导航:首页 > 网络连接 > 计算机网络中继链路

计算机网络中继链路

发布时间:2022-07-16 19:28:08

计算机网络题,简述中继器,网桥,交换机,路由器等网络设备的作用和

1,中继器是物理层上的网络互连设备,它的作用是重新生成信号(即对原信号进行放大和整形)。
中继器(Repeater)又称重发器,是一种最为简单但也是用得最多的互连设备。中继器仅适用于以太网,可将两段或两段以上以太网互连起来。中继器只对 电缆上传输的数据信号再生放大,再重发到其它电缆段上。对链路层以上的协议来说,用中继器互连起来的若干段电缆与单根电缆并无区别(除了中断器本身会引起 一定的时间延迟外)。

2,集线器在OSI的7层模型中处于物理层,其实质是一个中继器。主要功能是对接收到的信号进行再生放大,以扩大网络的传输距离。正因为集线器只是一个信 号放大和中转的设备,所以它不具备交换功能,但是由于集线器价格便宜、组网灵活,所以经常使用它。集线器使用于星型网络布线,如果一个工作站出现问题,不 会影响整个网络的正常运行。

3,网桥工作在数据链路层,将两个LAN连起来,根据MAC地址来转发帧,可以看作一个“低层的路由器”(路由器工作在网络层,根据网络地址如IP地址进行转发)。

4,数据交换机(Switch)也叫交换式集线器,是一种工作在OSI第二层(数据链路层,参见“广域网”定义)上的、基 于MAC (网卡的介质访问控制地址)识别、能完成封装转发数据包功能的网络设备。它通过对信息进行重新生成,并经过内部处理后转发至指定端口,具备自动寻址能力和 交换作用。交换机不懂得IP地址,但它可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使 数据帧直接由源地址到达目的地址。

5,是什么把网络相互连接起来?是路由器。路由器是互联网络的枢纽、"交通警察"。目前路由器已经广泛应用于各行各业,各种不同档次的产品已经成为实现各种骨干网内部连接、骨干网间互联和骨干网与互联网互联互通业务的主力军。

所谓路由就是指通过相互连接的网络把信息从源地点移动到目标地点的活动。一般来说,在路由过程中,信息至少会经过一个或多个中间节点。通常,人们会把路由 和交换进行对比,这主要是因为在普通用户看来两者所实现的功能是完全一样的。其实,路由和交换之间的主要区别就是交换发生在OSI参考模型的第二层(数据 链路层),而路由发生在第三层,即网络层。这一区别决定了路由和交换在移动信息的过程中需要使用不同的控制信息,所以两者实现各自功能的方式是不同的。

⑵ 计算机网络体系结构的ISO/OSI网络体系结构

国际标准化组织ISO(International Standards Organization)在80年代提出的开放系统互联参考模型OSI(Open System Interconnection),这个模型将计算机网络通信协议分为七层。这个模型是一个定义异构计算机连接标准的框架结构,其具有如下特点:
①网络中异构的每个节点均有相同的层次,相同层次具有相同的功能。
②同一节点内相邻层次之间通过接口通信。
③相邻层次间接口定义原语操作,由低层向高层提供服务。
④不同节点的相同层次之间的通信由该层次的协议管理,
⑤每层次完成对该层所定义的功能,修改本层次功能不影响其它层、
⑥仅在最低层进行直接数据传送。
⑦定义的是抽象结构,并非具体实现的描述。
在OSI网络体系结构中、除了物理层之外,网络中数据的实际传输方向是垂直的。数据由用户发送进程发送给应用层,向下经表示层、会话层等到达物理层,再经传输媒体传到接收端,由接收端物理层接收,向上经数据链路层等到达应用层,再由用户获取。数据在由发送进程交给应用层时,由应用层加上该层有关控制和识别信息,再向下传送,这一过程一直重复到物理层。在接收端信息向上传递时,各层的有关控制和识别信息被逐层剥去,最后数据送到接收进程。
现在一般在制定网络协议和标准时,都把ISO/OSI参考模型作为参照基准,并说明与该参照基准的对应关系。例如,在IEEE802局域网LAN标准中,只定义了物理层和数据链路层,并且增强了数据链路层的功能。在广域网WAN协议中,CCITT的X.25建议包含了物理层、数据链路层和网络层等三层协议。一般来说,网络的低层协议决定了一个网络系统的传输特性,例如所采用的传输介质、拓扑结构及介质访问控制方法等,这些通常由硬件来实现;网络的高层协议则提供了与网络硬件结构无关的,更加完善的网络服务和应用环境,这些通常是由网络操作系统来实现的。 物理层建立在物理通信介质的基础上,作为系统和通信介质的接口,用来实现数据链路实体间透明的比特 (bit) 流传输。只有该层为真实物理通信,其它各层为虚拟通信。物理层实际上是设备之间的物理接口,物理层传输协议主要用于控制传输媒体。
(1)物理层的特性
物理层提供与通信介质的连接,提供为建立、维护和释放物理链路所需的机械的、电气的、功能的和规程的特性,提供在物理链路上传输非结构的位流以及故障检测指示。物理层向上层提供位 (bit) 信息的正确传送。
其中机械特性主要规定接口连接器的尺寸、芯数和芯的位置的安排、连线的根数等。电气特性主要规定了每种信号的电平、信号的脉冲宽度、允许的数据传输速率和最大传输距离。功能特性规定了接口电路引脚的功能和作用。规程特性规定了接口电路信号发出的时序、应答关系和操作过程,例如,怎样建立和拆除物理层连接,是全双工还是半双工等。
(2)物理层功能
为了实现数据链路实体之间比特流的透明传输,物理层应具有下述功能:
①物理连接的建立与拆除
当数据链路层请求在两个数据链路实体之间建立物理连接时,物理层能够立即为它们建立相应的物理连接。若两个数据链路实体之间要经过若干中继数据链路实体时,物理层还能够对这些中继数据链路实体进行互联,以建立起一条有效的物理连接。当物理连接不再需要时,由物理层立即拆除。
②物理服务数据单元传输
物理层既可以采取同步传输方式,也可以采取异步传输方式来传输物理服务数据单元。
③物理层管理
对物理层收发进行管理,如功能的激活 (何时发送和接收、异常情况处理等)、差错控制 (传输中出现的奇偶错和格式错)等。 数据链路层为网络层相邻实体间提供传送数据的功能和过程;提供数据流链路控制;检测和校正物理链路的差错。物理层不考虑位流传输的结构,而数据链路层主要职责是控制相邻系统之间的物理链路,传送数据以帧为单位,规定字符编码、信息格式,约定接收和发送过程,在一帧数据开头和结尾附加特殊二进制编码作为帧界识别符,以及发送端处理接收端送回的确认帧,保证数据帧传输和接收的正确性,以及发送和接收速度的匹配,流量控制等。
(1)数据链路层的目的
提供建立、维持和释放数据链路连接以及传输数据链路服务数据单元所需的功能和过程的手段。数据链路连接是建立在物理连接基础上的,在物理连接建立以后,进行数据链路连接的建立和数据链路连接的拆除。具体说,每次通信前后,双方相互联系以确认一次通信的开始和结束,在一次物理连接上可以进行多次通信。数据链路层检测和校正在物理层出现的错误。
(2)数据链路层的功能和服务
数据链路层的主要功能是为网络层提供连接服务,并在数据链路连接上传送数据链路协议数据单元L-PDU,一般将L-PDU称为帧。数据链路层服务可分为以下三种:
①无应答、无连接服务。发送前不必建立数据链路连接,接收方也不做应答,出错和数据丢失时也不做处理。这种服务质量低,适用于线路误码率很低以及传送实时性要求高的 (例如语音类的)信息等。
②有应答、无连接服务。当发送主机的数据链路层要发送数据时,直接发送数据帧。目标主机接收数据链路的数据帧,并经校验结果正确后,向源主机数据链路层返回应答帧;否则返回否定帧,发送端可以重发原数据帧。这种方式发送的第一个数据帧除传送数据外,也起数据链路连接的作用。这种服务适用于一个节点的物理链路多或通信量小的情况,其实现和控制都较为简单。
③面向连接的服务。该服务一次数据传送分为三个阶段:数据链路建立,数据帧传送和数据链路的拆除。数据链路建立阶段要求双方的数据链路层作好传送的准备;数据传送阶段是将网络层递交的数据传送到对方;数据链路拆除阶段是当数据传送结束时,拆除数据链路连接。这种服务的质量好,是ISO/OSI参考模型推荐的主要服务方式。
(3)数据链路数据单元
数据链路层与网络层交换数据格式为服务数据单元。数据链路服务数据单元,配上数据链路协议控制信息,形成数据链路协议数据单元。
数据链路层能够从物理连接上传输的比特流中,识别出数据链路服务数据单元的开始和结束,以及识别出其中的每个字段,实现正确的接收和控制。能按发送的顺序传输到相邻结点。
(4)数据链路层协议
数据链路层协议可分为面向字符的通信规程和面向比特的通信规程。
面向字符的通信规程是利用控制字符控制报文的传输。报文由报头和正文两部分组成。报头用于传输控制,包括报文名称、源地址、目标地址、发送日期以及标识报文开始和结束的控制字符。正文则为报文的具体内容。目标节点对收到的源节点发来的报文,进行检查,若正确,则向源节点发送确认的字符信息;否则发送接收错误的字符信息。
面向比特的通信规程典型是以帧为传送信息的单位,帧分为控制帧和信息帧。在信息帧的数据字段 (即正文)中,数据为比特流。比特流用帧标志来划分帧边界,帧标志也可用作同步字符。 广域网络一般都划分为通信子网和资源子网,物理层、数据链路层和网络层组成通信子网,网络层是通信子网的最高层,完成对通信子网的运行控制。网络层和传输层的界面,既是层间的接口,又是通信子网和用户主机组成的资源子网的界限,网络层利用本层和数据链路层、物理层两层的功能向传输层提供服务。
数据链路层的任务是在相邻两个节点间实现透明的无差错的帧级信息的传送,而网络层则要在通信子网内把报文分组从源节点传送到目标节点。在网络层的支持下,两个终端系统的传输实体之间要进行通信,只需把要交换的数据交给它们的网络层便可实现。至于网络层如何利用数据链路层的资源来提供网络连接,对传输层是透明的。
网络层控制分组传送操作,即路由选择,拥塞控制、网络互连等功能,根据传输层的要求来选择服务质量,向传输层报告未恢复的差错。网络层传输的信息以报文分组为单位,它将来自源的报文转换成包文,并经路径选择算法确定路径送往目的地。网络层协议用于实现这种传送中涉及的中继节点路由选择、子网内的信息流量控制以及差错处理等。
(1)网络层功能
网络层的主要功能是支持网络层的连接。网络层的具体功能如下:
①建立和拆除网络连接
在数据链路层提供的数据链路连接的基础上,建立传输实体间或者若干个通信子网的网络连接。互连的子网可采用不同的子网协议。
②路径选择、中继和多路复用
网际的路径和中继不同与网内的路径和和中继,网络层可以在传输实体的两个网络地址之间选择一条适当的路径,或者在互连的子网之间选择一条适当的路径和中继。并提供网络连接多路复用的数据链路连接,以提高数据链路连接的利用率。
③分组、组块和流量控制
数据分组是指将较长的数据单元分割为一些相对较小的数据单元;数据组块是指将一些相对较小的数据单元组成块后一起传输。用以实现网络服务数据单元的有序传输,以及对网络连接上传输的网络服务数据单元进行有效的流量控制,以免发生信息堵塞现象。
④差错的检测与恢复
利用数据链路层的差错报告,以及其他的差错检测能力来检测经网络连接所传输的数据单元,检测是否出现异常情况。并可以从出错状态中解脱出来。
(2)数据报和虚电路
网络层中提供两种类型的网络服务,即无连接服务和面向连接的服务。它们又被称为数据报服务和虚电路服务。
①数据报 (Datagram)服务
在数据报方式,网络层从传输层接受报文,拆分为报文分组,并且独立地传送,因此数据报格式中包含有源和目标节点的完整网络地址、服务要求和标识符。发送时,由于数据报每经过一个中继节点时,都要根据当时情况按照一定的算法为其选择一条最佳的传输路径,因此,数据报服务不能保证这些数据报按序到达目标节点,需要在接收节点根据标识符重新排序。
数据报方式对故障的适应性强,若某条链路发生故障,则数据报服务可以绕过这些故障路径而另选择其他路径,把数据报传送至目标节点。数据报方式易于平衡网络流量,因为中继节点可为数据报选择一条流量较少的路由,从而避开流量较高的路由。数据报传输不需建立连接,目标节点在收到数据报后,也不需发送确认,因而是一种开销较小的通信方式。但是发方不能确切地知道对方是否准备好接收、是否正在忙碌,故数据报服务的可靠性不是很高。而且数据报发送每次都附加源和目标主机的全网名称降低了信道利用率。
②虚电路 (Virtue Circuit) 服务
在虚电路传输方式下,在源主机与目标主机通信之前,必须为分组传输建立一条逻辑通道,称为虚电路。为此,源节点先发送请求分组Call-Request,Call-Request包含了源和目标主机的完整网络地址。Call-Request途径每一个通信网络节点时,都要记下为该分组分配的虚电路号,并且路由器为它选择一条最佳传输路由发往下一个通信网络节点。当请求分组到达目标主机后,若它同意与源主机通信,沿着该虚电路的相反方向发送请求分组Call-Request给源节点,当在网络层为双方建立起一条虚电路后,每个分组中不必再填上源和目标主机的全网地址,而只需标上虚电路号,即可以沿着固定的路由传输数据。当通信结束时,将该虚电路拆除。
虚电路服务能保证主机所发出的报文分组按序到达。由于在通信前双方已进行过联系,每发送完一定数量的分组后,对方也都给予了确认,故可靠性较高。
③路由选择
网络层的主要功能是将分组从源节点经过选定的路由送到目标节点,分组途经多个通信网络节点造成多次转发,存在路由选择问题。路由选择或称路径控制,是指网络中的节点根据通信网络的情况 (可用的数据链路、各条链路中的信息流量),按照一定的策略 (传输时间最短、传输路径最短等)选择一条可用的传输路由,把信息发往目标节点。
网络路由选择算法是网络层软件的一部分,负责确定所收到的分组应传送的路由。当网络内部采用无连接的数据报方式时,每传送一个分组都要选择一次路由。当网络层采用虚电路方式时,在建立呼叫连接时,选择一次路径,后继的数据分组就沿着建立的虚电路路径传送,路径选择的频度较低。
路由选择算法可分为静态算法和动态算法。静态路由算法是指总是按照某种固定的规则来选择路由,例如,扩散法、固定路由选择法、随机路由选择法和流量控制选择法。动态路由算法是指根据拓扑结构以及通信量的变化来改变路由,例如,孤立路由选择法、集中路由选择法、分布路由选择法、层次路由选择法等 从传输层向上的会话层、表示层、应用层都属于端一端的主机协议层。传输层是网络体系结构中最核心的一层,传输层将实际使用的通信子网与高层应用分开。从这层开始,各层通信全部是在源与目标主机上的各进程间进行的,通信双方可能经过多个中间节点。传输层为源主机和目标主机之间提供性能可靠、价格合理的数据传输。具体实现上是在网络层的基础上再增添一层软件,使之能屏蔽掉各类通信子网的差异,向用户提供一个通用接口,使用户进程通过该接口,方便地使用网络资源并进行通信。
(1) 传输层功能
传输层独立于所使用的物理网络,提供传输服务的建立、维护和连接拆除的功能;选择网络层提供的最适合的服务。传输层接收会话层的数据,分成较小的信息单位,再送到网络层,实现两传输层间数据的无差错透明传送。
传输层可以使源与目标主机之间以点对点的方式简单地连接起来。真正实现端一端间可靠通信。传输层服务是通过服务原语提供给传输层用户(可以是应用进程或者会话层协议),传输层用户使用传输层服务是通过传送服务端口TSAP实现的。当一个传输层用户希望与远端用户建立连接时,通常定义传输服务访问点TSAP。提供服务的进程在本机TSAP端口等待传输连接请求,当某一节点机的应用程序请求该服务时,向提供服务的节点机的TSAP端口发出传输连接请求,并表明自己的端口和网络地址。如果提供服务的进程同意,就向请求服务的节点机发确认连接,并对请求该服务的应用程序传递消息,应用程序收到消息后,释放传输连接。
传输层提供面向连接和无连接两种类型的服务。这两种类型的服务和网络层的服务非常相似。传输层提供这两种类型服务的原因是因为,用户不能对通信子网加以控制,无法通过使用通信处理机来改善服务质量。传输层提供比网络层更可靠的端一端间数据传输,更完善的查错纠错功能。传输层之上的会话层、表示层、应用层都不包含任何数据传送的功能。
(2)传输层协议类型
传输层协议和网络层提供的服务有关。网络层提供的服务于越完善,传输层协议就越简单,网络层提供的服务越简单,传输层协议就越复杂。传输层服务可分成五类:
0类:提供最简单形式的传送连接,提供数据流控制。
1类:提供最小开销的基本传输连接,提供误差恢复。
2类:提供多路复用,允许几个传输连接多路复用一条链路。
3类:具有0类和1类的功能,提供重新同步和重建传输连接的功能。
4类:用于不可靠传输层连接,提供误差检测和恢复。
基本协议机制包括建立连接、数据传送和拆除连接。传输连接涉及四种不同类型的标识:
用户标识:即服务访问点SAP,允许实体多路数据传输到多个用户。
网络地址:标识传输层实体所在的站。
协议标识:当有多个不同类型的传输协议的实体,对网络服务标识出不同类型的协议。
连接标识:标识传送实体,允许传输连接多路复用。 会话是指两个用户进程之间的一次完整通信。会话层提供不同系统间两个进程建立、维护和结束会话连接的功能;提供交叉会话的管理功能,有一路交叉、两路交叉和两路同时会话的3种数据流方向控制模式。会话层是用户连接到网络的接口。
(1)会话层的主要功能
会话层的目的是提供一个面向应用的连接服务。建立连接时,将会话地址映射为传输地址。会话连接和传输连接有三种对应关系,一个会话连接对应一个传输连接;多个会话连接建立在一个传输连接上;一个会话连接对应多个传输连接。
数据传送时,可以进行会话的常规数据、加速数据、特权数据和能力数据的传送。
会话释放时,允许正常情况下的有序释放;异常情况下由用户发起的异常释放和服务提供者发起的异常释放。
(2)会话活动
会话服务用户之间的交互对话可以划分为不同的逻辑单元,每个逻辑单元称为活动。每个活动完全独立于它前后的其他活动,且每个逻辑单元的所有通信不允许分隔开。
会话活动由会话令牌来控制,保证会话有序进行。会话令牌分为四种,数据令牌、释放令牌、次同步令牌和主同步令牌。令牌是互斥使用会话服务的手段。
会话用户进程间的数据通信一般采用交互式的半双工通信方式。由会话层给会话服务用户提供数据令牌来控制常规数据的传送,有数据令牌的会话服务用户才可发送数据,另一方只能接收数据。当数据发完之后,就将数据令牌转让给对方,对方也可请求令牌。
(3)会话同步
在会话服务用户组织的一个活动中,有时要传送大量的信息,如将一个文件连续发送给对方,为了提高数据发送的效率,会话服务提供者允许会话用户在传送的数据中设置同步点。一个主同步点表示前一个对话单元的结束及下一个对话单元的开始。在一个对话单元内部或者说两个主同步点之间可以设置次同步点,用于会话单元数据的结构化。当会话用户持有数据令牌、次同步令牌和主同步令牌时就可在发送数据流中用相应的服务原语设置次同步点和主同步点。
一旦出现高层软件错误或不符合协议的事件则发生会话中断,这时会话实体可以从中断处返回到一个已知的同步点继续传送,而不必从文件的开头恢复会话。会话层定义了重传功能,重传是指在已正确应答对方后,在后期处理中发现出错而请求的重传,又称为再同步。为了使发送端用户能够重传,必须保存数据缓冲区中已发送的信息数据,将重新同步的范围限制在一个对话单元之内,一般返回到前一个次同步点,最多返回到最近一个主同步点。 应用层作为用户访问网络的接口层,给应用进程提供了访问OSI环境的手段。
应用进程借助于应用实体 (AE)、实用协议和表示服务来交换信息,应用层的作用是在实现应用进程相互通信的同时,完成一系列业务处理所需的服务功能。当然这些服务功能与所处理的业务有关。
应用进程使用OSI定义和通信功能,这些通信功能是通过OSI参考模型各层实体来实现的。应用实体是应用进程利用OSI通信功能的唯一窗口。它按照应用实体间约定的通信协议 (应用协议),传送应用进程的要求,并按照应用实体的要求在系统间传送应用协议控制信息,有些功能可由表示层和表示层以下各层实现。
应用实体由一个用户元素和一组应用服务元素组成。用户元素是应用进程在应用实体内部,为完成其通信目的,需要使用的那些应用服务元素的处理单元。实际上,用户元素向应用进程提供多种形式的应用服务调用,而每个用户元素实现一种特定的应用服务使用方式。用户元素屏蔽应用的多样性和应用服务使用方式的多样性,简化了应用服务的实现。应用进程完全独立于OSI环境,它通过用户元素使用OSI服务。
应用服务元素可分为两类,公共应用服务元素 (CASE)和特定应用服务元素 (SASE)。公共应用服务元素是用户元素和特定应用服务元素公共使用的部分,提供通用的最基本的服务,它使不同系统的进程相互联系并有效通信。它包括联系控制元素、可靠传输服务元素、远程操作服务元素等;特定应用服务元素提供满足特定应用的服务。包括虚拟终端、文件传输和管理、远程数据库访问、作业传送等。对于应用进程和公共应用服务元素来说,用户元素具有发送和接收能力。对特定服务元素来说,用户元素是请求的发送者,也是响应的最终接收者。

⑶ 简述数据侦通过中继链路的变化过程

交换机与路由器的区别 计算机网络往往由许多种不同类型的网络互连连接而成。如果几个计算机网络只是在物理上连接在一起,它们之间并不能进行通信,那么这种“互连”并没有什么实际意义。因此通常在谈到“互连”时,就已经暗示这些相互连接的计算机是可以进行通信的,也就是说,从功能上和逻辑上看,这些计算机网络已经组成了一个大型的计算机网络,或称为互联网络,也可简称为互联网、互连网。 将网络互相连接起来要使用一些中间设备(或中间系统),ISO的术语称之为中继(relay)系统。根据中继系统所在的层次,可以有以下五种中继系统: 1.物理层(即常说的第一层、层L1)中继系统,即转发器(repeater)。 2.数据链路层(即第二层,层L2),即网桥或桥接器(bridge)。 3.网络层(第三层,层L3)中继系统,即路由器(router)。 4.网桥和路由器的混合物桥路器(brouter)兼有网桥和路由器的功能。 5.在网络层以上的中继系统,即网关(gateway). 当中继系统是转发器时,一般不称之为网络互联,因为这仅仅是把一个网络扩大了,而这仍然是一个网络。高层网关由于比较复杂,目前使用得较少。因此一般讨论网络互连时都是指用交换机和路由器进行互联的网络。本文主要阐述交换机和路由器及其区别。 2 交换机和路由器 “交换”是今天网络里出现频率最高的一个词,从桥接到路由到ATM直至电话系统,无论何种场合都可将其套用,搞不清到底什么才是真正的交换。其实交换一词最早出现于电话系统,特指实现两个不同电话机之间话音信号的交换,完成该工作的设备就是电话交换机。所以从本意上来讲,交换只是一种技术概念,即完成信号由设备入口到出口的转发。因此,只要是和符合该定义的所有设备都可被称为交换设备。由此可见,“交换”是一个涵义广泛的词语,当它被用来描述数据网络第二层的设备时,实际指的是一个桥接设备;而当它被用来描述数据网络第三层的设备时,又指的是一个路由设备。 我们经常说到的以太网交换机实际是一个基于网桥技术的多端口第二层网络设备,它为数据帧从一个端口到另一个任意端口的转发提供了低时延、低开销的通路。 由此可见,交换机内部核心处应该有一个交换矩阵,为任意两端口间的通信提供通路,或是一个快速交换总线,以使由任意端口接收的数据帧从其他端口送出。在实际设备中,交换矩阵的功能往往由专门的芯片(ASIC)完成。另外,以太网交换机在设计思想上有一个重要的假设,即交换核心的速度非常之快,以致通常的大流量数据不会使其产生拥塞,换句话说,交换的能力相对于所传信息量而无穷大(与此相反,ATM交换机在设计上的思路是,认为交换的能力相对所传信息量而言有限)。 虽然以太网第二层交换机是基于多端口网桥发展而来,但毕竟交换有其更丰富的特性,使之不但是获得更多带宽的最好途径,而且还使网络更易管理。 而路由器是OSI协议模型的网络层中的分组交换设备(或网络层中继设备),路由器的基本功能是把数据(IP报文)传送到正确的网络,包括: 1.IP数据报的转发,包括数据报的寻径和传送; 2.子网隔离,抑制广播风暴; 3.维护路由表,并与其他路由器交换路由信息,这是IP报文转发的基础。 4.IP数据报的差错处理及简单的拥塞控制; 5.实现对IP数据报的过滤和记帐。 对于不同地规模的网络,路由器的作用的侧重点有所不同。 在主干网上,路由器的主要作用是路由选择。主干网上的路由器,必须知道到达所有下层网络的路径。这需要维护庞大的路由表,并对连接状态的变化作出尽可能迅速的反应。路由器的故障将会导致严重的信息传输问题。 在地区网中,路由器的主要作用是网络连接和路由选择,即连接下层各个基层网络单位--园区网,同时负责下层网络之间的数据转发。 在园区网内部,路由器的主要作用是分隔子网。早期的互连网基层单位是局域网(LAN),其中所有主机处于同一逻辑网络中。随着网络规模的不断扩大,局域网演变成以高速主干和路由器连接的多个子网所组成的园区网。在其中,处个子网在逻辑上独立,而路由器就是唯一能够分隔它们的设备,它负责子网间的报文转发和广播隔离,在边界上的路由器则负责与上层网络的连接。 3 第二层交换机和路由器的区别 传统交换机从网桥发展而来,属于OSI第二层即数据链路层设备。它根据MAC地址寻址,通过站表选择路由,站表的建立和维护由交换机自动进行。路由器属于OSI第三层即网络层设备,它根据IP地址进行寻址,通过路由表路由协议产生。交换机最大的好处是快速,由于交换机只须识别帧中MAC地址,直接根据MAC地址产生选择转发端口算法简单,便于ASIC实现,因此转发速度极高。但交换机的工作机制也带来一些问题。 1.回路:根据交换机地址学习和站表建立算法,交换机之间不允许存在回路。一旦存在回路,必须启动生成树算法,阻塞掉产生回路的端口。而路由器的路由协议没有这个问题,路由器之间可以有多条通路来平衡负载,提高可靠性。 2.负载集中:交换机之间只能有一条通路,使得信息集中在一条通信链路上,不能进行动态分配,以平衡负载。而路由器的路由协议算法可以避免这一点,OSPF路由协议算法不但能产生多条路由,而且能为不同的网络应用选择各自不同的最佳路由。 3.广播控制:交换机只能缩小冲突域,而不能缩小广播域。整个交换式网络就是一个大的广播域,广播报文散到整个交换式网络。而路由器可以隔离广播域,广播报文不能通过路由器继续进行广播。 4.子网划分:交换机只能识别MAC地址。MAC地址是物理地址,而且采用平坦的地址结构,因此不能根据MAC地址来划分子网。而路由器识别IP地址,IP地址由网络管理员分配,是逻辑地址且IP地址具有层次结构,被划分成网络号和主机号,可以非常方便地用于划分子网,路由器的主要功能就是用于连接不同的网络。 5.保密问题:虽说交换机也可以根据帧的源MAC地址、目的MAC地址和其他帧中内容对帧实施过滤,但路由器根据报文的源IP地址、目的IP地址、TCP端口地址等内容对报文实施过滤,更加直观方便。 6.介质相关:交换机作为桥接设备也能完成不同链路层和物理层之间的转换,但这种转换过程比较复杂,不适合ASIC实现,势必降低交换机的转发速度。因此目前交换机主要完成相同或相似物理介质和链路协议的网络互连,而不会用来在物理介质和链路层协议相差甚元的网络之间进行互连。而路由器则不同,它主要用于不同网络之间互连,因此能连接不同物理介质、链路层协议和网络层协议的网络。路由器在功能上虽然占据了优势,但价格昂贵,报文转发速度低。 近几年,交换机为提高性能做了许多改进,其中最突出的改进是虚拟网络和三层交换。 划分子网可以缩小广播域,减少广播风暴对网络的影响。路由器每一接口连接一个子网,广播报文不能经过路由器广播出去,连接在路由器不同接口的子网属于不同子网,子网范围由路由器物理划分。对交换机而言,每一个端口对应一个网段,由于子网由若干网段构成,通过对交换机端口的组合,可以逻辑划分子网。广播报文只能在子网内广播,不能扩散到别的子网内,通过合理划分逻辑子网,达到控制广播的目的。由于逻辑子网由交换机端口任意组合,没有物理上的相关性,因此称为虚拟子网,或叫虚拟网。虚拟网技术不用路由器就解决了广播报文的隔离问题,且虚拟网内网段与其物理位置无关,即相邻网段可以属于不同虚拟网,而相隔甚远的两个网段可能属于不同虚拟网,而相隔甚远的两个网段可能属于同一个虚拟网。不同虚拟网内的终端之间不能相互通信,增强了对网络内数据的访问控制。 交换机和路由器是性能和功能的矛盾体,交换机交换速度快,但控制功能弱,路由器控制性能强,但报文转发速度慢。解决这个矛盾的技术是三层交换,既有交换机线速转发报文能力,又有路由器良好的控制功能。 4 第三层交换机和路由器的区别 在第三层交换技术出现之前,几乎没有必要将路由功能器件和路由器区别开来,他们完全是相同的:提供路由功能正在路由器的工作,然而,现在第三层交换机完全能够执行传统路由器的大多数功能。作为网络互连的设备,第三层交换机具有以下特征: 1.转发基于第三层地址的业务流; 2.完全交换功能; 3.可以完成特殊服务,如报文过滤或认证; 4.执行或不执行路由处理。 第三层交换机与传统路由器相比有如下优点: 1.子网间传输带宽可任意分配:传统路由器每个接口连接一个子网,子网通过路由器进行传输的速率被接口的带宽所限制。而三层交换机则不同,它可以把多个端口定义成一个虚拟网,把多个端口组成的虚拟网作为虚拟网接口,该虚拟网内信息可通过组成虚拟网的端口送给三层交换机,由于端口数可任意指定,子网间传输带宽没有限制。 2.合理配置信息资源:由于访问子网内资源速率和访问全局网中资源速率没有区别,子网设置单独服务器的意义不大,通过在全局网中设置服务器群不仅节省费用,更可以合理配置信息资源。 3.降低成本:通常的网络设计用交换机构成子网,用路由器进行子网间互连。目前采用三层交换机进行网络设计,既可以进行任意虚拟子网划分,又可以通过交换机三层路由功能完成子网间通信,为此节省了价格昂贵的路由器。 4.交换机之间连接灵活:作为交换机,它们之间不允许存在回路,作为路由器,又可有多条通路来提高可靠性、平衡负载。三层交换机用生成树算法阻塞造成回路的端口,但进行路由选择时,依然把阻塞掉的通路作为可选路径参与路由选择。 5 结论 综上所述,交换机一般用于LAN-WAN的连接,交换机归于网桥,是数据链路层的设备,有些交换机也可实现第三层的交换。路由器用于WAN-WAN之间的连接,可以解决异性网络之间转发分

⑷ 中继功能是什么功能,路由器有这个功能

无线中继模式,即是无线AP在网络连接中起到中继的作用,能实现信号的中继和放大, 从而延伸无线网络的覆盖范围。

无线分布系统(WDS)通过无线电接口在两个 AP 设备之间创建一个链路。此链路可以将来自一个不具有以太网连接的 AP 的通信量中继至另一具有以太网连接的AP。WDS最多允许在访问点之间配置四个点对点链路。一般情况,中心AP最多支持四个远端无线中继模式的AP接入。

(4)计算机网络中继链路扩展阅读

无线通信中,中继的概念是指允许大量的用户在一个小区内共享相对较小数量的信道,即从可用信道库中给每个用户按需分配信道。

在中继的无线系统中,每个用户只是在有呼叫时才分配一个信道,一旦通话终止,原先占用的信道就立即回到可用信道库中。

根据用户行为的统计数据,中继使固定数量的信道或线路可为一个数量更大的、随机的用户群体服务。电话公司根据中继理论来决定那些有成百上千台电话的办公大楼所需分配的线路数目。

中继理论也用在蜂窝无线系统的设计中,在可用的电话线路数目与在呼叫高峰时没有线路可用的可能性之间有一个折中。当电话线路减少时,对于一个特定的用户,所有线路都忙的可能性变大。

在中继的移动无线系统中,当所有的无线信道都被占用而用户又请求服务时,则发生呼叫阻塞或系统拒绝接入。在一些系统中,可能用排队的方法来保存正在请求通话的用户信息,直到有信道为止。

⑸ 计算机网络工作原理是什么

关于计算机网络的定义。

广义的观点:计算机技术与通信技术相结合,实现远程信息处理或进一步达到资源共享的系统;资源共享的观点:以能够相互共享资源的方式连接起来,并且各自具有独立功能的计算机系统的集合;对用户透明的观点:存在一个能为用户自动管理资源的网络操作系统,由它来调用完成用户任务所需要的资源,而整个网络像一个大的计算机系统一样对用户是透明的,实际上这种观点描述的是一个分布式系统。
1、支撑计算机网络的有两大技术原理:
1)计算机(广义上的计算机) 2)通信技术(包括接入和输出技术)
前者的存在使得用户有了强大的数据录入、处理、输出能力,后者使得信息的远程即时交换和共享成为可能。
2. 计算机网络的拓朴结构。
答:计算机网络采用拓朴学的研究方法,将网络中的设备定义为结点,把两个设备之间的连接线路定义为链路。计算机网络也是由一组结点和链路组成的的几何图形,这就是拓朴结构。
分类:按信道类型分,分为点---点线路通信子网和广播信道的通信子网。采用点——点连线的通信子网的基本结构有四类:星状、环状、树状和网状;广播信道通子网有总线状、环状和无线状。
3. 计算机网络的体系结构
答:将计算机网络的层次结构模型和分层协议的集合定义为计算机网络体系结构。
4.计算机网络的协议三要素
答:三要素是:1,语法:关于诸如数据格式及信号电平等的规定;2,语义:关于协议动作和差错处理等控制信息;3,定时:包含速率匹配和排序等。
5.OSI七层协议体系结构和各级的主要作用
答:七层指:由低到高,依次是物理层,数据链路层,网络层,传输层,会话层,表示层和应用层。
6.TCP/IP协议体系结构
答:TCP/IP是一个协议系列,目前已饮食了100多个协议,用于将各种计算机和数据通信设备组成计算机网络。
TCP/IP协议具有如下特点:1,协议标准具有开放性,其独立于特定的计算机硬件与操作系统,可以免费使用;2,统一分配网络地址,使得整个TCP/IP设备在网络中都具有惟一的IP地址。
分层:应用层(SMTP, DNS, NFS, FTP, Telnet, Others)、传输层(TCP,UDP)、互联层(IP,ICMP, ARP, RARP)、主机——网络层(Ethernet, ARPANET, PDN ,Others)。
传输控制协议TCP:定义了两台计算机之间进行可靠数据传输所交换的数据和确认信息的格式,以及计算机为了确保数据的正确到达而采取的措施。
7、计算机通信常用原理

虚电路可分为永久虚电路和交换虚电路。
X.25协议描述了主机(DTE)与分组交换网(PSN)之间的接口标准。
X.25的分组级相当于OSI参考模型中的网络层,主要功能是向主机提供多信道的虚电路服务。
帧中继的层次结构中只有物理层和链路层,采用光纤作为传输介质。
帧中继的常见应用:1,局域网的互联,2,语音传输,3,文件传输。
ATM(异步传输模式),ATM的信元具有固定的长度,53个字节,5个自己是信头,48个字节是信息段。
ATM网络环境由两部分组成:ATM网络和ATM终端用户。
局域网L3交换技术:Fast IP技术,Net Flow技术
广域网L3交换技术:Tag Switching
虚拟局域网:是通过路由和交换设备在网络的物理拓扑结构基础上建立的逻辑网络。
虚拟局域网的交换技术:端口交换、帧交换、元交换。
虚拟局域网的划分方法:按交换端口号、按MAC地址、按第三层协议。
VPN(虚拟专用网),特点:1,安全保障,2,服务质量保证,3,可扩充性和灵活性,4,可管理性。
VPN的安全技术:隧道技术、加解密技术、密钥管理技术、使用者与设备身份认证技术。
网络管理基本功能:故障管理、计费管理、配置管理、性能管理、安全管理。
SNMP(简单网络管理协议),CMIS/CMIP(公共管理信息服务和公共管理信息协议)。

⑹ 计算机网络的组成和体系结构

一、计算机网络的基本组成

计算机网络是一个很复杂的系统,它由许多计算机软件、硬件和通信设备组合而成。下面对一个计算机网络所需的主要部分,即服务器、工作站、外围设备、网络软件作简要介绍。

1.服务器(Server)

在计算机网络中,服务器是整个网络系统的核心,一般是指分散在不同地点担负一定数据处理任务和提供资源的计算机,它为网络用户提供服务并管理整个网络,它影响着网络的整体性能。一般在大型网络中采用大型机、中型机和小型机作为网络服务器,可保证网络的可靠性。对于网点不多,网络通信量不大,数据安全性要求不太高的网络,可以选用高档微机作网络服务器。根据服务器在网络中担负的网络功能的不同,又可分为文件服务器、通信服务器和打印服务器等。在小型局域网中,最常用的是文件服务器。一般来说网络越大、用户越多、服务器负荷越大,对服务器性能要求越高。

2.工作站(Workstation)

工作站有时也称为“节点”或“客户机(Client)”,是指通过网络适配器和线缆连接到网络上的计算机,是网络用户进行信息处理的个人计算机。它和服务器不同,服务器是为整个网络提供服务并管理整个网络,而工作站只是一个接入网络的设备,它保持原有计算机的功能,作为独立的计算机为用户服务,同时又可按一定的权限访问服务器,享用网络资源。

工作站通常都是普通的个人计算机,有时为了节约经费,不配软、硬盘,称为“无盘工作站”。

3.网络外围设备

是指连接服务器和工作站的一些连线或连接设备,如同轴电缆、双绞线、光纤等传输介质,网卡(NIC)、中继器(Repeater)、集线器(Hub)、交换机(Switch)、网桥(Bridge)等,又如用于广域网的设备:调制解调器(Modem)、路由器(Router)、网关(Gateway)等,接口设备:T型头、BNC连接器、终端匹配器、RJ45头、ST头、SC头、FC头等。

4.网络软件

前面介绍的都是网络硬件设备。要想网络能很好地运行,还必须有网络软件。

通常网络软件包括网络操作系统(NOS)、网络协议软件和网络通信软件等。其中,网络操作系统是为了使计算机具备正常运行和连接上网的能力,常见的网络操作系统有UNIX、Linux、Novell Netware、Windows NT、Windows 2000 Server、Windows XP等;网络协议软件是为了各台计算能使用统一的协议,可以看成是计算机之间相互会话使用的语言;而运用协议进行实际的通信则是由通信软件完成的。

网络软件功能的强弱直接影响到网络的性能,因为网络中的资源共享、相互通信、访问控制和文件管理等都是通过网络软件实现的。

二、计算机网络的拓扑结构

所谓计算机网络的拓扑结构是指网络中各结点(包括连接到网络中的设备、计算机)的地理分布和互连关系的几何构形,即网络中结点的互连模式。

网络的拓扑结构影响着整个网络的设计、功能、可靠性和通信费用等指标,常见的网络拓扑结构有总线型、星型、环型等,通过使用路由器和交换机等互连设备,可在此基础上构建一个更大网络。

1.总线型

在总线型结构中,将所有的入网计算机接入到一条通信传输线上,为防止信号反射,一般在总线两端连有终端匹配器如图6-1(a)。总线型结构的优点是信道利用率高,可扩充性好,结构简单,价格便宜。当数据在总线上传递时,会不断地“广播”,第一节点均可收到此信息,各节点会对比数据送达的地址与自己的地址是否相同,若相同,则接收该数据,否则不必理会该数据。缺点是同一时刻只能有两个网络结点在相互通信,网络延伸距离有限,网络容纳的节点数有限。在总线上只要有一个结点连接出现问题,会影响整个网络运行,且不易找到故障点。

图6-1 网络拓扑结构

2.星型

在星型结构中,以中央结点为中心,其他结点都与中央结点相连。每台计算机通过单独的通信线路连接到中央结点,由该中央结点向目的结点传送信息,如图6-1(b),因此,中央结点必须有较强的功能和较高的可靠性。

在已实现的网络拓扑结构中,这是最流行的一种。跟总线型拓扑结构相比,它的主要的优势是一旦某一个电缆线段被损坏了,只有连接到那个电缆段的主机才会受到影响,结构简单,建网容易,便于管理。缺点是该拓扑是以点对点方式布线的,故所需线材较多,成本相对较高,此外中央结点易成为系统的“瓶颈”,且一旦发生故障,将导致全网瘫痪。

3.环型

在环型结构中,如图6-1(c)所示,各网络结点连成封闭环路,数据只能是单向传递,每个收到数据包的结点都向它的下一结点转发该数据包,环游一圈后由发送结点回收。当数据包经过目标结点时,目标结点根据数据包中的目标地址判断出是自己接收,并把该数据包拷贝到自己的接收缓冲中。

环型拓扑结构的优点是:结构简单,网络管理比较简单,实时性强。缺点是:成本较高,可靠性差,网络扩充复杂,网络中若有任一结点发生故障都会使整个网络瘫痪。

三、计算机网络的体系结构

要弄清网络的体系结构,需先弄清网络协议是什么。

网络协议是两台网络上的计算机进行通信时使用的语言,是通信的规则和约定。为了在网络上传输数据,网络协议定义了数据应该如何被打成包、并且定义了在接收数据时接收计算机如何解包。在同一网络中的两台计算机为了相互通信,必须运行同一协议,就如同两个人交谈时,必须采用对方听得懂的语言和语速。

由于网络结点之间的连接可能是很复杂的,因此,为了减少协议设计的复杂性,在制定协议时,一般把复杂成分分解成一些简单成分,再将它们复合起来,而大多数网络都按层来组织,并且规定:(1)一般是将用户应用程序作为最高层,把物理通信线路作为最低层,将其间再分为若干层,规定每层处理的任务,也规定每层的接口标准;(2)每一层向上一层提供服务,而与再上一层不发生关系;(3)每一层可以调用下一层的服务传输信息,而与再下一层不发生关系。(4)相邻两层有明显的接口。

除最低层可水平通信外,其他层只能垂直通信。

层和协议的集合被称为网络的体系结构。为了帮助大家理解,我们从现实生活中的一个例子来理解网络的层次关系。假如一个只懂得法语的法国文学家和一个只懂得中文的中国文学家要进行学术交流,那么他们可将论文翻译成英语或某一种中间语言,然后交给各自的秘书选一种通信方式发给对方,如图6-2所示。

图6-2 中法文学家学术交流方式

下面介绍两个重要的网络体系结构:OSI参考模型和TCP/IP参考模型。

1.OSI参考模型

由于世界各大型计算机厂商推出各自的网络体系结构,不同计算机厂商的设备相互通信困难。为建立更大范围内的计算机网络,必然要解决异构网络的互连,因而国际标准化组织ISO于1977年提出“开放系统互连参考模型”,即着名的OSI(Open system interconnection/Reference Model)。它将计算机网络规定为物理层、数据链路层、网络层、传输层、会话层、表示层、应用层等七层,受到计算机界和通信界的极大关注。

2.TCP/IP参考模型

TCP/IP(Transmission Control Protocol/Internet protocol)协议是Internet使用的通信协议,由ARPANET研究中心开发。TCP/IP是一组协议集(Internet protocol suite),而TCP、IP是该协议中最重要最普遍使用的两个协议,所以用TCP/IP来泛指该组协议。

TCP/IP协议的体系结构被分为四层:

(1)网络接口层 是该模型的最低层,其作用是负责接收IP数据报,并通过网络发送出去,或者从网络上接收网络帧,分离IP数据报。

(2)网络层 IP协议被定义驻留在这一层中,它负责将信息从一台主机传到指定接收的另一台主机。主要功能是:寻址、打包和路由选择。

(3)传输层 提供了两个协议用于数据传输,即传输控制协议TCP和通用数据协议UDP,负责提供准确可靠和高效的数据传送服务。

(4)应用层 位于TCP/IP最高层,为用户提供一组常用的应用程序协议。例如:简单邮件传输协议SMTP、文件传协议FTP、远程登录协议Telnet、超文本传输协议HTTP(该协议是后来扩充的)等。随着Internet的发展,又开发了许多实用的应用层协议。

图6-3是TCP/IP模型和OSI模型的简单比较:

图6-3 TCP/IP模型和OSI模型的对比

⑺ 在计算机网络中“中继器”的作用

卫杰的说法在一定范围内正确,但是不完善。
1、中继器起信号转发作用,相当于传声筒的作用,不仅仅是针对数据的转发,高级的中继例如atm异步帧中继,还能针对会话、应用服务进行中继传送;无线网络、光纤网络是使用中继最多的网络,且中继不一定是一对一的传送,还可以是多对多传送,例如中国移动的多个基站;中继的过程中,有配套的调度协议和调度算法参与,甚至是纠错算法,传送效率提升算法;
2、放大器只是单纯的信号放大,高级的放大器能够做大只放大信号,同时抑制噪声和其他干扰,普通的放大器是全部放大,可能导致通讯速率下降或者通讯中断。放大器对传送的信号一般是不加管理的,只是单纯的放大信号、抑制噪音和干扰。
两种设备的作用都是用于网络延伸和范围扩大,但是应用场合和原理完全不同。

⑻ 计算机网络由哪几部分组成各起什么作用

计算机网络就是由多台计算机(或其它计算机网络设备)通过传输介质和软件物理(或逻辑)连接在一起组成的。总的来说计算机网络的组成基本上包括:计算机、网络操作系统、传输介质(可以是有形的,也可以是无形的,如无线网络的传输介质就是空间)以及相应的应用软件四部分。

从整体上来说计算机网络就是把分布在不同地理区域的计算机与专门的外部设备用通信线路互联成一个规模大、功能强的系统,从而使众多的计算机可以方便地互相传递信息,共享硬件、软件、数据信息等资源。简单来说,计算机网络就是由通信线路互相连接的许多自主工作的计算机构成的集合体。

最简单的计算机网络就只有两台计算机和连接它们的一条链路,即两个节点和一条链路。

(8)计算机网络中继链路扩展阅读

20世纪60年代中期之前的第一代计算机网络是以单个计算机为中心的远程联机系统,典型应用是由一台计算机和全美范围内2000多个终端组成的飞机订票系统,终端是一台计算机的外围设备,包括显示器和键盘,无CPU和内存。

随着远程终端的增多,在主机前增加了前端机(FEP)。当时,人们把计算机网络定义为“以传输信息为目的而连接起来,实现远程信息处理或进一步达到资源共享的系统”,这样的通信系统已具备网络的雏形。

20世纪60年代中期至70年代的第二代计算机网络是以多个主机通过通信线路互联起来,为用户提供服务,兴起于60年代后期,典型代表是美国国防部高级研究计划局协助开发的ARPANET。

主机之间不是直接用线路相连,而是由接口报文处理机(IMP)转接后互联的。IMP和它们之间互联的通信线路一起负责主机间的通信任务,构成了通信子网。

通信子网互联的主机负责运行程序,提供资源共享,组成资源子网。这个时期,网络概念为“以能够相互共享资源为目的互联起来的具有独立功能的计算机之集合体”,形成了计算机网络的基本概念。

⑼ 交换式网络中有哪几种不同类型的链路求各位大神解答

原创纯手打
访问链路
中继链路

访问链路:这种类型的链路只是某个VLAN的一部份,它被称为端口的本机访问。
中继链路:中继线可以承载多个VLAN。

⑽ (计算机网络问题)说明网桥、中继器和路由器各自的主要功能,以及分布工作在网络体系结构的哪一层

网桥在OSI中的第二层 数据链路层
网桥是连接segment(段)的桥。
有源路由,透明,转换和封装4种网桥。
进行MAC地址的过滤。
目标在同一segment的情况下,不会转发出去。
通过读取帧的MAC地址,作成地址表。
网桥分隔了冲突域,从而提高了使用效率。
在读取帧的时候会花费时间,产生延迟。
不能阻止广播。
中继器在OSI的第一层 物理层
中继器,集线器是给收到干扰的信号进行增幅,整形的。
Hub用于多条网线的接合点。
中继器,集线器完全不会控制信号,只是把进来的信号全部传递出去,创造一个共有媒介的环境。
冲突影响所波及的范围叫做冲突域,中继器,集线器会扩大冲突域的范围。
中继器,集线器连续接续的话,最多可以是4个或者2个。
路由器在OSI中的第三层 网络层
路由就不多说了,网络一下一大堆。

阅读全文

与计算机网络中继链路相关的资料

热点内容
哪里可以找到网络里的人 浏览:654
计算机网络华为认证会过期吗 浏览:75
无线网络到期密码会改吗 浏览:159
e家网络连接一到晚上就断 浏览:266
路由器wifi连接上无网络 浏览:117
温州oa网络地板多少一平方 浏览:258
哪个网络小说作家最有钱 浏览:958
网络营销顾问篇 浏览:713
酒店式网络一般一个月多少钱 浏览:462
下载的软件联不了网络 浏览:712
干扰器网络信号 浏览:379
苹果平板关闭网络与无线选项 浏览:423
为什么电脑上会显示网络异常 浏览:875
有了路由器网络怎么安装 浏览:70
车机网络信号H 浏览:423
台式机上网络怎么设置成无线网 浏览:129
什么技术或设备可以抑制网络风暴 浏览:397
手机usb共享网络频繁掉网 浏览:385
移动网络故障与排除 浏览:243
如何查vivo自己的网络密码 浏览:982

友情链接