1、所謂無線網路,就是利用無線電波作為信息傳輸的媒介構成的無線區域網(WLAN),與有線網路的用途十分類似,最大的不同在於傳輸媒介的不同,利用無線電技術取代網線,可以和有線網路互為備份。
2、常見標准有以下三種:
IEEE 802.11a :使用5GHz頻段,傳輸速度54Mbps,與802.11b不兼容
IEEE 802.11b :使用2.4GHz頻段,傳輸速度11Mbps
IEEE 802.11g :使用2.4GHz頻段,傳輸速度54Mbps,可向下兼容802.11b
目前IEEE 802.11b最常用,但IEEE 802.11g更具下一代標準的實力
3、光有無線網卡無法連接無線網路,還必須有無線AP,相當於有線網路的集線器.只有在無線AP可以覆蓋的區域內,進行適當的設置,才能連接無線網路.
無線上網是靠無線網卡,當然,配套的還需無線路由(無線貓)。
無線網卡相當於是接收器,無線路由(無線貓)相當於發射器。其實還是需要有線的Internet線路接入到無線貓上,再將信號轉化為無線的信號發射出去,由無線網卡接收。
一般無線路由可以拖2~4個無線網卡,工作距離在50米以內效果較好,遠了通信質量很差。這種無線方案嚴格的說,只是無線布網,工作環境必須緊挨著有線網路。
一套的售價在300~800不等。
另外一種就是純粹的無線了,這就需要通信器材,比如衛星接收器,或可以上網的手機等等,這些東西通過專用的數據線接入電腦,由他們接收來自衛星或無線網路服務的信號,但是速度不怎麼樣,通信費用超貴。並且衛星接收器和手機的價格也不菲,通常在3000~5000不等,優點就是,即使你在荒山野嶺也能上網(當然要有電腦)
這兩種方案都可以用在筆記本和台式機上,當然,台式機本來移動就不方便,無線就沒什麼太大的意義了。
無線網卡的作用類似於乙太網中的網卡,作為無線網路的介面,實現與無線網路的連接.無線網卡根據介面類型的不同,主要分為三種類型,即PCMCIA無線網卡,PCI無線網卡和USB無線網卡.
PCMCIA無線網卡僅適用於筆記本電腦,支持熱插拔,可以非常方便地實現移動式無線接入.
PCI介面無線網卡適用於普通的台式計算機使用.其實PCI介面的無線網卡只是在PCI轉接卡上插入一塊普通的PC卡.
USB介面無線網卡適用於筆記本電腦和台式機,支持熱插撥.不過,由於USB網卡對筆記本而言是個累贅,因此,USB網卡通常被用於台式機.
㈡ 無線網路中使用的是什麼拓撲結構
1、拓撲結構圖是指由網路節點設備和通信介質構成的網路結構圖。
2、一般這種平面的結構圖都用 coreldraw來製作,簡單的用WORD. EXCEL就能完成,對圖片色彩和視覺感官要求高的可以結合 PHOTOSHOP來完成。
3、專業性要求使用 VISIO5專業版,圖庫比較多,並且安裝一次後只需COPY安裝目錄即可。VSIO2000專業版,除了圖庫多外,使用也容易。
1、網狀拓撲結構
優點:任意兩個設備間有自己專用的通信通道,不會產生網路沖突,當某個設備發生故障時,不會影響網路中其他設備的通信。
缺點:硬體實現比較困難,需要的電纜多,n個結點的網路至少需要n(n-1)/2條連接電纜,安裝成本高,向網路中添加或刪除結點都非常困難。
2、星形拓撲結構
優點:硬體安裝比較簡單成本,向網路中添加或刪除結點簡便。
缺點:如果中心結點發生故障,整個網路通信將完全癱瘓;另外,由於網路各設備間不能直接通信,需要通過中心結點轉發,因此通信時會帶來一定的時間延遲。
㈢ 無線區域網有那些拓撲結構
。。無線區域網的拓撲結構,也只有AP、橋接、中繼模式了。
㈣ 無線網路的種類和優缺點是什麼。
1、根據網路覆蓋范圍的不同,可以將無線網路劃分為無線廣域網、無線區域網、無線城域網和無線個人區域網。
2、根據網路應用場合的不同,可以將無線網路劃分為無線感測器網路、無線Mesh網路,可穿戴式無線網路和無線體域網路等。
3、根據無線網路拓撲結構的不同,無線網路又可以劃分為不同的類型,有五大網路拓撲結構,分別是匯流排、令牌環、星型、樹型和網狀。
無線區域網的優缺點如下:
1、無線區域網的優點
靈活性和移動性:在有線網路中,網路設備的安放位置受網路位置的限制,而無線區域網在無線信號覆蓋區域內的任何一個位置都可以接入網路。無線區域網另一個最大的優點在於其移動性,連接到無線區域網的用戶可以移動且能同時與網路保持連接。
2、安裝便捷:無線區域網可以免去或最大程度地減少網路布線的工作量,一般只要安裝一個或多個接入點設備,就可建立覆蓋整個區域的區域網絡。
3、易於進行網路規劃和調整:對於有線網路來說,辦公地點或網路拓撲的改變通常意味著重新建網。重新布線是一個昂貴、費時、浪費和瑣碎的過程,無線區域網可以避免或減少以上情況的發生。
4、故障定位容易:有線網路一旦出現物理故障,尤其是由於線路連接不良而造成的網路中斷,往往很難查明,而且檢修線路需要付出很大的代價。無線網路則很容易定位故障,只需更換故障設備即可恢復網路連接。
5、易於擴展:無線區域網有多種配置方式,可以很快從只有幾個用戶的小型區域網擴展到上千用戶的大型網路,並且能夠提供節點間「漫遊』』等有線網路無法實現的特性。
無線區域網的缺點:
1、性能:無線區域網是依靠無線電波進行傳輸的。這些電波通過無線發射裝置進行發射,而建築物、車輛、樹木和其他障礙物都可能阻礙電磁波的傳輸,所以會影響網路的性能。
2、速率:無線信道的傳輸速率與有線信道的傳輸速率相比要低得多。目前,無線區域網的最大傳輸速率為54Mb/s,只適合於個人終端和小規模網路應用。
3、安全性:本質.r無線電波不要求建立物理的連接通道,無線信號是發散的。從理論上講,很容易監聽到無線電波廣播范圍內的任何信號,造成通信信息泄漏。
(4)無線網路結構詳解擴展閱讀:
特點:
1、可移動性強,能突破時空的限制。
無線網路是通過發射無線電波來傳遞網路信號的,只要處於發射的范圍之內,人們就可以利用相應的接受設備來實現對相應網路的連接。
2、網路擴展性能相對較強。
可以隨時通過無線信號進行接人,其網路擴展性能相對較強,可以有效實現網路工作的擴展和配置的設置等。
3、設備安裝簡易、成本低廉。
無線網路則無需布設大量的網線,安裝—個無線網路發射設備即可,同時這也為後期網路維護創造了非常便利的條件,極大地降低了網路前期安裝和後期維護的成本費用。
㈤ 無線路由器中繼器好用嗎
還可以吧。但是一般的都不怎麼好用。
其實你可以用隨身wifi來創建無線網路的。
而且信號不錯的,功能不錯。
全民wifi的功能是十分的不錯的,比路由器的中繼要好。
最近在網上看到很多的網友說全民wifi的功能比較的高大上,
而且可以攔截木馬病毒,拉黑來蹭網的人。
用著還是不錯的,我覺得很不錯,望採納。謝了。
㈥ wifi模塊介面類型和wifi模塊工作原理求資料
WiFi模塊常用通訊介麵包含:USB、SDIO、SPI(slave)、UART、RGMII、RMII。
USB介面:通用串列匯流排(英語:Universal Serial Bus,縮寫:USB)是連接計算機系統與外部設備的一種串口匯流排標准,也是一種輸入輸出介面的技術規范,被廣泛地應用於個人電腦和移動設備等信息通訊產品,並擴展至攝影器材、數字電視(機頂盒)、游戲機等其它相關領域。
USB介面是WiFi模塊晶元內部的固件程序與主機上的操作系統進行數據通信的橋梁。USB介面的作用就是數據傳輸。WiFi模塊接收數據時會引發USB介面的讀數據操作!目前WiFi模塊的通信介面方面,基本是採用USB介面形式,尤其是應用於無線網卡的WiFi模塊;
WAN/LAN:WAN口是用來連接外網(公網),或者說是連接寬頻運營商的設備的;LAN口(1、2、3、4),是用來連接內網(區域網)中的設備的,主要是用來連接電腦、交換機、列印機等設備的;
UART:通用非同步串列口,它包括RS232、RS499、RS423、RS422和RS485等介面規范和標准規范,即UART是串列非同步通信口的總稱。多用於數據透傳;
I²S:Inter-IC Sound Bus是飛利浦公司為數字音頻設備之間的音頻、數據傳輸而制定的一種匯流排標准。音頻應用;
I²C:Inter-Integrated Circuit匯流排是一種由PHILIPS公司開發的兩線式串列匯流排,用於連接微控制器及其外圍設備.感測器應用;
SPI:Serial Peripheral Interface是MOTOROLA公司提出的同步串列匯流排方式。高速同步串列口。Flaash,感測器;
SDIO:是SD型的擴展介面,除了可以接SD卡外,還可以接支持SDIO介面的設備,插口的用途不止是插存儲卡。SDIO和SD卡規范間的一個重要區別是增加了低速標准,低速卡的目標應用是以最小的硬體開始來支持低速I/O能力。低速卡支持類似數據機,條形碼掃描儀和GPS接收器等應用。高速卡支持網卡,電視卡還有「組合」卡等,組合卡指的是存儲器+SDIO。
PWM(Pluse Width Molaion)是通過數字輸出引腳向外部設備輸出比例控制信號的常用方法;燈控應用。
SKYLAB WiFi模塊大致的分為三大類,USB WiFi模塊、AP/Router WiFi模塊、UART WiFi模塊,若平台需要通過這些介面USB,PCIE,SDIO進行通訊,則選擇做從設備的USB WiFi模塊;若是想將4G信號轉換為WiFi信號,則選擇AP/Router WiFi模塊;若是想做時下熱門的物聯網應用,則可以優先考慮UART WiFi模塊;
WiFi模塊的工作原理,先講解一下我們生活中常遇到的幾種無線wifi網路結構。
無線wifi網路拓撲結構有2種,分別是基礎網(Infra)和自組網(Adhoc)。這里要了解兩個概念,AP,好比我們家中的路由器,無線wifi網路的創建者,網路的中心節點。STA,又叫做站點,是無線wifi網路的終端,不如我們家裡用的筆記本,ipad等等都可以叫做站點。
基礎網(Infra):由很多AP組成的無線網路,整個網路的中心就是由AP,網路中所有的通訊都是由ap進行數據的轉換。
自組網(Adhoc): 網路中不存在AP,由兩個或者兩個以上的STA組成的無線網路。無線網路中所有的STA直接進行數據交換,這種無線網路結構不嚴謹。
㈦ WLAN的結構
WLAN的網路結構
WLAN使用的埠訪問技術IEEE802.11b標准支持兩種網路結構[2],一種是如圖1所示基於AP的網路結構,所有工作站都直接與AP無線連接,由AP承擔無線通信的管理及與有線網路連接的工作,是理想的底功耗工作方式。可以通過放置多個AP來擴展無線覆蓋范圍,並允許便攜機在不同AP之間漫遊,如圖2所示[3]。目前實際應用的WLAN建網方案中,一般採用這種結構,同時考慮到安全因素,AP必須和交換機各埠進行兩層隔離。交換機採用IEEE802.1Q標準的VLAN方式。VLAN對接入交換機每一埠的AP都必須分配一個網內唯一的VLANID。另一種是如圖2所示基於p2p(PeertoPeer)的網路結構,用於連接PC或POCKETPC,允許各台計算機在無線網路所覆蓋的范圍內移動並自動建立點到點的連接。
㈧ 無線mesh網路的網路結構
無線Mesh 網路是一種與傳統的無線網路完全不同的網路。傳統的無線接入技術中,主要採用點到點或者點到多點的拓撲結構。這種拓撲結構中一般都存在一個中心節點,例如移動通信系統中的基站、802.11無線區域網(WLAN)中的接入點(AP)等等。中心節點與各個無線終端通過單跳無線鏈路相連,控制各無線終端對無線網路的訪問;同時,又通過有線鏈路與有線骨幹網相連,提供到骨幹網的連接。而在無線Mesh網路中,採用網狀Mesh拓撲結構,是一種多點到多點網路拓撲結構。在這種Mesh網路結構中,各網路節點通過相鄰其他網路節點,以無線多跳方式相連。
在WMN中包括兩種類型的節點:無線Mesh路由器和無線Mesh用戶端。WMN的系統結構根據節點功能的不同分為3類:骨幹網Mesh結構、客戶端Mesh結構、混合結構 。
骨幹網Mesh結構是由Mesh路由器網狀互連形成的,無線Mesh骨幹網再通過其中的Mesh路由器與外部網路相連。Mesh路由器除了具有傳統的無線路由器的網關、中繼功能外,還具有支持Mesh網路互連的路由功能,可以通過無線多跳通信,以低得多的發射功率獲得同樣的無線覆蓋范圍。
客戶端Mesh結構是由Mesh用戶端之間互連構成一個小型對等通信網路,在用戶設備間提供點到點的服務。Mesh網用戶終端可以是手提電腦、手機、PDA等裝有無線網卡、天線的用戶設備。這種結構實際上就是一個Ad hoc網路,可以在沒有或不便使用現有的網路基礎設施的情況下提供一種通信支撐。
Mesh客戶端可以通過Mesh路由器接入骨幹Mesh網路形成Mesh網路的混合結構,如圖1所示,其中虛線和實線分別表示無線和有線連接。這種結構提供與其他一些網路結構的連接,增強了連接性,擴大了覆蓋范圍。
㈨ Wi-Fi的組成結構
一般架設無線網路的基本配備就是無線網卡及一台AP,如此便能以無線的模式,配合既有的有線架構來分享網路資源,架設費用和復雜程度遠遠低於傳統的有線網路。如果只是幾台電腦的對等網,也可不要AP,只需要每台電腦配備無線網卡。AP為Access Point簡稱,一般翻譯為「無線訪問接入點」,或「橋接器」。它主要在媒體存取控制層MAC中扮演無線工作站及有線區域網絡的橋梁。有了AP,就像一般有線網路的Hub一般,無線工作站可以快速且輕易地與網路相連。特別是對於寬頻的使用,無線保真更顯優勢,有線寬頻網路(ADSL、小區LAN等)到戶後,連接到一個AP,然後在電腦中安裝一塊無線網卡即可。普通的家庭有一個AP已經足夠,甚至用戶的鄰里得到授權後,則無需增加埠,也能以共享的方式上網。 隨著無線網路的不斷興起和發展,2010年無線網路模塊的應用領域相當廣泛!
但是無線保真模塊畢竟是一高頻性質的產品,它不象普通的消費類電子產品,生產設計的時候會有一些莫名其妙的現象和問題,讓一些沒有高頻設計經驗的工程師費勁心思,有相關經驗的從業人員,往往也是需要藉助昂貴的設備來協助分析。
對於無線網路部分的處理,有直接把無線保真部分Layout到PCB主板上去的設計,這種設計,需要勇氣和技術,因為本身模塊的價格不高,主板對應的產品價格不菲,當有無線保真部分產生的問題,調試更換比較麻煩,直接報廢可惜;所以很多設計都願意採用模塊化的無線保真部分,這樣可以直接讓Wi-Fi部分模塊化,處理起來方便,而且模塊可以直接拆卸,對於產品的設計風險和具體的耗損也有很大幫助。
具體的硬體設計應該和相關無線保真模塊咨詢時,要考慮清楚以下方面:
通信介面方面:2010年基本是採用USB介面形式,PCIE和SDIO的也有少部分,PCIE的市場份額應該不大,多合一的價格昂貴,而且實用性不強,集成的很多功能都不會使用,其實也是一種浪費。
供電方面:多數是用5V直接供電,有的也會利用主板設計中的電源共享,直接採用3.3V供電。
天線的處理形式:可以有內置的PCB板載天線或者陶瓷天線;也可以通過I-PEX接頭,連接天線延長線,然後讓天線外置。
規格尺寸方面:這個可以根據具體的設計要求,最小的有nano型號(可以直接做nano無線網卡);有可以做到迷你型的12*12左右(通常是外置天線方式採用);通常是25*12左右的設計多點(基本是板載天線和陶瓷天線多,也有外置天線接頭)。
跟主板連接的形式:可以直接SMT,也可以通過2.54的排針來做插件連接(這種組裝/維修方便)。
軟體的調試要結合具體的方案主控,畢竟無線保真部分僅僅是一個無線的收發而已。很多用戶在咨詢的時候,很容易混淆!可以說,2013年無線保真模塊應用最火爆的領域就是MID市場,同時傳統的一些網路領域應用市場也有滲透,比如一些工業控制領域/網路播放領域/甚至一些遙控領域也有在考慮的,基本上是能用到網路的部分都希望嘗試無線化! 一個無線保真聯接點網路成員和結構站點(Station),網路最基本的組成部分。
基本服務單元(Basic Service Set,BSS)是網路最基本的服務單元。最簡單的服務單元可以只由兩個站點組成。站點可以動態地聯結(Associate)到基本服務單元中。
分配系統(Distribution System,DS)。分配系統用於連接不同的基本服務單元。分配系統使用的媒介(Medium)邏輯上和基本服務單元使用的媒介是截然分開的,盡管它們物理上可能會是同一個媒介,例如同一個無線頻段。
接入點(Access Point,AP)。接入點既有普通站點的身份,又有接入到分配系統的功能。
擴展服務單元(Extended Service Set,ESS)。由分配系統和基本服務單元組合而成。這種組合是邏輯上,並非物理上的--不同的基本服務單元物有可能在地理位置相去甚遠。分配系統也可以使用各種各樣的技術。
關口(Portal),也是一個邏輯成分。用於將無線區域網和有線區域網或其它網路聯系起來。
這兒有3種媒介,站點使用的無線的媒介,分配系統使用的媒介,以及和無線區域網集成一起的其它區域網使用的媒介。物理上它們可能互相重疊。
IEEE802.11隻負責在站點使用的無線的媒介上的定址(Addressing)。分配系統和其它區域網的定址不屬無線區域網的范圍。
IEEE802.11沒有具體定義分配系統,只是定義了分配系統應該提供的服務(Service)。整個無線區域網定義了9種服務,
5種服務屬於分配系統的任務,分別為,聯接(Association),結束聯接(Diassociation),分配(Distribution),集成(Integration),再聯接(Reassociation)。
4種服務屬於站點的任務,分別為,鑒權(Authentication),結束鑒權(Deauthentication),隱私(Privacy), MAC數據傳輸(MSDU delivery)。
㈩ 常見的無線網路結構有哪些
無線網路的拓撲結構主要有: 無中心的分布對等方式、有中心的集中控制方式、以及上述方式的混合方式。 常見的無線網路協議: IEEE802.11 是第一代無線區域網標准之一。該標準定義了物理層和媒體訪問控制 (MAC) 協議的規范,允許無線區域網及無線設備製造商在一定范圍內建立互操作網路設備。 802.11 是 IEEE 最初制定的一個無線區域網標准,業務主要限於數據存取,速率最高只能達到 2Mbps 。 由於它在速率和傳輸距離上都不能滿足人們的需要,因此, IEEE 小組又相繼推出了 802.11b 和 802.11a 兩個新標准。 2003 年 IEEE 還通過了 802.11g 技術標准。 802.11b 標準是 IEEE 制定的無線區域網標准,它工作在 2.4GHz 免執照的 ISM 頻帶,物理層速率可達 11M ,傳輸層可達 5.5Mbps 。該標准採用 DSSS 直序擴頻技術。 802.11a 標準是 802.11b 的後續標准。它工作在 5GHz 頻帶 (5.2GHz,5.4GHz,5.8GHz) ,物理層速率可達 54M ,傳輸層可達 25Mbps 。採用正交頻分復用( OFDM )技術。 802.11g 標准結合了 802.11b 和 802.11a 兩種標準的優點,克服了它們的局限性。它工作在 2.4GHz 免執照的 ISM 頻帶,可以比工作在 5GHz 的 802.11a 覆蓋更大的區域,同時,採用正交頻分復用( OFDM )技術,物理層速率可達 54M ,傳輸層可達 25M ,傳輸速度比 802.11b 要快 5 倍左右。 802.11n 計劃採用 MIMO (多入多出技術)與 OFDM 相結合,使傳輸速率成倍提高。另外,新的天線技術及無線傳輸技術,使得無線區域網的傳輸距離大大增加。相對 802.11g 標准,新標准計劃在保障 100M 的傳輸速率下使傳輸距離增加 10 倍左右。 802.11n 標准對 802.11 標准做了多項修改,不僅涉及物理層標准,同時也採用新的高性能無線傳輸技術提升 MAC 層的性能,優化數據幀結構,提高網路的吞吐量性能。不過目前這類 MIMO 產品還相當稚嫩。實際性能在 100 米以內大約是 802.11g 產品的 2 倍,而超過 100 米後,其性能將非常接近 802.11g 產品。