❶ 量子網路的突破
美國的科學家
美國的科學家已經利用一束強激光轟擊一團銣原子,生成了具備這團銣原子量子態的單個光子,然後把這個光子傳送到100米長的光纜,輸送到另一團銣原子中,生成了與原來的銣原子同樣量子態的另一團銣原子,光子攜帶的量子態信息沒有絲毫損失,從而實現了原子與光子的量子態傳輸。
誇祖魯-納塔爾大學
南非誇祖魯-納塔爾大學量子技術中心的研究人員,在量子密碼領域的光子加密技術應用研究方面取得重大進展,他們成功地將基於光子加密技術的計算機安全系統應用到南非德班市的一個小型網路中。
彼得魯喬內
負責此項研究的量子物理學家弗蘭塞斯科·彼得魯喬內介紹說,利用光子對數據進行加密,是一種絕對安全的信息傳遞方法。該方法背離現有的數學運演算法則,與傳統的信息傳遞方法大相徑庭。它利用的是一種量子力學現象——量子糾纏,又稱量子纏結,要想破譯它的密碼是非常困難的。而且,使用該技術的網路安全系統非常敏感,如果有人對兩個正在通訊聯絡的人進行竊聽或刺探干擾,通訊雙方可以立即察覺到。
彼得魯喬內認為,理論必須應用到現實中。「智能城市」計劃已經讓眾多的學生受益,因為它可以讓學生有機會在現實環境中檢驗實驗室中創造的技術。但要吸引更多的學生來研究量子物理,就必須有更多的發明,使量子技術能創造更多的就業機會。
德班市
作為該項目的資助方之一,德班市目前已將該技術應用到一個小型網路中,該網路由兩個診所、一個市政中心和一個消防站組成。這使德班成為南非第一個擁有量子網路的城市,同時這也是德班市建設「智能城市」計劃的一部分。該市的管理者相信,量子信息和通訊技術不僅會促使市政當局轉型為一個由高技術信息驅動的組織機構,而且會讓德班成為未來技術的「孵化器」。
❷ 什麼是量子瞬間傳輸技術看完你就懂了
相距遙遠的兩個量子所呈現出得關聯性。科學家早就發現,處於特定系統中的兩個或多個量子,即使相距遙遠也總是呈現出相同的狀態,當其中一個量子狀態改變時,其他量子也會隨之改變。量子瞬間傳輸技術就是基於此的傳輸技術。
一個物理量如果存在最小的不可分割的基本單位,我們就說這個物理量是量子化的,把這個最小單位稱為量子。光子就是光量子,一束光至少包含一個光子,再少就不存在了。實驗發現,原子中電子的能量不是連續變化的,而是只能取一些分立的值,也就是說,原子中的電子能量是量子化的。量子化是微觀世界的普遍現象。20世紀上半葉(主要是從1900年到1930年),普朗克、愛因斯坦、德布羅意、玻爾、海森堡、薛定諤、狄拉克、玻恩、泡利等偉大的物理學家們創立了量子力學,這是我們目前對微觀世界最准確的描述。相對論幾乎是愛因斯坦獨力創造出來的,量子力學卻是群星璀璨的產物。愛因斯坦在其中也發揮了非常重要的作用(提出光量子,這是他得諾貝爾物理學獎的原因,居然不是相對論!),但並不是最重要的,最重要的兩個貢獻者是普朗克和海森堡。不過上面無論哪一位,都比在世的物理學家偉大多了(楊振寧可能跟泡利相差不是很遠?),這是時代的垂青,個人無法改變的。
量子力學描述世界的語言跟經典力學有根本區別。經典力學描述一個粒子的狀態,說的是它在什麼位置,具有什麼動量。不言而喻的是,在任何一個時刻這個粒子總是位於某個位置,具有某個動量,即使你不知道是多少。量子力學描述一個粒子的狀態,卻是給出一個態函數或者稱為態矢量,這個態矢量不是位於日常所見的三維空間,而是位於一個數學抽象的線性空間。在這里我們不需要深究這是個什麼空間,關鍵在於兩個態矢量之間可以進行「內積」的運算。內積是什麼?在三維空間中,兩個長度為1的單位矢量a和b做內積(a, b),得到的是它們夾角的餘弦,即兩個矢量方向相同時得到1,方向相反時得到-1,互相垂直時得到0,所以內積也可以理解為一個矢量在另一個矢量上的投影。對兩個態矢量也可以求這樣的內積,結果是個復數(即有實部虛部,不一定是實數),而這個復數的絕對值小於等於1。
現在不可思議的新概念來了:對於任何一個物理量P(例如位置、動量),態矢量都可以分為兩類,一類具有確定的P,稱為P的本徵態,P的取值稱為這個本徵態的本徵值;另一類不具有確定的P,稱為P的非本徵態。非本徵態比本徵態多得多,如同無理數比有理數多得多。也就是說,絕大多數情況下,一個粒子是沒有確定的位置的!等等,什麼叫做「沒有確定的位置」?是因為粒子跑得太快了,我們看不清嗎?量子力學說的不是這種常規(而錯誤)的理解,而是說:非本徵態是一個客觀真實的狀態,跟本徵態同樣客觀真實,它沒有確定的位置是因為它本質上就是如此,而不是因為我們的信息不全。來打個比方,有些狀態可以用指向上下左右的箭頭來表示,於是你定義「方向」為一個物理量,但是還有些狀態是一個圓!圓狀態跟箭頭狀態同樣真實,只是沒有確定的方向而已。
但是讀者還會困惑,因為我們總是可以用儀器去測量粒子的位置,測量的結果總是粒子出現在某個地方,而不是同時出現在兩個地方,或者哪裡都測量不到。好,下面就是量子力學的關鍵思想:對P的本徵態測量P,粒子的狀態不變,測得的是這個本徵態的本徵值。而對P的非本徵態s測量P,會使粒子的狀態從s變成某個P的本徵態f,概率是s與f的內積的絕對值的平方|(s, f)|^2,發生這個變化後測得的就是f的本徵值。用上面的例子來說,對箭頭狀態測方向,狀態不變,得到的就是箭頭的方向;對圓狀態測方向,圓狀態會以相同的幾率變成任何一個箭頭狀態,得到的是這個新的箭頭狀態的方向。對位置的非本徵態測量位置,就會測得粒子出現在某個隨機的位置,而出現在空間所有位置的幾率之和等於1。怎麼知道測量結果是隨機的呢?制備多個具有相同狀態的粒子,把實驗重復多次,就會發現實驗結果每次都不一樣。沒錯,量子力學具有本質的隨機性,同樣的原因可以導致不同的結果,這是跟經典力學的又一大區別。
你也許會覺得上面這些說法簡直莫名其妙,但是現在絕大多數科學家都對它們奉若圭臬。為什麼呢?因為這套奇怪的理論跟實驗符合得很好,而經典力學卻不能。當然,這是哲學性的原因,而操作性的原因很簡單:現在的科學家受的都是量子力學的教育。普朗克有一句非常有趣的話:「新的科學真理並不是由於說服它的對手取得勝利的,而是由於它的對手死光了,新的一代熟悉它的人成長起來了。」
事實上,現在仍然有不少人對量子力學提出各種各樣的挑戰,包括不少專業科學家,民科就更多了(當然挑戰相對論的民科更多)。歷史上,挑戰量子力學的勢力更加強大,其中的帶頭大哥就是--愛因斯坦!老愛堅信粒子應該具有確定的位置和動量,世界的演化應該是決定性的,對前面說的量子力學的不確定性和隨機性十分不滿。用他自己的話來說,他相信「沒有人看月亮的時候,月亮仍然存在」,以及「上帝不擲骰子」。
如果是一般人,表達完信念也就沒事了。但愛因斯坦是超級偉大的科學家,神一樣的人物,他不會滿足於只做口舌之爭,而是要設計一個判決性的實驗,以可驗證的方式證明量子力學的錯誤。於是乎,1935年,愛因斯坦(Einstein)、波多爾斯基(Podolsky)和羅森(Rosen)提出了一個思想實驗,後人用他們的首字母稱為EPR實驗。你可以制備兩個粒子A和B的「圓」態,使得在這個狀態中兩個粒子的某個性質(如電子的自旋角動量、光子的偏振)相加等於零,而單個粒子的這個性質不確定。這樣一對粒子稱為EPR對。然後你把這兩個粒子在空間上分開很遠,任意的遠,然後測量粒子A的這個性質。好比你測得A是「上」,那麼你就立刻知道了B現在是「下」。問題是,既然A和B已經離得非常遠了,B是怎麼知道A發生了變化,然後發生相應的變化的?EPR認為A和B之間出現了「鬼魅般的超距作用」,信息傳遞的速度超過光速,違反相對論。所以,量子力學肯定有錯誤。
這個問題非常深邃,直到現在都不斷給人以啟發。不過量子力學的正統衛道士有一個標准回答:處於「圓」態的A和B是一個整體,當你對A進行測量的時候,A和B是同時發生變化的,並不是A變了之後傳一個信息給B,B再變化,所以這里沒有信息的傳遞,不違反相對論。這個回答怎麼樣?無論你信不信,反正我信了。不過愛因斯坦一直都不信,以這個他參與創建的理論的反對者的身份走完了一生。
在愛因斯坦的時代,EPR實驗只能在頭腦中進行。隨著科技的進步,這個實驗可以實現了。1980年代,阿斯佩克特等人做了EPR實驗,結果你猜怎麼著?完全跟量子力學的預言符合!真的是你測得一個EPR對中的A是「上」的時候,B就變成了「下」。本來是設計出來否定量子力學的,反而驗證了量子力學的正確性。這種事在科學史上屢見不鮮。17世紀的時候,牛頓主張光是粒子,惠更斯主張光是波動。牛頓按照惠更斯的理論計算出一個現象:把一束光射向一個不透明的小圓片,在圓片的背後中心位置會出現一個亮點,而不是暗點。牛頓認為這是不可能的,宣布駁倒了惠更斯。可是別人一做這個實驗,發現真的就是如此,結果成了牛頓親手證明惠更斯的正確。
EPR現象既然是一個真實的效應,而不是愛因斯坦等人以為的悖論,人們就想到利用它。量子隱形傳態(quantum teleportation)就是一個重要的應用。英文單詞teleportation就是科幻藝術中biu的一聲把人傳過去的瞬間傳輸,tele是遠,port是傳,所以小編們報道這種新聞總是配傳人的圖片,《星際迷航》中的Spock發來賀電!可是,在量子信息研究中實際做的是把一個粒子A的量子態傳輸給遠處的另一個粒子B,讓B復制A的狀態,注意傳的是狀態而不是粒子。當然你可以說傳人也是把人的所有原子的狀態傳到遠處的另外一堆原子上,組合成一個同樣的人。OK我沒意見,只不過為了避免混淆,中國的科學家們還是小心謹慎地把teleportation翻譯成了隱形傳態。
量子隱形傳態是怎麼操作的呢?基本思路是這樣:讓第三個粒子C跟B組成EPR對,而C跟A離得很近,跟B離得很遠。讓A按照某個密碼跟C發生相互作用,改變C的狀態,於是B的狀態也發生了相應的變化。再通過經典的通訊手段(比如電話、光纜)把密碼告訴B那邊的人,對B按照密碼進行反向操作,就得到了A的狀態。這里的基本元素包括作為中介的C、密碼和傳輸密碼的經典信道。
❸ 量子計算機如何改變世界呢
世界首台超越早期經典計算機的光量子計算機3日在上海亮相,十個超導量子比特糾纏首次成功實現,中國科學家再次站在了創新的前沿。一個世紀前,那場關於「上帝到底擲不擲骰子」的愛因斯坦-玻爾論戰,為人類開啟了量子世界之門;進入21世紀,量子通信、量子計算等核心技術飛速發展,一場新的量子革命正在到來。微觀世界的運行,遠比人類想像得更神秘。世界首顆量子通信衛星、十光子糾纏、天地一體化量子通信網路……中國「量子人」一系列突破性進展,在量子革命的發展史上,標注下新的印記。
❹ 什麼是量子網路
量子網路是一類遵循量子力學規律進行高速數學和邏輯運算、存儲及處理量子信息的物理裝置。當某個裝置處理和計算的是量子信息,運行的是量子演算法時,它就是量子網路。量子網路的概念源於對可逆計算機的研究。研究可逆計算機的目的是為了解決計算機中的能耗問題。
20世紀60年代至70年代,人們發現能耗會導致計算機中的晶元發熱,極大地影響了晶元的集成度,從而限制了計算機的運行速度。研究發現,能耗來源於計算過程中的不可逆操作。那麼,是否計算過程必須要用不可逆操作才能完成呢?問題的答案是:所有經典計算機都可以找到一種對應的可逆計算機,而且不影響運算能力。既然計算機中的每一步操作都可以改造為可逆操作,那麼在量子力學中,它就可以用一個幺正變換來表示。早期量子網路,實際上是用量子力學語言描述的經典計算機,並沒有用到量子力學的本質特性,如量子態的疊加性和相乾性。在經典計算機中,基本信息單位為比特,運算對象是各種比特序列。與此類似,在量子網路中,基本信息單位是量子比特,運算對象是量子比特序列。所不同的是,量子比特序列不但可以處於各種正交態的疊加態上,而且還可以處於糾纏態上。這些特殊的量子態,不僅提供了量子並行計算的可能,而且還將帶來許多奇妙的性質。與經典計算機不同,量子網路可以做任意的幺正變換,在得到輸出態後,進行測量得出計算結果。因此,量子計算對經典計算作了極大的擴充,在數學形式上,經典計算可看作是一類特殊的量子計算。量子網路對每一個疊加分量進行變換,所有這些變換同時完成,並按一定的概率幅疊加起來,給出結果,這種計算稱作量子並行計算。除了進行並行計算外,量子網路的另一重要用途是模擬量子系統,這項工作是經典計算機無法勝任的。
❺ 量子網路的介紹
量子網路是一類遵循量子力學規律進行高速數學和邏輯運算、存儲及處理量子信息的物理裝置。當某個裝置處理和計算的是量子信息,運行的是量子演算法時,它就是量子網路。量子網路的概念源於對可逆計算機的研究。研究可逆計算機的目的是為了解決計算機中的能耗問題。
❻ 為什麼中國已經有了量子技術卻還要發展超級計算機呢
世界首台超越早期經典計算機的光量子計算機3日在上海亮相,十個超導量子比特糾纏首次成功實現,中國科學家再次站在了創新的前沿。一個世紀前,那場關於「上帝到底擲不擲骰子」的愛因斯坦-玻爾論戰,為人類開啟了量子世界之門;進入21世紀,量子通信、量子計算等核心技術飛速發展,一場新的量子革命正在到來。微觀世界的運行,遠比人類想像得更神秘。世界首顆量子通信衛星、十光子糾纏、天地一體化量子通信網路……中國「量子人」一系列突破性進展,在量子革命的發展史上,標注下新的印記。
❼ 量子技術能應用到什麼地方
摘要 ▶醫療健康
❽ 量子互聯網和量子通信網路有區別嗎
量子互聯網是指通過量子技術傳遞信息,實現無視距離零延時通信。相較於現在的光纖通訊對遠距離信息傳輸有巨大優勢。
量子通信網路指使用了量子加密技術的通信網路,指信息通信中使用量子密鑰加密,無法被破解或監聽的量子通信技術。