導航:首頁 > 網路安全 > 神經網路如何識別字母和數字

神經網路如何識別字母和數字

發布時間:2023-02-01 07:45:21

1. 神經網路演算法的人工神經網路

人工神經網路(Artificial Neural Networks,ANN)系統是 20 世紀 40 年代後出現的。它是由眾多的神經元可調的連接權值連接而成,具有大規模並行處理、分布式信 息存儲、良好的自組織自學習能力等特點。BP(Back Propagation)演算法又稱為誤差 反向傳播演算法,是人工神經網路中的一種監督式的學習演算法。BP 神經網路演算法在理 論上可以逼近任意函數,基本的結構由非線性變化單元組成,具有很強的非線性映射能力。而且網路的中間層數、各層的處理單元數及網路的學習系數等參數可根據具體情況設定,靈活性很大,在優化、信號處理與模式識別、智能控制、故障診斷等許 多領域都有著廣泛的應用前景。 人工神經元的研究起源於腦神經元學說。19世紀末,在生物、生理學領域,Waldeger等人創建了神經元學說。人們認識到復雜的神經系統是由數目繁多的神經元組合而成。大腦皮層包括有100億個以上的神經元,每立方毫米約有數萬個,它們互相聯結形成神經網路,通過感覺器官和神經接受來自身體內外的各種信息,傳遞至中樞神經系統內,經過對信息的分析和綜合,再通過運動神經發出控制信息,以此來實現機體與內外環境的聯系,協調全身的各種機能活動。
神經元也和其他類型的細胞一樣,包括有細胞膜、細胞質和細胞核。但是神經細胞的形態比較特殊,具有許多突起,因此又分為細胞體、軸突和樹突三部分。細胞體內有細胞核,突起的作用是傳遞信息。樹突是作為引入輸入信號的突起,而軸突是作為輸出端的突起,它只有一個。
樹突是細胞體的延伸部分,它由細胞體發出後逐漸變細,全長各部位都可與其他神經元的軸突末梢相互聯系,形成所謂「突觸」。在突觸處兩神經元並未連通,它只是發生信息傳遞功能的結合部,聯系界面之間間隙約為(15~50)×10米。突觸可分為興奮性與抑制性兩種類型,它相應於神經元之間耦合的極性。每個神經元的突觸數目正常,最高可達10個。各神經元之間的連接強度和極性有所不同,並且都可調整、基於這一特性,人腦具有存儲信息的功能。利用大量神經元相互聯接組成人工神經網路可顯示出人的大腦的某些特徵。
人工神經網路是由大量的簡單基本元件——神經元相互聯接而成的自適應非線性動態系統。每個神經元的結構和功能比較簡單,但大量神經元組合產生的系統行為卻非常復雜。
人工神經網路反映了人腦功能的若干基本特性,但並非生物系統的逼真描述,只是某種模仿、簡化和抽象。
與數字計算機比較,人工神經網路在構成原理和功能特點等方面更加接近人腦,它不是按給定的程序一步一步地執行運算,而是能夠自身適應環境、總結規律、完成某種運算、識別或過程式控制制。
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對於寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。 (1)人類大腦有很強的自適應與自組織特性,後天的學習與訓練可以開發許多各具特色的活動功能。如盲人的聽覺和觸覺非常靈敏;聾啞人善於運用手勢;訓練有素的運動員可以表現出非凡的運動技巧等等。
普通計算機的功能取決於程序中給出的知識和能力。顯然,對於智能活動要通過總結編製程序將十分困難。
人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無為導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。
(2)泛化能力
泛化能力指對沒有訓練過的樣本,有很好的預測能力和控制能力。特別是,當存在一些有雜訊的樣本,網路具備很好的預測能力。
(3)非線性映射能力
當對系統對於設計人員來說,很透徹或者很清楚時,則一般利用數值分析,偏微分方程等數學工具建立精確的數學模型,但當對系統很復雜,或者系統未知,系統信息量很少時,建立精確的數學模型很困難時,神經網路的非線性映射能力則表現出優勢,因為它不需要對系統進行透徹的了解,但是同時能達到輸入與輸出的映射關系,這就大大簡化設計的難度。
(4)高度並行性
並行性具有一定的爭議性。承認具有並行性理由:神經網路是根據人的大腦而抽象出來的數學模型,由於人可以同時做一些事,所以從功能的模擬角度上看,神經網路也應具備很強的並行性。
多少年以來,人們從醫學、生物學、生理學、哲學、信息學、計算機科學、認知學、組織協同學等各個角度企圖認識並解答上述問題。在尋找上述問題答案的研究過程中,這些年來逐漸形成了一個新興的多學科交叉技術領域,稱之為「神經網路」。神經網路的研究涉及眾多學科領域,這些領域互相結合、相互滲透並相互推動。不同領域的科學家又從各自學科的興趣與特色出發,提出不同的問題,從不同的角度進行研究。
下面將人工神經網路與通用的計算機工作特點來對比一下:
若從速度的角度出發,人腦神經元之間傳遞信息的速度要遠低於計算機,前者為毫秒量級,而後者的頻率往往可達幾百兆赫。但是,由於人腦是一個大規模並行與串列組合處理系統,因而,在許多問題上可以作出快速判斷、決策和處理,其速度則遠高於串列結構的普通計算機。人工神經網路的基本結構模仿人腦,具有並行處理特徵,可以大大提高工作速度。
人腦存貯信息的特點為利用突觸效能的變化來調整存貯內容,也即信息存貯在神經元之間連接強度的分布上,存貯區與計算機區合為一體。雖然人腦每日有大量神經細胞死亡 (平均每小時約一千個),但不影響大腦的正常思維活動。
普通計算機是具有相互獨立的存貯器和運算器,知識存貯與數據運算互不相關,只有通過人編出的程序使之溝通,這種溝通不能超越程序編制者的預想。元器件的局部損壞及程序中的微小錯誤都可能引起嚴重的失常。 心理學家和認知科學家研究神經網路的目的在於探索人腦加工、儲存和搜索信息的機制,弄清人腦功能的機理,建立人類認知過程的微結構理論。
生物學、醫學、腦科學專家試圖通過神經網路的研究推動腦科學向定量、精確和理論化體系發展,同時也寄希望於臨床醫學的新突破;信息處理和計算機科學家研究這一問題的目的在於尋求新的途徑以解決不能解決或解決起來有極大困難的大量問題,構造更加逼近人腦功能的新一代計算機。
人工神經網路早期的研究工作應追溯至上世紀40年代。下面以時間順序,以著名的人物或某一方面突出的研究成果為線索,簡要介紹人工神經網路的發展歷史。
1943年,心理學家W·Mcculloch和數理邏輯學家W·Pitts在分析、總結神經元基本特性的基礎上首先提出神經元的數學模型。此模型沿用至今,並且直接影響著這一領域研究的進展。因而,他們兩人可稱為人工神經網路研究的先驅。
1945年馮·諾依曼領導的設計小組試製成功存儲程序式電子計算機,標志著電子計算機時代的開始。1948年,他在研究工作中比較了人腦結構與存儲程序式計算機的根本區別,提出了以簡單神經元構成的再生自動機網路結構。但是,由於指令存儲式計算機技術的發展非常迅速,迫使他放棄了神經網路研究的新途徑,繼續投身於指令存儲式計算機技術的研究,並在此領域作出了巨大貢獻。雖然,馮·諾依曼的名字是與普通計算機聯系在一起的,但他也是人工神經網路研究的先驅之一。
50年代末,F·Rosenblatt設計製作了「感知機」,它是一種多層的神經網路。這項工作首次把人工神經網路的研究從理論探討付諸工程實踐。當時,世界上許多實驗室仿效製作感知機,分別應用於文字識別、聲音識別、聲納信號識別以及學習記憶問題的研究。然而,這次人工神經網路的研究高潮未能持續很久,許多人陸續放棄了這方面的研究工作,這是因為當時數字計算機的發展處於全盛時期,許多人誤以為數字計算機可以解決人工智慧、模式識別、專家系統等方面的一切問題,使感知機的工作得不到重視;其次,當時的電子技術工藝水平比較落後,主要的元件是電子管或晶體管,利用它們製作的神經網路體積龐大,價格昂貴,要製作在規模上與真實的神經網路相似是完全不可能的;另外,在1968年一本名為《感知機》的著作中指出線性感知機功能是有限的,它不能解決如異感這樣的基本問題,而且多層網路還不能找到有效的計算方法,這些論點促使大批研究人員對於人工神經網路的前景失去信心。60年代末期,人工神經網路的研究進入了低潮。
另外,在60年代初期,Widrow提出了自適應線性元件網路,這是一種連續取值的線性加權求和閾值網路。後來,在此基礎上發展了非線性多層自適應網路。當時,這些工作雖未標出神經網路的名稱,而實際上就是一種人工神經網路模型。
隨著人們對感知機興趣的衰退,神經網路的研究沉寂了相當長的時間。80年代初期,模擬與數字混合的超大規模集成電路製作技術提高到新的水平,完全付諸實用化,此外,數字計算機的發展在若干應用領域遇到困難。這一背景預示,向人工神經網路尋求出路的時機已經成熟。美國的物理學家Hopfield於1982年和1984年在美國科學院院刊上發表了兩篇關於人工神經網路研究的論文,引起了巨大的反響。人們重新認識到神經網路的威力以及付諸應用的現實性。隨即,一大批學者和研究人員圍繞著 Hopfield提出的方法展開了進一步的工作,形成了80年代中期以來人工神經網路的研究熱潮。
1985年,Ackley、Hinton和Sejnowski將模擬退火演算法應用到神經網路訓練中,提出了Boltzmann機,該演算法具有逃離極值的優點,但是訓練時間需要很長。
1986年,Rumelhart、Hinton和Williams提出了多層前饋神經網路的學習演算法,即BP演算法。它從證明的角度推導演算法的正確性,是學習演算法有理論依據。從學習演算法角度上看,是一個很大的進步。
1988年,Broomhead和Lowe第一次提出了徑向基網路:RBF網路。
總體來說,神經網路經歷了從高潮到低谷,再到高潮的階段,充滿曲折的過程。

2. 利用pytorch CNN手寫字母識別神經網路模型識別多手寫字母(A-Z)


往期的文章,我們分享了手寫字母的訓練與識別

使用EMNIST數據集訓練第一個pytorch CNN手寫字母識別神經網路

利用pytorch CNN手寫字母識別神經網路模型識別手寫字母

哪裡的文章,我們只是分享了單個字母的識別,如何進行多個字母的識別,其思路與多數字識別類似,首先對圖片進行識別,並進行每個字母的輪廓識別,然後進行字母的識別,識別完成後,直接在圖片上進行多個字母識別結果的備注

Pytorch利用CNN卷積神經網路進行多數字(0-9)識別

根據上期文章的分享,我們搭建一個手寫字母識別的神經網路

第一層,我們輸入Eminist的數據集,Eminist的數據圖片是一維 28*28的圖片,所以第一層的輸入(1,28,28),高度為1,設置輸出16通道,使用5*5的卷積核對圖片進行卷積運算,每步移動一格,為了避免圖片尺寸變化,設置pading為2,則經過第一層卷積就輸出(16,28,28)數據格式

再經過relu與maxpooling (使用2*2卷積核)數據輸出(16,14,14)

第二層卷積層是簡化寫法nn.Conv2d(16, 32, 5, 1, 2)的第一個參數為輸入通道數in_channels=16,其第二個參數是輸出通道數out_channels=32, # n_filters(輸出通道數),第三個參數為卷積核大小,第四個參數為卷積步數,最後一個為pading,此參數為保證輸入輸出圖片的尺寸大小一致

全連接層,最後使用nn.linear()全連接層進行數據的全連接數據結構(32*7*7,37)以上便是整個卷積神經網路的結構,

大致為:input-卷積-Relu-pooling-卷積
-Relu-pooling-linear-output

卷積神經網路建完後,使用forward()前向傳播神經網路進行輸入圖片的識別

這里我們使用腐蝕,膨脹操作對圖片進行一下預處理操作,方便神經網路的識別,當然,我們往期的字母數字識別也可以添加此預處理操作,方便神經網路進行預測,提高精度

getContours函數主要是進行圖片中數字區域的區分,把每個數字的坐標檢測出來,這樣就可以 把每個字母進行CNN卷積神經網路的識別,進而實現多個字母識別的目的

首先,輸入一張需要檢測的圖片,通過preProccessing圖片預處理與getContours函數獲取圖片中的每個字母的輪廓位置

transforms.Compose此函數可以 把輸入圖片進行pytorch相關的圖片操作,包括轉換到torch,灰度空間轉換,resize,縮放等等操作

然後載入我們前期訓練好的模型

由於神經網路識別完成後,反饋給程序的是字母的 UTF-8編碼,我們通過查表來找到對應的字母

字元編碼表(UTF-8)

通過上面的操作,我們已經識別出了圖片中包括的字母輪廓,我們遍歷每個字母輪廓,獲取單個字母圖片數據,這里需要特殊提醒一下 :我們知道EMNIST資料庫左右翻轉圖片後,又進行了圖片的逆時針旋轉90度

這里我們使用cv2.flip(imgRes,1)函數,進行圖片的鏡像,並使用getRotationMatrix2D函數與warpAffine函數配合來進行圖片的旋轉操作,這里就沒有PIL來的方便些

然後,我們對圖片數據進行torch轉換train_transform(imgRes),並傳遞給神經網路進行識別

待識別完成後,就可以把結果備注在原始圖片上

3. matlab數字識別項目原理

採用神經網路中反向傳播神經網路(即BP神經網路)對手寫數字的識別,由MATLAB對圖片進行讀入、灰度化以及二值化等處理,通過神經網路進行訓練和測試。

4. bp神經網路數字識別,是一個網路識別所有0~9還是一個網路一個數字,或者通過連接來分組

單個網路就能識別所有數字,不是每個數字訓練一個網路,而是所有數字的訓練樣本來訓練一個網路,訓練後的網路就能反映出這些數字的特徵。

文字識別一般包括文字信息的採集、信息的分析與處理、信息的分類判別等幾個部分。信息採集 將紙面上的文字灰度變換成電信號,輸入到計算機中去。信息採集由文字識別機中的送紙機構和光電變換裝置來實現,有飛點掃描、攝像機、光敏元件和激光掃描等光電變換裝置。信息分析和處理 對變換後的電信號消除各種由於印刷質量、紙質(均勻性、污點等)或書寫工具等因素所造成的噪音和干擾,進行大小、偏轉、濃淡、粗細等各種正規化處理。信息的分類判別 對去掉雜訊並正規化後的文字信息進行分類判別,以輸出識別結果。

5. 神經網路的工作原理

「人腦是如何工作的?」
「人類能否製作模擬人腦的人工神經元?」
多少年以來,人們從醫學、生物學、生理學、哲學、信息學、計算機科學、認知學、組織協同學等各個角度企圖認識並解答上述問題。在尋找上述問題答案的研究過程中,逐漸形成了一個新興的多學科交叉技術領域,稱之為「神經網路」。神經網路的研究涉及眾多學科領域,這些領域互相結合、相互滲透並相互推動。不同領域的科學家又從各自學科的興趣與特色出發,提出不同的問題,從不同的角度進行研究。
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對於寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
普通計算機的功能取決於程序中給出的知識和能力。顯然,對於智能活動要通過總結編製程序將十分困難。
人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無為導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。
神經網路就像是一個愛學習的孩子,您教她的知識她是不會忘記而且會學以致用的。我們把學習集(Learning Set)中的每個輸入加到神經網路中,並告訴神經網路輸出應該是什麼分類。在全部學習集都運行完成之後,神經網路就根據這些例子總結出她自己的想法,到底她是怎麼歸納的就是一個黑盒了。之後我們就可以把測試集(Testing Set)中的測試例子用神經網路來分別作測試,如果測試通過(比如80%或90%的正確率),那麼神經網路就構建成功了。我們之後就可以用這個神經網路來判斷事務的分類了。
神經網路是通過對人腦的基本單元——神經元的建模和聯接,探索模擬人腦神經系統功能的模型,並研製一種具有學習、聯想、記憶和模式識別等智能信息處理功能的人工系統。神經網路的一個重要特性是它能夠從環境中學習,並把學習的結果分布存儲於網路的突觸連接中。神經網路的學習是一個過程,在其所處環境的激勵下,相繼給網路輸入一些樣本模式,並按照一定的規則(學習演算法)調整網路各層的權值矩陣,待網路各層權值都收斂到一定值,學習過程結束。然後我們就可以用生成的神經網路來對真實數據做分類。
人工神經網路早期的研究工作應追溯至20世紀40年代。下面以時間順序,以著名的人物或某一方面突出的研究成果為線索,簡要介紹

6. BP神經網路的輸出層問題

當網路用著分類器時,
一般輸出層有兩種方式確定:
1,m個,你的類別有三(漢字、字母、數字),所以輸出層神經元數目為3個;
2,log2(m),即3或4個類別輸出層神經元數目為2個,5至8個類別輸出層神經元數目為3個,9至16個類別輸出層神經元數目為4個。

實際上由你自己決定,你想幾個就幾個!

7. BP神經網路進行數字識別訓練過程的原理

這段程序的流程就是1.隨機產生一些帶雜訊的樣本;2.用這些樣本對神經網路進行訓練;3.訓練完成。訓練好的網路就具有了數字識別的功能,你用一個帶雜訊的樣本去檢驗它,其輸出就是識別結果。給你提供一個車牌智能識別的matlab代碼,你可以參考一下。

8. bp神經網路

BP(Back Propagation)網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hide layer)和輸出層(output layer)。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。

人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。

所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。

如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。

如圖所示拓撲結構的單隱層前饋網路,一般稱為三層前饋網或三層感知器,即:輸入層、中間層(也稱隱層)和輸出層。它的特點是:各層神經元僅與相鄰層神經元之間相互全連接,同層內神經元之間無連接,各層神經元之間無反饋連接,構成具有層次結構的前饋型神經網路系統。單計算層前饋神經網路只能求解線性可分問題,能夠求解非線性問題的網路必須是具有隱層的多層神經網路。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:

(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。

(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。

(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。

(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。

縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
神經網路可以用作分類、聚類、預測等。神經網路需要有一定量的歷史數據,通過歷史數據的訓練,網路可以學習到數據中隱含的知識。在你的問題中,首先要找到某些問題的一些特徵,以及對應的評價數據,用這些數據來訓練神經網路。

雖然BP網路得到了廣泛的應用,但自身也存在一些缺陷和不足,主要包括以下幾個方面的問題。

首先,由於學習速率是固定的,因此網路的收斂速度慢,需要較長的訓練時間。對於一些復雜問題,BP演算法需要的訓練時間可能非常長,這主要是由於學習速率太小造成的,可採用變化的學習速率或自適應的學習速率加以改進。

其次,BP演算法可以使權值收斂到某個值,但並不保證其為誤差平面的全局最小值,這是因為採用梯度下降法可能產生一個局部最小值。對於這個問題,可以採用附加動量法來解決。

再次,網路隱含層的層數和單元數的選擇尚無理論上的指導,一般是根據經驗或者通過反復實驗確定。因此,網路往往存在很大的冗餘性,在一定程度上也增加了網路學習的負擔。

最後,網路的學習和記憶具有不穩定性。也就是說,如果增加了學習樣本,訓練好的網路就需要從頭開始訓練,對於以前的權值和閾值是沒有記憶的。但是可以將預測、分類或聚類做的比較好的權值保存。

閱讀全文

與神經網路如何識別字母和數字相關的資料

熱點內容
新買的網路電視連接不上無線網路 瀏覽:938
蘋果十二5g網路怎麼開 瀏覽:658
有網路收音機的軟體嗎 瀏覽:795
十四五網路安全和信息化 瀏覽:83
連接360wifi網路受限制 瀏覽:950
移動網路能不能接電腦 瀏覽:203
聯通卡如何連接移動網路 瀏覽:583
win8應用連接網路 瀏覽:362
iphone怎麼切換網路 瀏覽:568
四種網路共享方式 瀏覽:895
手機連接wifi顯示2g網路 瀏覽:907
哪裡下載大型單機網路游戲 瀏覽:29
極限挑戰第六季網路哪個平台播 瀏覽:348
大慶網路運營中心客服電話是多少 瀏覽:504
魔百盒網路設置網路密碼 瀏覽:457
有網路沒密碼怎麼改 瀏覽:719
網路打賞一萬鑽石是多少錢 瀏覽:771
光貓傳遞網路信號的危害 瀏覽:639
可以通過網路找回手機嗎 瀏覽:349
商用密碼演算法的網路攝像機 瀏覽:427

友情鏈接