導航:首頁 > 網路問題 > 為什麼用卷積網路處理圖片

為什麼用卷積網路處理圖片

發布時間:2022-08-16 02:19:48

什麼是卷積神經網路為什麼它們很重要

㈡ 卷積在數字圖像處理的應用

卷積就是把模版與圖像對應點相乘再相加,把最後的結果代替模版中心點的值。其實實現挺簡單的,如果你想弄的特別明白就看看數字信號處理的相關內容吧,只是一個概念而已。

㈢ 卷積神經網路主要做什麼用的

卷積網路的特點主要是卷積核參數共享,池化操作。
參數共享的話的話是因為像圖片等結構化的數據在不同的區域可能會存在相同的特徵,那麼就可以把卷積核作為detector,每一層detect不同的特徵,但是同層的核是在圖片的不同地方找相同的特徵。然後把底層的特徵組合傳給後層,再在後層對特徵整合(一般深度網路是說不清楚後面的網路層得到了什麼特徵的)。
而池化主要是因為在某些任務中降采樣並不會影響結果。所以可以大大減少參數量,另外,池化後在之前同樣大小的區域就可以包含更多的信息了。
綜上,所有有這種特徵的數據都可以用卷積網路來處理。有卷積做視頻的,有卷積做文本處理的(當然這兩者由於是序列信號,天然更適合用lstm處理)
另外,卷積網路只是個工具,看你怎麼使用它,有必要的話你可以隨意組合池化和卷積的順序,可以改變網路結構來達到自己所需目的的,不必太被既定框架束縛。

㈣ CNN(卷積神經網路)是什麼

在數字圖像處理的時候我們用卷積來濾波是因為我們用的卷積模版在頻域上確實是高通低通帶通等等物理意義上的濾波器。然而在神經網路中,模版的參數是訓練出來的,我認為是純數學意義的東西,很難理解為在頻域上還有什麼意義,所以我不認為神經網路里的卷積有濾波的作用。接著談一下個人的理解。首先不管是不是卷積神經網路,只要是神經網路,本質上就是在用一層層簡單的函數(不管是sigmoid還是Relu)來擬合一個極其復雜的函數,而擬合的過程就是通過一次次back propagation來調參從而使代價函數最小。

如何通過人工神經網路實現圖像識別

人工神經網路(Artificial Neural Networks)(簡稱ANN)系統從20 世紀40 年代末誕生至今僅短短半個多世紀,但由於他具有信息的分布存儲、並行處理以及自學習能力等優點,已經在信息處理、模式識別、智能控制及系統建模等領域得到越來越廣泛的應用。尤其是基於誤差反向傳播(Error Back Propagation)演算法的多層前饋網路(Multiple-Layer Feedforward Network)(簡稱BP 網路),可以以任意精度逼近任意的連續函數,所以廣泛應用於非線性建模、函數逼近、模式分類等方面。


目標識別是模式識別領域的一項傳統的課題,這是因為目標識別不是一個孤立的問題,而是模式識別領域中大多數課題都會遇到的基本問題,並且在不同的課題中,由於具體的條件不同,解決的方法也不盡相同,因而目標識別的研究仍具有理論和實踐意義。這里討論的是將要識別的目標物體用成像頭(紅外或可見光等)攝入後形成的圖像信號序列送入計算機,用神經網路識別圖像的問題。


一、BP 神經網路


BP 網路是採用Widrow-Hoff 學習演算法和非線性可微轉移函數的多層網路。一個典型的BP 網路採用的是梯度下降演算法,也就是Widrow-Hoff 演算法所規定的。backpropagation 就是指的為非線性多層網路計算梯度的方法。一個典型的BP 網路結構如圖所示。

六、總結

從上述的試驗中已經可以看出,採用神經網路識別是切實可行的,給出的例子只是簡單的數字識別實驗,要想在網路模式下識別復雜的目標圖像則需要降低網路規模,增加識別能力,原理是一樣的。

㈥ 如何理解卷積,另外如何理解圖像處理中的卷積

卷積的運算可以分為反轉、平移,相乘,求和。

在圖像處理中,圖像是一個大矩陣,卷積模板是一個小矩陣。按照上述過程,就是先把小矩陣反轉,然後平移到某一位置,小矩陣的每一個小格對應大矩陣裡面的一個小格,然後把對應小格裡面的數相乘,把所有對應小格相乘的結果相加求和,得出的最後結果賦值給小矩陣中央小格對應的圖像中小格的值,替換原來的值。就是上述說到的,反轉、平移、相乘、求和。
一般圖像卷積就是從第一個像素(小格)開始遍歷到最後一個像素(小格)。之後的平滑、模糊、銳化、邊緣提取等本質上都是卷積,只是模板不同。

㈦ 為什麼要對圖像卷積處理

圖像的卷積是對圖像處理的一個基本方法,FFT變換以及其他變換都市基於此的,經過變換以後 的圖片往往能減除圖像的雜訊,比原圖像易於處理,分析

㈧ 為什麼圖像識別都用卷積神經網路不能使用遺傳演算法來做圖像識別嗎

目前能用的圖像識別演算法中,卷積神經網路效果最好。

㈨ 為什麼有圖卷積神經網路

本質上說,世界上所有的數據都是拓撲結構,也就是網路結構,如果能夠把這些網路數據真正的收集、融合起來,這確實是實現了AI智能的第一步。所以,如何利用深度學習處理這些復雜的拓撲數據,如何開創新的處理圖數據以及知識圖譜的智能演算法是AI的一個重要方向。
深度學習在多個領域的成功主要歸功於計算資源的快速發展(如 GPU)、大量訓練數據的收集,還有深度學習從歐幾里得數據(如圖像、文本和視頻)中提取潛在表徵的有效性。但是,盡管深度學習已經在歐幾里得數據中取得了很大的成功,但從非歐幾里得域生成的數據已經取得更廣泛的應用,它們需要有效分析。如在電子商務領域,一個基於圖的學習系統能夠利用用戶和產品之間的交互以實現高度精準的推薦。在化學領域,分子被建模為圖,新葯研發需要測定其生物活性。在論文引用網路中,論文之間通過引用關系互相連接,需要將它們分成不同的類別。自2012年以來,深度學習在計算機視覺以及自然語言處理兩個領域取得了巨大的成功。假設有一張圖,要做分類,傳統方法需要手動提取一些特徵,比如紋理,顏色,或者一些更高級的特徵。然後再把這些特徵放到像隨機森林等分類器,給到一個輸出標簽,告訴它是哪個類別。而深度學習是輸入一張圖,經過神經網路,直接輸出一個標簽。特徵提取和分類一步到位,避免了手工提取特徵或者人工規則,從原始數據中自動化地去提取特徵,是一種端到端(end-to-end)的學習。相較於傳統的方法,深度學習能夠學習到更高效的特徵與模式。
圖數據的復雜性對現有機器學習演算法提出了重大挑戰,因為圖數據是不規則的。每張圖大小不同、節點無序,一張圖中的每個節點都有不同數目的鄰近節點,使得一些在圖像中容易計算的重要運算(如卷積)不能再直接應用於圖。此外,現有機器學習演算法的核心假設是實例彼此獨立。然而,圖數據中的每個實例都與周圍的其它實例相關,含有一些復雜的連接信息,用於捕獲數據之間的依賴關系,包括引用、朋友關系和相互作用。
最近,越來越多的研究開始將深度學習方法應用到圖數據領域。受到深度學習領域進展的驅動,研究人員在設計圖神經網路的架構時借鑒了卷積網路、循環網路和深度自編碼器的思想。為了應對圖數據的復雜性,重要運算的泛化和定義在過去幾年中迅速發展。

閱讀全文

與為什麼用卷積網路處理圖片相關的資料

熱點內容
十四五網路安全和信息化 瀏覽:82
連接360wifi網路受限制 瀏覽:949
移動網路能不能接電腦 瀏覽:203
聯通卡如何連接移動網路 瀏覽:583
win8應用連接網路 瀏覽:362
iphone怎麼切換網路 瀏覽:568
四種網路共享方式 瀏覽:895
手機連接wifi顯示2g網路 瀏覽:907
哪裡下載大型單機網路游戲 瀏覽:29
極限挑戰第六季網路哪個平台播 瀏覽:348
大慶網路運營中心客服電話是多少 瀏覽:504
魔百盒網路設置網路密碼 瀏覽:457
有網路沒密碼怎麼改 瀏覽:719
網路打賞一萬鑽石是多少錢 瀏覽:771
光貓傳遞網路信號的危害 瀏覽:639
可以通過網路找回手機嗎 瀏覽:349
商用密碼演算法的網路攝像機 瀏覽:427
魅族17設置3g網路 瀏覽:686
海上衛星網路wifi 瀏覽:672
宇族網路是什麼游戲需要花錢嗎 瀏覽:123

友情鏈接