ethernet(乙太網)、NetBEUI、IPX/SPX以及TCP/IP協議。Ethernet是匯流排型協議中最常見的網路低層協議,安裝容易且造價便宜;而NetBEUI可以說是專為小型區域網設計的網路協議。對那些無需跨經路由器與大型主機通信的小型區域網,安裝NetBEUI協議就足夠了,但如果需要路由到另外的區域網,就必須安裝IPX/SPX或TCP/IP協議.前者幾乎成了Novell網的代名詞,而後者就被著名的Internet網所採用.特別是TCP/IP(傳輸控制協議/網間協議)就是開放系統互連協議中最早的協議之一,也是目前最完全和應用最廣的協議,能實現各種不同計算機平台之間的連接、交流和通信。
計算機網路的拓撲結構是指網路中各個站點相互連接的形式,在區域網中明確一點講就是文件伺服器、工作站和電纜等的連接形式.現在最主要的拓撲結構有匯流排型拓撲、星型拓撲、環型拓撲以及它們的混合型。顧名思義,匯流排型其實就是將文件伺服器和工作站都連在稱為匯流排的一條公共電纜上,且匯流排兩端必須有終結器;星型拓撲則是以一台設備作為中央連接點,各工作站都與它直接相連形成星型;而環型拓撲就是將所有站點彼此串列連接,像鏈子一樣構成一個環形迴路;把這三種最基本的拓撲結構混合起來運用自然就是混合型了。
計算機網路的硬體系統通常由五部分組成:文件伺服器、工作站(包括終端)、傳輸介質、網路連接硬體和外部設備。文件伺服器一般要求是配備了高性能CPU系統的微機,它充當網路的核心。除了管理整個網路上的事務外,它還必須提供各種資源和服務。而工作站可以說是一種智能型終端,它從文件伺服器取出程序和數據後,能在本站進行處理,一般有有盤和無盤之分。接下來談談傳輸介質,它是通信網路中發送方和接受方之間的物理通路,在區域網中就是用來連接伺服器和工作站的電纜線.目前常用的網路傳輸介質有雙絞線(多用於區域網)、同軸電纜和光纜等.常用的網路連接硬體有網路介面卡(NIC)、集線器(HUB)、中繼器(Repeater)以及數據機(Modem)等。而列印機、掃描儀、繪圖儀以及其它任何可為工作站共享的設備都能被稱為外部設備。
我們都知道,網路操作系統是整個網路的靈魂,同時也是分布式處理系統的重要體現,它決定了網路的功能並由此決定了不同網路的應用領域即方向。目前比較流行的網路操作系統主要有Unix、NetWare、Windows NT和新興流行的Linux.Unix歷史悠久,發展到今天已經相當成熟,尤其以安全可靠和應用廣泛著稱;相比之下,NetWare以文件服務及列印管理聞名,而且其目錄服務可以說是被業界公認的目錄管理傑作;Windows NT是能支持多種硬體平台的真正的32位操作系統,它保持了深受歡迎的Windows用戶界面,目前正被越來越多的網路所應用;而最新的Linux憑借其先進的設計思想和自由軟體的身分正躋身優秀網路操作系統的行列。
⑸ 網路結構有哪些
區域網中常用的拓樸結構有(星型)、環型、(匯流排型)和樹形 下面分別介紹區域網中常用的四種拓樸結構。 1.星型拓樸結構 星型拓樸由中央節點和通過點到點的鏈路接到中央節點的各站點組成。 ⑴工作方式 中央節點執行集中式通信控制策略,相當復雜;而各個站點的通信處理負擔很小。 目前流行的電話用戶交換機PBX 就是星型拓樸結構的典型實例。 ⑵星型拓樸結構的優點 ①中央節點實施集中控制,可方便地提供服務和重新配置。 ②每個連接只接入一個設備,當連接點出現故障時不會影響整個網路。 ③由於每個站點直接連接到中央節點,因而故障易於檢測和隔離,可以很方便地將有故障的站點從系統中拆除。 ④訪問協議簡單。 ⑶星型拓樸結構的缺點 ①由於每個站點直接和中央節點相連,需要大量的電纜、電纜溝。在電纜的安裝和維護方面容易出問題。 ②過於依賴中央節點。當中央節點發生故障時,整個網路不能工作,所以對中央節點的可靠性要求較高。 2.匯流排型拓樸結構 匯流排型拓樸結構採用單根傳輸線作為傳輸介質,所有站點都通過相應的硬體介面直接連接到傳輸介質(即匯流排)上。 ⑴工作方式 任何一個站點發出的數據都可以沿著介質傳輸。通常,目標地址已編碼於報文信息內,於是與報文內地址相符的站點才能接收該信息。 由於所有節點共享一條公用的數據傳輸鏈路,所以在任一個時間段,它只能被一個設備佔用。為使工作有序,通常採用分布控制策略(帶沖突檢測的載波偵聽多路復用協議)來決定下一次哪個站點可以發送數據。 ⑵匯流排型拓樸的優點 ①電纜長度短,易於布線,易於維護,安裝費用低。 ②結構簡單,都是無源元件,可靠性高。 ③易於擴充:在匯流排的任何位置都可直接接入增加新站點;如需增加網段長度,可通過中繼器再加上一個附加段。 ⑶匯流排型拓樸的缺點 故障診斷和隔離困難:匯流排結構不是集中控制,所以故障檢測需在網上各個站點進行。如果故障發生在站點,則需將該站點從匯流排上去掉,如果傳輸介質出現故障,則這段匯流排整個都要切斷。它不能像星型結構那樣,簡單地拆除某個站點連線即可隔離故障。 3.環型拓樸結構 這種網路由點到點的鏈路組成一個閉合環。 ⑴工作方式 每個中繼器都與兩條鏈路相連。它從一條鏈路上接收數據,並以同樣速度、不經緩沖地傳送到另一條鏈路上。對所有鏈路都規定相同的收發方向,於是數據便圍繞著環循環傳輸。 由於多個設備共享一個環,因此採用分布控制來決定哪個站點在什麼時候可以把分組數據放到環上去。 ⑵環型拓樸的優點 ①電纜長度短:環型拓樸所需電纜長度與匯流排型相近,比星型拓樸要短得多。 ②可使用多種傳輸介質: h因為環型網是點到點的連接,可在樓內使用雙絞線,而在戶外的主幹網採用光纜,以解決傳輸速率和電磁干擾問題。 h因為環型拓樸在每個環上是單向傳輸,所以十分適於傳輸速率高的光纖傳輸介質。 4.樹形拓樸結構 樹形拓樸由匯流排拓樸演變而來。它有一個帶分支的根,還可再延伸出若乾子分支。樹形拓樸通常採用同軸電纜作為傳輸介質,而且使用寬頻傳輸技術。 樹形拓樸與匯流排拓樸比較如下: ⑴樹形拓樸與帶有幾個網段的匯流排型拓樸的主要區別在於根的存在。當節點發送報文數據被根接收後,才可以重新廣播到全網。 ⑵樹形拓樸易於故障隔離,這是匯流排拓樸不能比擬的。其它優點與匯流排拓樸相同。 ⑶樹形拓樸的缺點是對根的依賴太大,如果根發生故障,則整個網路不能正常工作。這種網路的可靠性問題和星型拓樸結構相似。
⑹ 計算機網路的結構有那些
網路的拓撲結構是拋開網路物理連接來討論網路系統的連接形式,網路中各站點相互連接的方法和形式稱為網路拓撲。拓撲圖給出網路伺服器、工作站的網路配置和相互間的連接,它的結構主要有星型結構、匯流排結構、樹型結構、網狀結構、蜂窩狀結構、分布式結構等。
星型結構
星型結構是指各工作站以星型方式連接成網。網路有中央節點,其他節點(工作站、伺服器)都與中央節點直接相連,這種結構以中央節點為中心,因此又稱為集中式網路。它具有如下特點:結構簡單,便於管理;控制簡單,便於建網;網路延遲時間較小,傳輸誤差較低。但缺點也是明顯的:成本高、可靠性較低、資源共享能力也較差。
環型結構
環型結構由網路中若干節點通過點到點的鏈路首尾相連形成一個閉合的環,這種結構使公共傳輸電纜組成環型連接,數據在環路中沿著一個方向在各個節點間傳輸,信息從一個節點傳到另一個節點。
環型結構具有如下特點:信息流在網中是沿著固定方向流動的,兩個節點僅有一條道路,故簡化了路徑選擇的控制;環路上各節點都是自舉控制,故控制軟體簡單;由於信息源在環路中是串列地穿過各個節點,當環中節點過多時,勢必影響信息傳輸速率,使網路的響應時間延長;環路是封閉的,不便於擴充;可靠性低,一個節點故障,將會造成全網癱瘓;維護難,對分支節點故障定位較難。
匯流排型結構
匯流排結構是指各工作站和伺服器均掛在一條匯流排上,各工作站地位平等,無中心節點控制,公用匯流排上的信息多以基帶形式串列傳遞,其傳遞方向總是從發送信息的節點開始向兩端擴散,如同廣播電台發射的信息一樣,因此又稱廣播式計算機網路。各節點在接受信息時都進行地址檢查,看是否與自己的工作站地址相符,相符則接收網上的信息。
匯流排型結構的網路特點如下:結構簡單,可擴充性好。當需要增加節點時,只需要在匯流排上增加一個分支介面便可與分支節點相連,當匯流排負載不允許時還可以擴充匯流排;使用的電纜少,且安裝容易;使用的設備相對簡單,可靠性高;維護難,分支節點故障查找難。
分布式結構
分布式結構的網路是將分布在不同地點的計算機通過線路互連起來的一種網路形式,分布式結構的網路具有如下特點:由於採用分散控制,即使整個網路中的某個局部出現故障,也不會影響全網的操作,因而具有很高的可靠性;網中的路徑選擇最短路徑演算法,故網上延遲時間少,傳輸速率高,但控制復雜;各個節點間均可以直接建立數據鏈路,信息流程最短;便於全網范圍內的資源共享。缺點為連接線路用電纜長,造價高;網路管理軟體復雜;報文分組交換、路徑選擇、流向控制復雜;在一般區域網中不採用這種結構。
樹型結構
樹型結構是分級的集中控制式網路,與星型相比,它的通信線路總長度短,成本較低,節點易於擴充,尋找路徑比較方便,但除了葉節點及其相連的線路外,任一節點或其相連的線路故障都會使系統受到影響。
網狀拓撲結構
在網狀拓撲結構中,網路的每台設備之間均有點到點的鏈路連接,這種連接不經濟,只有每個站點都要頻繁發送信息時才使用這種方法。它的安裝也復雜,但系統可靠性高,容錯能力強。有時也稱為分布式結構。
蜂窩拓撲結構
蜂窩拓撲結構是無線區域網中常用的結構。它以無線傳輸介質(微波、衛星、紅外等)點到點和多點傳輸為特徵,是一種無線網,適用於城市網、校園網、企業網。
在計算機網路中還有其他類型的拓撲結構,如匯流排型與星型混合。匯流排型與環型混合連接的網路。在區域網中,使用最多的是匯流排型和星型結構。
⑺ EVDO的網路結構里包含哪些網元
EV-DO系統結構如圖所示,由無線接入網和核心網組成。
網元主要就是AN、PCF、ANAAA、PDSN/FA、AAA、HA。具體介紹如下:
無線接入網包括接入網(AccessNetwork、AN)、分組控制功能(PacketControlFunction,PCF)和接入網鑒權/認證/計費(AN-AAA)等功能實體。AN完成基站收發及其控制功能。PCF完成A8和A10連接的建立和分組數據業務節點(PacketDataServiceNode,PDSN)的選擇功能。AN-AAA完成接入鑒權的演算法和參數,執行接入鑒權功能。
核心網主要包括PDSN及其AAA等功能實體。PDSN主要完成分組數據會話的建立、管理和釋放功能。AAA負責於用戶有關的登記、鑒權和計費功能。在移動IP的情況下,核心網還包括功能外部實體(ForeignAgent,FA)和歸屬代理(HomeAgent,HA)。FA是作為移動IP技術中的外部代理,負責登記、計費和轉發用戶數據等工作,可與PDSN合設。HA是IPSec安全隧道的起點,用於提供用戶漫遊時的IP地址分配、路由選擇合數據加密等功能。
EV-DO介麵包括以下幾個介面:
A8/A9:AN與PCF之間的內部介面,A8承載業務數據,A9承載信令;
A10/A11:PCF與PDSN之間的介面,也稱R-P介面,A10承載數據,A11承載信令;
A12:AN與AN-AAA之間的介面,用於承載用戶接入鑒權的消息;
A13:源AN與目標AN之間的介面,在會話切換時,源AN和目標AN通過A13傳遞原有會話的配置信息。
⑻ LTE 的網路結構中有哪些網元作用是什麼
LTE網路結構有以下網元:
1、eNodeB(簡稱為eNB)是LTE網路中的無線基站,也是LTE無線接入網的網元,負責空中介面相關的所有功能:
(1)無線鏈路維護功能,保持與終端間的無線鏈路,同時負責無線鏈路數據和IP數據之間的協議轉換;
(2)無線資源管理功能,包括無線鏈路的建立和釋放、無線資源的調度和分配等;
(3)部分移動性管理功能,包括配置終端進行測量、評估終端無線鏈路質量、決策終端在小區間的切換等。
2G/3G基站只負責了與終端無線鏈路的連接,而鏈路的具體維護工作(無線資源管理、不經過核心網的移動性管理等)都是由基站的上一級管理實體(2G中是BSC、3G中的RNC)完成的,此外無線接入網與核心網的橋梁功能也是在BSC或RNC中實現的。
總之,eNB大致相當於2G中BTS與BSC的結合體,或3G中NodeB與RNC的結合體。
2、MME(Mobility Management Entity)是3GPP協議LTE接入網路的關鍵控制節點,它負責空閑模式的UE(User Equipment)的定位,傳呼過程,包括中繼,簡單的說MME是負責信令處理部分。
它涉及到bearer激活/關閉過程,並且當一個UE初始化並且連接到時為這個UE選擇一個SGW(Serving GateWay)。通過和HSS交互認證一個用戶,為一個用戶分配一個臨時ID。MME同時支持在法律許可的范圍內,進行攔截、監聽。MME為2G/3G接入網路提供了控制函數介面,通過S3介面。為漫遊UEs,面向HSS同樣提供了S6a介面。
3、SGW(Serving GateWay,服務網關)是移動通信網路EPC中的重要網元。
EPC網路實際上是原3G核心網PS域的演進版本,而SGW的功能和作用與原3G核心網SGSN網元的用戶面相當,即在新的EPC網路中,控制面功能和媒體面功能分離更加徹底。
4、PGW(PDN GateWay,PDN網關)是移動通信網路EPC中的重要網元。
EPC網路實際上是原3G核心網PS域的演進版本,而PGW也相當於是一個演進了的GGSN網元,其功能和作用與原GGSN網元相當。
(8)網路結構形式由哪些網元組成擴展閱讀
隨著技術的演進與發展,3GPP相繼提出了TD-LTE,FDD-LTE等技術。
1、TD-LTE
TD-LTE是一種新一代寬頻移動通信技術,是我國擁有自主知識產權的TD-SCDMA的後續演進技術,在繼承了TDD優點的同時又引入了多天線MIMO與頻分復用OFDM技術。相比於3G,TD-LTE在系統性能上有了跨越式提高,能夠為用戶提供更加豐富多彩的移動互聯網業務。
2、FDD-LTE
FDD(頻分雙工)是該技術支援的兩種雙工模式之一,應用FDD式的LTE即為FDD-LTE。
由於無線技術的差異使用頻段的不同以及各 個廠家的利益等因素,FDD-LTE的標准化與產業發展都領先於TDD-LTE。FDD模式的特點是在分離(上下行頻率間隔190MHz)的兩個對稱頻率信道上,系統進行接收和傳送,用保證頻段來分離接收和傳送信道。
FDD模式的優點是採用包交換等技術,可突破二代發展的瓶頸,實現高速數據業務,並可提高頻譜利用率,增加系統容量。但FDD必須採用成對的頻率,即在每2 x 5MHz的帶寬內提供第三代業務。
該方式在支持對稱業務時,能充分利用上下行的頻譜,但在非對稱的分組交換(互聯網)工作時,頻譜利用率則大大降低(由於低上行負載,造成頻譜利用率降低約40%)。 在這點上,TDD模式有著FDD無法比擬的優勢。
⑼ 計算機網路體系結構的組成結構
一、計算機系統和終端
計算機系統和終端提供網路服務界面。地域集中的多個獨立終端可通過一個終端控制器連入網路。
二、通信處理機
通信處理機也叫通信控制器或前端處理機,是計算機網路中完成通信控制的專用計算機,通常由小型機、微機或帶有CPU的專用設備充當。在廣域網中,採用專門的計算機充當通信處理機:在區域網中,由於通信控制功能比較簡單,所以沒有專門的通信處理機,而是在計算機中插入一個網路適配器(網卡)來控制通信。
三、通信線路和通信設備
通信線路是連接各計算機系統終端的物理通路。通信設備的採用與線路類型有很大關系:如果是模擬線路,在線中兩端使用Modem(數據機);如果是有線介質,在計算機和介質之間就必須使用相應的介質連接部件。
四、操作系統
計算機連入網路後,還需要安裝操作系統軟體才能實現資源共享和管理網路資源。如:Windows 98、Windows 2000、Windows xp等。
五、網路協議
網路協議是規定在網路中進行相互通信時需遵守的規則,只有遵守這些規則才能實現網路通信。常見的協議有:TCT/IP協議、IPX/SPX協議、NetBEUI協議等。