無線通信和低功耗嵌入式技術的飛速發展,孕育出無線感測器網路(Wireless Sensor Networks, WSN),並以其低功耗、低成本、分布式和自組織的特點帶來了信息感知的一場變革,無線感測器網路是由部署在監測區域內大量的廉價微型感測器節點,通過無線通信方式形成的一個多跳自組織網路。
信息安全
很顯然,現有的感測節點具有很大的安全漏洞,攻擊者通過此漏洞,可方便地獲取感測節點中的機密信息、修改感測節點中的程序代碼,如使得感測節點具有多個身份ID,從而以多個身份在感測器網路中進行通信,另外,攻擊還可以通過獲取存儲在感測節點中的密鑰、代碼等信息進行,從而偽造或偽裝成合法節點加入到感測網路中。一旦控制了感測器網路中的一部分節點後,攻擊者就可以發動很多種攻擊,如監聽感測器網路中傳輸的信息,向感測器網路中發布假的路由信息或傳送假的感測信息、進行拒絕服務攻擊等。
對策:由於感測節點容易被物理操縱是感測器網路不可迴避的安全問題,必須通過其它的技術方案來提高感測器網路的安全性能。如在通信前進行節點與節點的身份認證;設計新的密鑰協商方案,使得即使有一小部分節點被操縱後,攻擊者也不能或很難從獲取的節點信息推導出其它節點的密鑰信息等。另外,還可以通過對感測節點的合法性進行認證等措施來提高節點本身的安全性能。
根據無線傳播和網路部署特點,攻擊者很容易通過節點間的傳輸而獲得敏感或者私有的信息,如:在使用WSN監控室內溫度和燈光的場景中,部署在室外的無線接收器可以獲取室內感測器發送過來的溫度和燈光信息;同樣攻擊者通過監聽室內和室外節點間信息的傳輸,也可以獲知室內信息,從而非法獲取出房屋主人的生活習慣等私密信息。[6]
對策:對傳輸信息加密可以解決竊聽問題,但需要一個靈活、強健的密鑰交換和管理方案,密鑰管理方案必須容易部署而且適合感測節點資源有限的特點,另外,密鑰管理方案還必須保證當部分節點被操縱後(這樣,攻擊者就可以獲取存儲在這個節點中的生成會話密鑰的信息),不會破壞整個網路的安全性。由於感測節點的內存資源有限,使得在感測器網路中實現大多數節點間端到端安全不切實際。然而在感測器網路中可以實現跳-跳之間的信息的加密,這樣感測節點只要與鄰居節點共享密鑰就可以了。在這種情況下,即使攻擊者捕獲了一個通信節點,也只是影響相鄰節點間的安全。但當攻擊者通過操縱節點發送虛假路由消息,就會影響整個網路的路由拓撲。解決這種問題的辦法是具有魯棒性的路由協議,另外一種方法是多路徑路由,通過多個路徑傳輸部分信息,並在目的地進行重組。
感測器網路是用於收集信息作為主要目的的,攻擊者可以通過竊聽、加入偽造的非法節點等方式獲取這些敏感信息,如果攻擊者知道怎樣從多路信息中獲取有限信息的相關演算法,那麼攻擊者就可以通過大量獲取的信息導出有效信息。一般感測器中的私有性問題,並不是通過感測器網路去獲取不大可能收集到的信息,而是攻擊者通過遠程監聽WSN,從而獲得大量的信息,並根據特定演算法分析出其中的私有性問題。因此攻擊者並不需要物理接觸感測節點,是一種低風險、的獲得私有信息方式。遠程監聽還可以使單個攻擊者同時獲取多個節點的傳輸的信息。
對策:保證網路中的感測信息只有可信實體才可以訪問是保證私有性問題的最好方法,這可通過數據加密和訪問控制來實現;另外一種方法是限制網路所發送信息的粒度,因為信息越詳細,越有可能泄露私有性,比如,一個簇節點可以通過對從相鄰節點接收到的大量信息進行匯集處理,並只傳送處理結果,從而達到數據化。
拒絕服務攻擊(DoS)
專門的拓撲維護技術研究還比較少,但相關研究結果表明優化的拓撲維護能有效地節省能量並延長網路生命周期,同時保持網路的基本屬性覆蓋或連通。本節中,根據拓撲維護決策器所選維護策略
在無線感測器網路的研究中,能效問題一直是熱點問題。當前的處理器以及無線傳輸裝置依然存在向微型化發展的空間,但在無線網路中需要數量更多的感測器,種類也要求多樣化,將它們進行鏈接,這樣會導致耗電量的加大。如何提高網路性能,延長其使用壽命,將不準確性誤差控制在最小將是下一步研究的問題。
採集與管理數據
在今後,無線感測器網路接收的數據量將會越來越大,但是當前的使用模式對於數量龐大的數據的管理和使用能力有限。如何進一步加快其時空數據處理和管理的能力,開發出新的模式將是非常有必要的。
無線通訊的標准問題
標準的不統一會給無線感測器網路的發展帶來障礙,在接下來的發展中,要開發出無線通訊標准。
② 水下無線感測器網路研究進展
EI
③ 無線感測器網路路由協議怎麼使用
理論上是可以做到的,只是NS2是專門用於網路模擬的,很多協議是寫好了、打包好了的,入門後用起來更方便。matlab、C之類的,恐怕得自己一點點寫了。
④ 無線感測器網路通信協議的目錄
第1章 無線感測器網路概述
1.1 引言
1.2 無線感測器網路介紹
1.2.1 無線感測器網路體系結構
1.2.2 無線感測器網路的特點和關鍵技術
1.2.3 無線感測器網路的應用
1.3 無線感測器網路路由演算法
1.3.1 無線感測器網路路由演算法研究的主要思路
1.3.2 無線感測器網路路由演算法的分類
1.3.3 無線感測器網路QoS路由演算法研究的基本思想
1.3.4 無線感測器網路QoS路由演算法研究的分類
1.3.5 平面路由的主流演算法
1.3.6 分簇路由的主流演算法
1.4 ZigBee技術
1.4.1 ZigBee技術的特點
1.4.2 ZigBee協議框架
1.4.3 ZigBee的網路拓撲結構
1.5 無線感測器安全研究
1.5.1 無線感測器網路的安全需求
1.5.2 無線感測器網路安全的研究進展
1.5.3 無線感測器網路安全的研究方向
1.6 水下感測器網路
1.7 無線感測器網路定位
1.7.1 存在的問題
1.7.2 性能評價
1.7.3 基於測距的定位方法
1.7.4 非測距定位演算法
1.7.5 移動節點定位
第2章 無線感測器網路的分布式能量有效非均勻成簇演算法
2.1 引言
2.2 相關研究工作
2.2.1 單跳成簇演算法
2.2.2 多跳成簇演算法
2.3 DEEUC成簇路由演算法
2.3.1 網路模型
2.3.2 DEEUC成簇演算法
2.3.3 候選簇頭的產生
2.3.4 估計平均能量
2.3.5 最終簇頭的產生
2.3.6 平衡簇頭區節點能量
2.3.7 演算法分析
2.4 模擬和分析
2.5 結論及下一步工作
參考文獻
第3章 無線感測器網路分簇多跳能量均衡路由演算法
3.1 無線傳輸能量模型
3.2 無線感測器網路路由策略研究
3.2.1 平面路由
3.2.2 單跳分簇路由演算法研究
3.2.3 多跳層次路由演算法研究
3.3 LEACH-L演算法
3.3.1 LEACH-L的改進思路
3.3.2 LEACH-L演算法模型
3.3.3 LEACH-L描述
3.4 LEACH-L的分析
3.5 實驗模擬
3.5.1 評價參數
3.5.2 模擬環境
3.5.3 模擬結果
3.6 總結及未來的工作
3.6.1 總結
3.6.2 未來的工作
參考文獻
第4章 基於生成樹的無線感測器網路分簇通信協議
4.1 引言
4.2 無線傳輸能量模型
4.3 基於時間延遲機制的分簇演算法(CHTD)
4.3.1 CHTD的改進思路
4.3.2 CHTD簇頭的產生
4.3.3 CHTD簇頭數目的確定
4.3.4 CHTD最優簇半徑
4.3.5 CHTD描述
4.3.6 CHTD的特性
4.4 CHTD簇數據傳輸研究
4.4.1 引言
4.4.2 改進的CHTD演算法(CHTD-M)
4.4.3 CHTD-M的分析
4.5 模擬分析
4.5.1 生命周期
4.5.2 接收數據包量
4.5.3 能量消耗
4.5.4 負載均衡
4.6 總結及未來的工作
4.6.1 總結
4.6.2 未來的工作
參考文獻
第5章 基於自適應蟻群系統的感測器網路QoS路由演算法
5.1 引言
5.2 蟻群演算法
5.3 APAS演算法的信息素自適應機制
5.4 APAS演算法的揮發系數自適應機制
5.5 APAS演算法的QoS改進參數
5.6 APAS演算法的信息素分發機制
5.7 APAS演算法的定向廣播機制
5.8 模擬實驗及結果分析
5.8.1 模擬環境
5.8.2 模擬結果及分析
5.9 總結及未來的工作
5.9.1 總結
5.9.2 未來的工作
參考文獻
第6章 無線感測器網路簇頭選擇演算法
6.1 引言
6.2 LEACH NEW演算法
6.2.1 網路模型
6.2.2 LEACH NEW簇頭選擇機制
6.2.3 簇的生成
6.2.4 簇頭間多跳路徑的建立
6.3 模擬實現
6.4 結論及未來的工作
參考文獻
第7章 水下無線感測網路中基於向量的低延遲轉發協議
7.1 引言
7.2 相關工作
7.3 網路模型
7.3.1 問題的數學描述
7.3.2 網路模型
7.4 基於向量的低延遲轉發協議
7.4.1 基於向量轉發協議的分析
7.4.2 基於向量的低延遲轉發演算法
7.5 模擬實驗
7.5.1 模擬環境
7.5.2 模擬分析
7.6 總結
參考文獻
第8章 無線感測器網路數據融合演算法研究
8.1 引言
8.2 節能路由演算法
8.2.1 平面式路由演算法
8.2.2 層狀式路由演算法
8.3 數據融合模型
8.3.1 數據融合系統
8.3.2 LEACH簇頭選擇演算法
8.3.3 簇內融合路徑
8.3.4 環境設定和能耗公式
8.4 數據融合模擬
8.4.1 模擬分析
8.4.2 模擬結果分析
8.5 結論
參考文獻
第9章 無線感測器網路相關技術
9.1 超寬頻技術
9.1.1 系統結構的實現比較簡單
9.1.2 空間傳輸容量大
9.1.3 多徑分辨能力強
9.1.4 安全性高
9.1.5 定位精確
9.2 物聯網技術
9.2.1 物聯網原理
9.2.2 物聯網的背景與前景
9.3 雲計算技術
9.3.1 SaaS軟體即服務
9.3.2 公用/效用計算
9.3.3 雲計算領域的Web服務
9.4 認知無線電技術
9.4.1 傳統的Ad-hoc方式中無線感測器網路的不足
9.4.2 在ZigBee無線感測器網路中的應用
參考文獻
第10章 無線感測器網路應用
10.1 軍事應用
10.2 農業應用
10.3 環保監測
10.4 建築應用
10.5 醫療監護
10.6 工業應用
10.6.1 工業安全
10.6.2 先進製造
10.6.3 交通控制管理
10.6.4 倉儲物流管理
10.7 空間、海洋探索
10.8 智能家居應用
⑤ 分析如何利用水下感測器網路去保護軍港
就是安裝很多感測器,使其相互連接。
⑥ 感測器網路的作用
感測器網路主要包括三個方面:感應、通訊、計算(硬體、軟體、演算法)。其中的關鍵技術主要有無線資料庫技術,比如使用在無線感測器網路的查詢,和用於和其它感測器通訊的網路技術,特別是多次跳躍路由協議。例如摩托羅拉使用在家庭控制系統中的ZigBee無線協議。
感測器網路與感測器
感測器網路與感測器是什麼關系呢?它究竟是一種感測器呢還是一種網路呢?在回答這個問題之前,我們先來看一下感測器網路中感測節點的系統組成吧。如圖1所示,一般可以將感測節點分解為感測模塊、微處理器最小系統、無線通信模塊、電源模塊和增強功能模塊5個組成部分,其中增強功能模塊為可選配置。
圖1 感測器網路中感測節點的系統組成
可以把感測模塊和電源模塊看作傳統的感測器,如果再加上微處理器最小系統就可對應於智能感測器,而無線通信模塊是為了實現無線通信功能而比傳統感測器新增加的功能模塊。增強功能模塊是可選配置,例如時間同步系統、衛星定位系統、用於移動的機械繫統等。
從感測節點的系統組成上看,感測器網路可以看作是多個增加了無線通信模塊的智能感測器組成的自組織網路。而從功能上看,感測器和感測器網路大致相同,都是用來感知監測環境信息的,不過顯然感測器網路具備更高的可靠性。
感測器網路的發展
感測器網路是怎樣發展起來的呢?
最早的感測器網路可以追溯到上世紀70年代美軍在越戰中使用的「熱帶樹」感測器。為了遏制北越在胡志明小道的後勤補給,美軍在這條小道上沿途投放了上萬個「熱帶樹」感測器,這是一種振動和聲響感測器,當北越車隊經過時感測器探測到振動和聲響即向指揮中心發送感知信號,美軍收到信號後即組織轟炸,有資料顯示越戰期間美軍依靠「熱帶樹」的幫助總共炸壞了4萬多輛北越運輸卡車。
「熱帶樹」感測器之間沒有通信能力,所以實際上還稱不上網路的概念。20世紀80年代以來,美國軍方陸續與高校開展感測器網路方面的研究合作,旨在建立能夠用於軍事用途的自組織的無線感測器網路,這期間在硬體、軟體、標准化和產品化等方面取得了一系列的重大進展。
2000年,美國加州大學伯克利分校發布了感測器節點專用操作系統TinyOS,後續又推出專用程序設計語言nesC。2001年,伯克利分校又推出Mica系列感測器節點產品。TinyOS和Mica取得了巨大的成功,直到今天它們仍然得到了廣泛的應用。
2001年,ZigBee聯盟成立,並對無線感測器網路的通信協議進行了全面的標准化,後續多家公司發布了多款符合ZigBee協議標準的晶元和產品。
感測器網路未來的發展趨勢
感測器網路未來的發展趨勢又如何呢?
感測器網路技術誕生至今也不過幾十年的時間,最近更是得到了美國之外歐洲、中國和日韓等國的重視和關注,目前其發展前沿也在不斷延伸。總體說來,大致可以將其發展趨勢劃分為兩大類:其一是設計用於完成特殊任務的無線感測器網路,例如無線多媒體感測器網路和無線感測執行網路。其二是設計用於特殊應用環境下工作的無線感測器網路,例如水下環境和地下環境。
無線多媒體感測器網路(WMSN, Wireless Multimedia Sensor Network)在感測器節點上藉助多媒體感測單元將音頻、視頻、圖像等多媒體信息傳送到管理節點,能夠實現對復雜多變環境的監測。
無線感測執行網路(WSAN, Wireless Sensor and Actor Network)在WSN的基礎上加入了執行節點(Actor),執行節點根據收集到的監測信息做出決策並執行相關操作,從而在對環境監測的基礎上進一步實現對環境的控制。
水聲無線感測器網路(UW-ASN, Underwater Acoustic Sensor Network)採用水聲無線通信技術實現水下感測器節點之間的通信連接,能夠完成海洋采樣、環境監測、水下開采、輔助航行等任務。
⑦ 無線感測器網路的路由協議具體有哪些特點
自組織、低功耗、單向數據、大規模
⑧ 感測器網路每個節點都收到其他節點信息用什麼路由
多位器的
感測器網路是由許多在空間上分布的自動裝置組成的一種計算機網路,這些裝置使用感測器協作地監控不同位置的物理或環境狀況(比如溫度、聲音、振動、壓力、運動或污染物)。無線感測器網路的發展最初起源於戰場監測等軍事應用。而現今無線感測器網路被應用於很多民用領域,如環境與生態監測、健康監護、家庭自動化、以及交通控制等。
⑨ 無線感測器網路的路由協議有哪些類型路由協議的設計要求
(1)能量優先
傳統路由協議在選擇最優路徑時,很少考慮節點的能量消耗問題。而無線感測器網路中節點的能量有限,延長整個網路的生存期成為感測器網路路由協議設計的重要目標,因此需要考慮節點的能量消耗以及網路能量均衡使用的問題。
(2)基於局部拓撲信息
無線感測器網路為了節省通信能量,通常採用多跳的通信模式,而節點有限的存儲資源和計算資源,使得節點不能存儲大量的路由信息,不能進行太復雜的路由計算。在節點只能獲取局部拓撲信息和資源有限的情況下,如何實現簡單高效的路由機制是無線感測器網路的一個基本問題。
(3)以數據為中心
傳統的路由協議通常以地址作為節點的標識和路由的依據,而無線感測器網路中大量節點隨機部署,所關注的是監測區域的感知數據,而不是具體哪個節點獲取的信息,不依賴於全網唯一的標識。感測器網路通常包含多個感測器節點到少數匯聚節點的數據流,按照對感知數據的需求、數據通信模式和流向等,以數據為中心形成消息的轉發路徑。
(4)應用相關
感測器網路的應用環境千差萬別,數據通信模式不同,沒有一個路由機制適合所有的應用,這是感測器網路應用相關性的一個體現。設計者需要針對每一個具體應用的需求,設計與之適應的特定路由機制。
針對感測器網路路由機制的上述特點,在根據具體應用設計路由機制時,感測器網路需滿足一定的路由機制。
⑩ 水下感測器主要是什麼
常用的水下感測器包括水溫感測器、水深(水壓)感測器、流速感測器和水質組合感測器。
天然河流水溫一年變化不大,要進行精確測量需要採用鉑溫度感測器,並置測量點於水面下1m處。
水深感測器可以採用常見的投入式液位感測器,它採用硅壓阻全橋感壓器件將水深(水壓)轉換為電信號。量程根據你需要測量的水深在5~70mH2O選擇。考慮到保證精度到0.1%,建議選用智能型液位感測器並採用RS-485信號輸出。
水下流速感測器以超聲波多普勒效應為測量原理,以水中懸浮的質點反射波來測量水體流速,這類感測器可以測量整個斷面的水體流速,價格較貴。也有採用簡單的轉漿式流速測量感測器,但只能測量一點的流速。
水質組合感測器用來檢測水的質量,上面集合了氧、氮、其它有機體的單個測量感測器。
ZLDS100測水下地形地貌是高精度水下地形地貌模型勘查,水下地形地貌檢測系列位移感測器簡單來說就是用來測量位移的感測器。目前常用的有激光位移感測器、電渦流位移感測器、鋼尺等。