㈠ 计算机网络体系分为哪四层
1.、应用层
应用层对应于OSI参考模型的高层,为用户提供所需要的各种服务,例如:FTP、Telnet、DNS、SMTP等.
2.、传输层
传输层对应于OSI参考模型的传输层,为应用层实体提供端到端的通信功能,保证了数据包的顺序传送及数据的完整性。该层定义了两个主要的协议:传输控制协议(TCP)和用户数据报协议(UDP).
TCP协议提供的是一种可靠的、通过“三次握手”来连接的数据传输服务;而UDP协议提供的则是不保证可靠的(并不是不可靠)、无连接的数据传输服务.
3.、网际互联层
网际互联层对应于OSI参考模型的网络层,主要解决主机到主机的通信问题。它所包含的协议设计数据包在整个网络上的逻辑传输。注重重新赋予主机一个IP地址来完成对主机的寻址,它还负责数据包在多种网络中的路由。
该层有三个主要协议:网际协议(IP)、互联网组管理协议(IGMP)和互联网控制报文协议(ICMP)。
IP协议是网际互联层最重要的协议,它提供的是一个可靠、无连接的数据报传递服务。
4.、网络接入层(即主机-网络层)
网络接入层与OSI参考模型中的物理层和数据链路层相对应。它负责监视数据在主机和网络之间的交换。事实上,TCP/IP本身并未定义该层的协议,而由参与互连的各网络使用自己的物理层和数据链路层协议,然后与TCP/IP的网络接入层进行连接。地址解析协议(ARP)工作在此层,即OSI参考模型的数据链路层。
(1)计算机网络互联的基本结构模型是扩展阅读:
OSI将计算机网络体系结构(architecture)划分为以下七层:
物理层: 将数据转换为可通过物理介质传送的电子信号相当于邮局中的搬运工人。
数据链路层: 决定访问网络介质的方式。
在此层将数据分帧,并处理流控制。本层指定拓扑结构并提供硬件寻址,相当于邮局中的装拆箱工人。
网络层: 使用权数据路由经过大型网络 相当于邮局中的排序工人。
传输层: 提供终端到终端的可靠连接 相当于公司中跑邮局的送信职员。
会话层: 允许用户使用简单易记的名称建立连接 相当于公司中收寄信、写信封与拆信封的秘书。
表示层: 协商数据交换格式 相当公司中简报老板、替老板写信的助理。
应用层: 用户的应用程序和网络之间的接口老板。
㈡ 简述现代网络体系结构
网络体系结构是指通信系统的整体设计,它为网络硬件、软件、协议、存取控制和拓扑提供标准。它广泛采用的是国际标准化组织(ISO)在1979年提出的开放系统互连(OSI-Open System Interconnection)的参考模型。
中文名
网络体系结构
外文名
Network Architecture
解释
通信系统的整体设计
目的
为网络硬件提供标准
提出
国际标准化组织
采用
开放系统互连的参考模型。
协议定义
1、网络体系结构(networkarchitecture):是计算机之间相互通信的层次,以及各层中的协议和层次之间接口的集合。
2、网络协议:是计算机网络和分布系统中互相通信的对等实体间交换信息时所必须遵守的规则的集合。
3、语法(syntax):包括数据格式、编码及信号电平等。
4、语义(semantics):包括用于协议和差错处理的控制信息。
5、定时(timing):包括速度匹配和排序。
计算机网络是一个非常复杂的系统,需要解决的问题很多并且性质各不相同。所以,在ARPANET设计时,就提出了“分层”的思想,即将庞大而复杂的问题分为若干较小的易于处理的局部问题。
简介
1974年美国IBM公司按照分层的方法制定了系统网络体系结构SNA(System NetworkArchitecture)。SNA已成为世界上较广泛使用的一种网络体系结构。
一开始,各个公司都有自己的网络体系结构,就使得各公司自己生产的各种设备容易互联成网,有助于该公司垄断自己的产品。但是,随着社会的发展,不同网络体系结构的用户迫切要求能互相交换信息。为了使不同体系结构的计算机网络都能互联,国际标准化组织ISO于1977年成立专门机构研究这个问题。1978年ISO提出了“异种机连网标准”的框架结构,这就是着名的开放系统互联基本参考模型 OSI/RM (Open Systems InterconnectionReferenceModle),简称为 OSI 。
OSI得到了国际上的承认,成为其他各种计算机网络体系结构依照的标准,大大地推动了计算机网络的发展。20世纪70年代末到80年代初,出现了利用人造通信卫星进行中继的国际通信网络。网络互联技术不断成熟和完善,局域网和网络互联开始商品化。
OSI参考模型用物理层、数据链路层、网络层、传输层、对话层、表示层和应用层七个层次描述网络的结构,它的规范对所有的厂商是开放的,具有指导国际网络结构和开放系统走向的作用。它直接影响总线、接口和网络的性能。常见的网络体系结构有FDDI、以太网、令牌环网和快速以太网等。从网络互连的角度看,网络体系结构的关键要素是协议和拓扑
㈢ 6什么是计算机网络的体系结构为什么要采用分层次的结构
计算机网络体系结构是指计算机网络层次结构模型,它是各层的协议以及层次之间的端口的集合。
目前广泛采用的是国际标准化组织(ISO)1997年提出的开放系统互联(Open
System Interconnection,OSI)参考模型,习惯上称为ISO/OSI参考模型。
在OSI七层参考模型的体系结构中,由低层至高层分别称为物理层、数据链路层、网络层、运输层、会话层、表示层和应用层
原因:为把在一个网络结构下开发的系统与在另一个网络结构下开发的系统互联起来,以实现更高一级的应用,使异种机之间的通信成为可能,便于网络结构标准化;
并且由于全球经济的发展使得处在不同网络体系结构的用户迫切要求能够互相交换信息;
为此,国际标准化组织ISO成立了专门的机构研究该问题,并于1977年提出了一个试图使各种计算机在世界范围内互联成网的标准框架,即着名的开放系统互连基本参考模型OSI/RM (Open System Interconnection Reference Model)。
(3)计算机网络互联的基本结构模型是扩展阅读:
OSI模型体系结构:
物理层(Physical,PH)物理层的任务就是为上层提供一个物理的连接,以及该物理连接表现出来的机械、电气、功能和过程特性,实现透明的比特流传输。
数据链路层(Data-link,D)实现的主要功能有:帧的同步、差错控制、流量控制、寻址、帧内定界、透明比特组合传输等。
网络层(Network,N)网络层的主要任务是为要传输的分组选择一条合适的路径,使发送分组能够正确无误地按照给定的目的地址找到目的主机,交付给目的主机的传输层。
传输层(Transport,T)传输层向上一层提供一个可靠的端到端的服务,使会话层不知道传输层以下的数据通信的细节
会话层(Session,S)提供包括访问验证和会话管理在内的建立以及维护应用之间的通信机制。如服务器验证用户登录便是由会话层完成的。
表示层(Presentation,P)数据的压缩和解压缩、加密和解密等工作都由表示层负责。
应用层(Application,A)应用层确定进程之间通信的性质以满足用户的需求,以及提供网络与用户软件之间的接口服务。
㈣ 什么是计算机网络体系结构osi参考模型
OSI是Open System Interconnect的缩写,意为开放式系统互联。 一般都叫OSI参考模型,是ISO(国际标准化组织)组织在1985年研究的网络互联模型。该体系结构标准定义了网络互连的七层框架(物理层、数据链路层、网络层、传输层、会话层、表示层和应用层),即ISO开放系统互连参考模型。在这一框架下进一步详细规定了每一层的功能,以实现开放系统环境中的互连性、互操作性和应用的可移植性。[
㈤ 计算机网络体系结构的ISO/OSI网络体系结构
国际标准化组织ISO(International Standards Organization)在80年代提出的开放系统互联参考模型OSI(Open System Interconnection),这个模型将计算机网络通信协议分为七层。这个模型是一个定义异构计算机连接标准的框架结构,其具有如下特点:
①网络中异构的每个节点均有相同的层次,相同层次具有相同的功能。
②同一节点内相邻层次之间通过接口通信。
③相邻层次间接口定义原语操作,由低层向高层提供服务。
④不同节点的相同层次之间的通信由该层次的协议管理,
⑤每层次完成对该层所定义的功能,修改本层次功能不影响其它层、
⑥仅在最低层进行直接数据传送。
⑦定义的是抽象结构,并非具体实现的描述。
在OSI网络体系结构中、除了物理层之外,网络中数据的实际传输方向是垂直的。数据由用户发送进程发送给应用层,向下经表示层、会话层等到达物理层,再经传输媒体传到接收端,由接收端物理层接收,向上经数据链路层等到达应用层,再由用户获取。数据在由发送进程交给应用层时,由应用层加上该层有关控制和识别信息,再向下传送,这一过程一直重复到物理层。在接收端信息向上传递时,各层的有关控制和识别信息被逐层剥去,最后数据送到接收进程。
现在一般在制定网络协议和标准时,都把ISO/OSI参考模型作为参照基准,并说明与该参照基准的对应关系。例如,在IEEE802局域网LAN标准中,只定义了物理层和数据链路层,并且增强了数据链路层的功能。在广域网WAN协议中,CCITT的X.25建议包含了物理层、数据链路层和网络层等三层协议。一般来说,网络的低层协议决定了一个网络系统的传输特性,例如所采用的传输介质、拓扑结构及介质访问控制方法等,这些通常由硬件来实现;网络的高层协议则提供了与网络硬件结构无关的,更加完善的网络服务和应用环境,这些通常是由网络操作系统来实现的。 物理层建立在物理通信介质的基础上,作为系统和通信介质的接口,用来实现数据链路实体间透明的比特 (bit) 流传输。只有该层为真实物理通信,其它各层为虚拟通信。物理层实际上是设备之间的物理接口,物理层传输协议主要用于控制传输媒体。
(1)物理层的特性
物理层提供与通信介质的连接,提供为建立、维护和释放物理链路所需的机械的、电气的、功能的和规程的特性,提供在物理链路上传输非结构的位流以及故障检测指示。物理层向上层提供位 (bit) 信息的正确传送。
其中机械特性主要规定接口连接器的尺寸、芯数和芯的位置的安排、连线的根数等。电气特性主要规定了每种信号的电平、信号的脉冲宽度、允许的数据传输速率和最大传输距离。功能特性规定了接口电路引脚的功能和作用。规程特性规定了接口电路信号发出的时序、应答关系和操作过程,例如,怎样建立和拆除物理层连接,是全双工还是半双工等。
(2)物理层功能
为了实现数据链路实体之间比特流的透明传输,物理层应具有下述功能:
①物理连接的建立与拆除
当数据链路层请求在两个数据链路实体之间建立物理连接时,物理层能够立即为它们建立相应的物理连接。若两个数据链路实体之间要经过若干中继数据链路实体时,物理层还能够对这些中继数据链路实体进行互联,以建立起一条有效的物理连接。当物理连接不再需要时,由物理层立即拆除。
②物理服务数据单元传输
物理层既可以采取同步传输方式,也可以采取异步传输方式来传输物理服务数据单元。
③物理层管理
对物理层收发进行管理,如功能的激活 (何时发送和接收、异常情况处理等)、差错控制 (传输中出现的奇偶错和格式错)等。 数据链路层为网络层相邻实体间提供传送数据的功能和过程;提供数据流链路控制;检测和校正物理链路的差错。物理层不考虑位流传输的结构,而数据链路层主要职责是控制相邻系统之间的物理链路,传送数据以帧为单位,规定字符编码、信息格式,约定接收和发送过程,在一帧数据开头和结尾附加特殊二进制编码作为帧界识别符,以及发送端处理接收端送回的确认帧,保证数据帧传输和接收的正确性,以及发送和接收速度的匹配,流量控制等。
(1)数据链路层的目的
提供建立、维持和释放数据链路连接以及传输数据链路服务数据单元所需的功能和过程的手段。数据链路连接是建立在物理连接基础上的,在物理连接建立以后,进行数据链路连接的建立和数据链路连接的拆除。具体说,每次通信前后,双方相互联系以确认一次通信的开始和结束,在一次物理连接上可以进行多次通信。数据链路层检测和校正在物理层出现的错误。
(2)数据链路层的功能和服务
数据链路层的主要功能是为网络层提供连接服务,并在数据链路连接上传送数据链路协议数据单元L-PDU,一般将L-PDU称为帧。数据链路层服务可分为以下三种:
①无应答、无连接服务。发送前不必建立数据链路连接,接收方也不做应答,出错和数据丢失时也不做处理。这种服务质量低,适用于线路误码率很低以及传送实时性要求高的 (例如语音类的)信息等。
②有应答、无连接服务。当发送主机的数据链路层要发送数据时,直接发送数据帧。目标主机接收数据链路的数据帧,并经校验结果正确后,向源主机数据链路层返回应答帧;否则返回否定帧,发送端可以重发原数据帧。这种方式发送的第一个数据帧除传送数据外,也起数据链路连接的作用。这种服务适用于一个节点的物理链路多或通信量小的情况,其实现和控制都较为简单。
③面向连接的服务。该服务一次数据传送分为三个阶段:数据链路建立,数据帧传送和数据链路的拆除。数据链路建立阶段要求双方的数据链路层作好传送的准备;数据传送阶段是将网络层递交的数据传送到对方;数据链路拆除阶段是当数据传送结束时,拆除数据链路连接。这种服务的质量好,是ISO/OSI参考模型推荐的主要服务方式。
(3)数据链路数据单元
数据链路层与网络层交换数据格式为服务数据单元。数据链路服务数据单元,配上数据链路协议控制信息,形成数据链路协议数据单元。
数据链路层能够从物理连接上传输的比特流中,识别出数据链路服务数据单元的开始和结束,以及识别出其中的每个字段,实现正确的接收和控制。能按发送的顺序传输到相邻结点。
(4)数据链路层协议
数据链路层协议可分为面向字符的通信规程和面向比特的通信规程。
面向字符的通信规程是利用控制字符控制报文的传输。报文由报头和正文两部分组成。报头用于传输控制,包括报文名称、源地址、目标地址、发送日期以及标识报文开始和结束的控制字符。正文则为报文的具体内容。目标节点对收到的源节点发来的报文,进行检查,若正确,则向源节点发送确认的字符信息;否则发送接收错误的字符信息。
面向比特的通信规程典型是以帧为传送信息的单位,帧分为控制帧和信息帧。在信息帧的数据字段 (即正文)中,数据为比特流。比特流用帧标志来划分帧边界,帧标志也可用作同步字符。 广域网络一般都划分为通信子网和资源子网,物理层、数据链路层和网络层组成通信子网,网络层是通信子网的最高层,完成对通信子网的运行控制。网络层和传输层的界面,既是层间的接口,又是通信子网和用户主机组成的资源子网的界限,网络层利用本层和数据链路层、物理层两层的功能向传输层提供服务。
数据链路层的任务是在相邻两个节点间实现透明的无差错的帧级信息的传送,而网络层则要在通信子网内把报文分组从源节点传送到目标节点。在网络层的支持下,两个终端系统的传输实体之间要进行通信,只需把要交换的数据交给它们的网络层便可实现。至于网络层如何利用数据链路层的资源来提供网络连接,对传输层是透明的。
网络层控制分组传送操作,即路由选择,拥塞控制、网络互连等功能,根据传输层的要求来选择服务质量,向传输层报告未恢复的差错。网络层传输的信息以报文分组为单位,它将来自源的报文转换成包文,并经路径选择算法确定路径送往目的地。网络层协议用于实现这种传送中涉及的中继节点路由选择、子网内的信息流量控制以及差错处理等。
(1)网络层功能
网络层的主要功能是支持网络层的连接。网络层的具体功能如下:
①建立和拆除网络连接
在数据链路层提供的数据链路连接的基础上,建立传输实体间或者若干个通信子网的网络连接。互连的子网可采用不同的子网协议。
②路径选择、中继和多路复用
网际的路径和中继不同与网内的路径和和中继,网络层可以在传输实体的两个网络地址之间选择一条适当的路径,或者在互连的子网之间选择一条适当的路径和中继。并提供网络连接多路复用的数据链路连接,以提高数据链路连接的利用率。
③分组、组块和流量控制
数据分组是指将较长的数据单元分割为一些相对较小的数据单元;数据组块是指将一些相对较小的数据单元组成块后一起传输。用以实现网络服务数据单元的有序传输,以及对网络连接上传输的网络服务数据单元进行有效的流量控制,以免发生信息堵塞现象。
④差错的检测与恢复
利用数据链路层的差错报告,以及其他的差错检测能力来检测经网络连接所传输的数据单元,检测是否出现异常情况。并可以从出错状态中解脱出来。
(2)数据报和虚电路
网络层中提供两种类型的网络服务,即无连接服务和面向连接的服务。它们又被称为数据报服务和虚电路服务。
①数据报 (Datagram)服务
在数据报方式,网络层从传输层接受报文,拆分为报文分组,并且独立地传送,因此数据报格式中包含有源和目标节点的完整网络地址、服务要求和标识符。发送时,由于数据报每经过一个中继节点时,都要根据当时情况按照一定的算法为其选择一条最佳的传输路径,因此,数据报服务不能保证这些数据报按序到达目标节点,需要在接收节点根据标识符重新排序。
数据报方式对故障的适应性强,若某条链路发生故障,则数据报服务可以绕过这些故障路径而另选择其他路径,把数据报传送至目标节点。数据报方式易于平衡网络流量,因为中继节点可为数据报选择一条流量较少的路由,从而避开流量较高的路由。数据报传输不需建立连接,目标节点在收到数据报后,也不需发送确认,因而是一种开销较小的通信方式。但是发方不能确切地知道对方是否准备好接收、是否正在忙碌,故数据报服务的可靠性不是很高。而且数据报发送每次都附加源和目标主机的全网名称降低了信道利用率。
②虚电路 (Virtue Circuit) 服务
在虚电路传输方式下,在源主机与目标主机通信之前,必须为分组传输建立一条逻辑通道,称为虚电路。为此,源节点先发送请求分组Call-Request,Call-Request包含了源和目标主机的完整网络地址。Call-Request途径每一个通信网络节点时,都要记下为该分组分配的虚电路号,并且路由器为它选择一条最佳传输路由发往下一个通信网络节点。当请求分组到达目标主机后,若它同意与源主机通信,沿着该虚电路的相反方向发送请求分组Call-Request给源节点,当在网络层为双方建立起一条虚电路后,每个分组中不必再填上源和目标主机的全网地址,而只需标上虚电路号,即可以沿着固定的路由传输数据。当通信结束时,将该虚电路拆除。
虚电路服务能保证主机所发出的报文分组按序到达。由于在通信前双方已进行过联系,每发送完一定数量的分组后,对方也都给予了确认,故可靠性较高。
③路由选择
网络层的主要功能是将分组从源节点经过选定的路由送到目标节点,分组途经多个通信网络节点造成多次转发,存在路由选择问题。路由选择或称路径控制,是指网络中的节点根据通信网络的情况 (可用的数据链路、各条链路中的信息流量),按照一定的策略 (传输时间最短、传输路径最短等)选择一条可用的传输路由,把信息发往目标节点。
网络路由选择算法是网络层软件的一部分,负责确定所收到的分组应传送的路由。当网络内部采用无连接的数据报方式时,每传送一个分组都要选择一次路由。当网络层采用虚电路方式时,在建立呼叫连接时,选择一次路径,后继的数据分组就沿着建立的虚电路路径传送,路径选择的频度较低。
路由选择算法可分为静态算法和动态算法。静态路由算法是指总是按照某种固定的规则来选择路由,例如,扩散法、固定路由选择法、随机路由选择法和流量控制选择法。动态路由算法是指根据拓扑结构以及通信量的变化来改变路由,例如,孤立路由选择法、集中路由选择法、分布路由选择法、层次路由选择法等 从传输层向上的会话层、表示层、应用层都属于端一端的主机协议层。传输层是网络体系结构中最核心的一层,传输层将实际使用的通信子网与高层应用分开。从这层开始,各层通信全部是在源与目标主机上的各进程间进行的,通信双方可能经过多个中间节点。传输层为源主机和目标主机之间提供性能可靠、价格合理的数据传输。具体实现上是在网络层的基础上再增添一层软件,使之能屏蔽掉各类通信子网的差异,向用户提供一个通用接口,使用户进程通过该接口,方便地使用网络资源并进行通信。
(1) 传输层功能
传输层独立于所使用的物理网络,提供传输服务的建立、维护和连接拆除的功能;选择网络层提供的最适合的服务。传输层接收会话层的数据,分成较小的信息单位,再送到网络层,实现两传输层间数据的无差错透明传送。
传输层可以使源与目标主机之间以点对点的方式简单地连接起来。真正实现端一端间可靠通信。传输层服务是通过服务原语提供给传输层用户(可以是应用进程或者会话层协议),传输层用户使用传输层服务是通过传送服务端口TSAP实现的。当一个传输层用户希望与远端用户建立连接时,通常定义传输服务访问点TSAP。提供服务的进程在本机TSAP端口等待传输连接请求,当某一节点机的应用程序请求该服务时,向提供服务的节点机的TSAP端口发出传输连接请求,并表明自己的端口和网络地址。如果提供服务的进程同意,就向请求服务的节点机发确认连接,并对请求该服务的应用程序传递消息,应用程序收到消息后,释放传输连接。
传输层提供面向连接和无连接两种类型的服务。这两种类型的服务和网络层的服务非常相似。传输层提供这两种类型服务的原因是因为,用户不能对通信子网加以控制,无法通过使用通信处理机来改善服务质量。传输层提供比网络层更可靠的端一端间数据传输,更完善的查错纠错功能。传输层之上的会话层、表示层、应用层都不包含任何数据传送的功能。
(2)传输层协议类型
传输层协议和网络层提供的服务有关。网络层提供的服务于越完善,传输层协议就越简单,网络层提供的服务越简单,传输层协议就越复杂。传输层服务可分成五类:
0类:提供最简单形式的传送连接,提供数据流控制。
1类:提供最小开销的基本传输连接,提供误差恢复。
2类:提供多路复用,允许几个传输连接多路复用一条链路。
3类:具有0类和1类的功能,提供重新同步和重建传输连接的功能。
4类:用于不可靠传输层连接,提供误差检测和恢复。
基本协议机制包括建立连接、数据传送和拆除连接。传输连接涉及四种不同类型的标识:
用户标识:即服务访问点SAP,允许实体多路数据传输到多个用户。
网络地址:标识传输层实体所在的站。
协议标识:当有多个不同类型的传输协议的实体,对网络服务标识出不同类型的协议。
连接标识:标识传送实体,允许传输连接多路复用。 会话是指两个用户进程之间的一次完整通信。会话层提供不同系统间两个进程建立、维护和结束会话连接的功能;提供交叉会话的管理功能,有一路交叉、两路交叉和两路同时会话的3种数据流方向控制模式。会话层是用户连接到网络的接口。
(1)会话层的主要功能
会话层的目的是提供一个面向应用的连接服务。建立连接时,将会话地址映射为传输地址。会话连接和传输连接有三种对应关系,一个会话连接对应一个传输连接;多个会话连接建立在一个传输连接上;一个会话连接对应多个传输连接。
数据传送时,可以进行会话的常规数据、加速数据、特权数据和能力数据的传送。
会话释放时,允许正常情况下的有序释放;异常情况下由用户发起的异常释放和服务提供者发起的异常释放。
(2)会话活动
会话服务用户之间的交互对话可以划分为不同的逻辑单元,每个逻辑单元称为活动。每个活动完全独立于它前后的其他活动,且每个逻辑单元的所有通信不允许分隔开。
会话活动由会话令牌来控制,保证会话有序进行。会话令牌分为四种,数据令牌、释放令牌、次同步令牌和主同步令牌。令牌是互斥使用会话服务的手段。
会话用户进程间的数据通信一般采用交互式的半双工通信方式。由会话层给会话服务用户提供数据令牌来控制常规数据的传送,有数据令牌的会话服务用户才可发送数据,另一方只能接收数据。当数据发完之后,就将数据令牌转让给对方,对方也可请求令牌。
(3)会话同步
在会话服务用户组织的一个活动中,有时要传送大量的信息,如将一个文件连续发送给对方,为了提高数据发送的效率,会话服务提供者允许会话用户在传送的数据中设置同步点。一个主同步点表示前一个对话单元的结束及下一个对话单元的开始。在一个对话单元内部或者说两个主同步点之间可以设置次同步点,用于会话单元数据的结构化。当会话用户持有数据令牌、次同步令牌和主同步令牌时就可在发送数据流中用相应的服务原语设置次同步点和主同步点。
一旦出现高层软件错误或不符合协议的事件则发生会话中断,这时会话实体可以从中断处返回到一个已知的同步点继续传送,而不必从文件的开头恢复会话。会话层定义了重传功能,重传是指在已正确应答对方后,在后期处理中发现出错而请求的重传,又称为再同步。为了使发送端用户能够重传,必须保存数据缓冲区中已发送的信息数据,将重新同步的范围限制在一个对话单元之内,一般返回到前一个次同步点,最多返回到最近一个主同步点。 应用层作为用户访问网络的接口层,给应用进程提供了访问OSI环境的手段。
应用进程借助于应用实体 (AE)、实用协议和表示服务来交换信息,应用层的作用是在实现应用进程相互通信的同时,完成一系列业务处理所需的服务功能。当然这些服务功能与所处理的业务有关。
应用进程使用OSI定义和通信功能,这些通信功能是通过OSI参考模型各层实体来实现的。应用实体是应用进程利用OSI通信功能的唯一窗口。它按照应用实体间约定的通信协议 (应用协议),传送应用进程的要求,并按照应用实体的要求在系统间传送应用协议控制信息,有些功能可由表示层和表示层以下各层实现。
应用实体由一个用户元素和一组应用服务元素组成。用户元素是应用进程在应用实体内部,为完成其通信目的,需要使用的那些应用服务元素的处理单元。实际上,用户元素向应用进程提供多种形式的应用服务调用,而每个用户元素实现一种特定的应用服务使用方式。用户元素屏蔽应用的多样性和应用服务使用方式的多样性,简化了应用服务的实现。应用进程完全独立于OSI环境,它通过用户元素使用OSI服务。
应用服务元素可分为两类,公共应用服务元素 (CASE)和特定应用服务元素 (SASE)。公共应用服务元素是用户元素和特定应用服务元素公共使用的部分,提供通用的最基本的服务,它使不同系统的进程相互联系并有效通信。它包括联系控制元素、可靠传输服务元素、远程操作服务元素等;特定应用服务元素提供满足特定应用的服务。包括虚拟终端、文件传输和管理、远程数据库访问、作业传送等。对于应用进程和公共应用服务元素来说,用户元素具有发送和接收能力。对特定服务元素来说,用户元素是请求的发送者,也是响应的最终接收者。
㈥ 计算机网络结构分几种哪几种
计算机网络的分类方式有很多种,可以按地理范围、拓扑结构、传输速率和传输介质等分类。
⑴按地理范围分类
①局域网LAN(Local Area Network)
局域网地理范围一般几百米到10km之内,属于小范围内的连网。如一个建筑物内、一个学校内、一个工厂的厂区内等。局域网的组建简单、灵活,使用方便。
②城域网MAN(Metropolitan Area Network)
城域网地理范围可从几十公里到上百公里,可覆盖一个城市或地区,是一种中等形式的网络。
③广域网WAN(Wide Area Network)
广域网地理范围一般在几千公里左右,属于大范围连网。如几个城市,一个或几个国家,是网络系统中的最大型的网络,能实现大范围的资源共享,如国际性的Internet网络。
⑵按传输速率分类
网络的传输速率有快有慢,传输速率快的称高速网,传输速率慢的称低速网。传输速率的单位是b/s(每秒比特数,英文缩写为bps)。一般将传输速率在Kb/s—Mb/s范围的网络称低速网,在Mb/s—Gb/s范围的网称高速网。也可以将Kb/s网称低速网,将Mb/s网称中速网,将Gb/s网称高速网。
网络的传输速率与网络的带宽有直接关系。带宽是指传输信道的宽度,带宽的单位是Hz(赫兹)。按照传输信道的宽度可分为窄带网和宽带网。一般将KHz—MHz带宽的网称为窄带网,将MHz—GHz的网称为宽带网,也可以将kHz带宽的网称窄带网,将MHz带宽的网称中带网,将GHz带宽的网称宽带网。通常情况下,高速网就是宽带网,低速网就是窄带网。
⑶按传输介质分类
传输介质是指数据传输系统中发送装置和接受装置间的物理媒体,按其物理形态可以划分为有线和无线两大类。
①有线网
传输介质采用有线介质连接的网络称为有线网,常用的有线传输介质有双绞线、同轴电缆和光导纤维。
●双绞线是由两根绝缘金属线互相缠绕而成,这样的一对线作为一条通信线路,由四对双绞线构成双绞线电缆。双绞线点到点的通信距离一般不能超过100m。目前,计算机网络上使用的双绞线按其传输速率分为三类线、五类线、六类线、七类线,传输速率在10Mbps到600Mbps之间,双绞线电缆的连接器一般为RJ-45。
●同轴电缆由内、外两个导体组成,内导体可以由单股或多股线组成,外导体一般由金属编织网组成。内、外导体之间有绝缘材料,其阻抗为50Ω。同轴电缆分为粗缆和细缆,粗缆用DB-15连接器,细缆用BNC和T连接器。
●光缆由两层折射率不同的材料组成。内层是具有高折射率的玻璃单根纤维体组成,外层包一层折射率较低的材料。光缆的传输形式分为单模传输和多模传输,单模传输性能优于多模传输。所以,光缆分为单模光缆和多模光缆,单模光缆传送距离为几十公里,多模光缆为几公里。光缆的传输速率可达到每秒几百兆位。光缆用ST或SC连接器。光缆的优点是不会受到电磁的干扰,传输的距离也比电缆远,传输速率高。光缆的安装和维护比较困难,需要专用的设备。
②无线网
采用无线介质连接的网络称为无线网。目前无线网主要采用三种技术:微波通信,红外线通信和激光通信。这三种技术都是以大气为介质的。其中微波通信用途最广,目前的卫星网就是一种特殊形式的微波通信,它利用地球同步卫星作中继站来转发微波信号,一个同步卫星可以覆盖地球的三分之一以上表面,三个同步卫星就可以覆盖地球上全部通信区域。
⑷按拓扑结构分类
计算机网络的物理连接形式叫做网络的物理拓扑结构。连接在网络上的计算机、大容量的外存、高速打印机等设备均可看作是网络上的一个节点,也称为工作站。计算机网络中常用的拓扑结构有总线型、星型、环型等。
①总线拓扑结构
总线拓扑结构是一种共享通路的物理结构。这种结构中总线具有信息的双向传输功能,普遍用于局域网的连接,总线一般采用同轴电缆或双绞线。
总线拓扑结构的优点是:安装容易,扩充或删除一个节点很容易,不需停止网络的正常工作,节点的故障不会殃及系统。由于各个节点共用一个总线作为数据通路,信道的利用率高。但总线结构也有其缺点:由于信道共享,连接的节点不宜过多,并且总线自身的故障可以导致系统的崩溃。
②星型拓扑结构
星型拓扑结构是一种以中央节点为中心,把若干外围节点连接起来的辐射式互联结构。这种结构适用于局域网,特别是近年来连接的局域网大都采用这种连接方式。这种连接方式以双绞线或同轴电缆作连接线路。
星型拓扑结构的特点是:安装容易,结构简单,费用低,通常以集线器(Hub)作为中央节点,便于维护和管理。中央节点的正常运行对网络系统来说是至关重要的。
③环型拓扑结构
环型拓扑结构是将网络节点连接成闭合结构。信号顺着一个方向从一台设备传到另一台设备,每一台设备都配有一个收发器,信息在每台设备上的延时时间是固定的。
这种结构特别适用于实时控制的局域网系统。
环型拓扑结构的特点是:安装容易,费用较低,电缆故障容易查找和排除。有些网络系统为了提高通信效率和可靠性,采用了双环结构,即在原有的单环上再套一个环,使每个节点都具有两个接收通道。环型网络的弱点是,当节点发生故障时,整个网络就不能正常工作。
④树型拓扑结构
树型拓扑结构就像一棵“根”朝上的树,与总线拓扑结构相比,主要区别在于总线拓扑结构中没有“根”。这种拓扑结构的网络一般采用同轴电缆,用于军事单位、政府部门等上、下界限相当严格和层次分明的部门。
树型拓扑结构的特点:优点是容易扩展、故障也容易分离处理,缺点是整个网络对根的依赖性很大,一旦网络的根发生故障,整个系统就不能正常工作。
㈦ 为了指导计算机网络的互联、互通和互*作,ISO颁布了OSI参考模型,其基本结构分为
它们由低到高分别是物理层(PH)、链路层(DL)、网络层(N)、传输层(T)、会议层(S)、表示层(P)、应用层(A)。七个层次
㈧ OSI七层网络模型具体工作过程
OSI七层模型的最初的目的是定义网络互联的基本架构,但实际使用中并没有完全遵循它的结构,对于计算机网络已经比较成熟的当今来说,他也只是一个计算机网络学习者学习网络的一个模型和实际工作中做为一种排错的参考模型。对于原理一二句话说不清。
各层功能是这样的,从上往下依次为:
第七层:应用层 数据 用户接口,提供用户程序“接口”。
第六层:表示层 数据 数据的表现形式,特定功能的实现,如数据加密。
第五层:会话层 数据 允许不同机器上的用户之间建立会话关系,如WINDOWS
第四层:传输层 段 实现网络不同主机上用户进程之间的数据通信,可靠
与不可靠的传输,传输层的错误检测,流量控制等。
第三层:网络层 包 提供逻辑地址(IP)、选路,数据从源端到目的端的
传输。
第二层:数据链路层 帧 将上层数据封装成帧,用MAC地址访问媒介,错误检测
与修正。
第一层:物理层 比特流 设备之间比特流的传输,物理接口,电气特性等。
然后我找了个简单的传输图片有助于你去理解。
㈨ 何谓计算机网络的体系结构与网络协议
计算机协议及体系结构网络协议与层次结构
1.2.1网络体系结构
1.网络协议
通过通信信道和网络设备互联起来的不同地理位置的多个计算机系统,要使其能协同工作实现信息交换和资源共享,它们之间必须具有共同的语言。交流什么、怎样交流及何时交流,都必须遵循某种互相都能接受的规则。
网络协议(Protocol)是为进行计算机网络中的数据交换而建立的规则、标准或约定的集
合。准确地说,它是对同等实体之间通信而制定的有关规则和约定的集合;
网络协议的三个要素: 、
l)语义(Semarlties)涉及用于协调与差错处理的控制信息。
2)语法(Syntax)涉及数据及控制信息的格式、编码及信号电平等。
3)定时(Timing)涉及速度匹配和定序等。
2.网络的体系结构及其划分所遵循的原则计算机网络系统是一个十分复杂的系统。将一个复杂系统分解为若干个容
易处理的子系统。分层就是系统分解的最好方法之一。
在图1-4所示的一般分层结构中,n层是n-l层的用户,又是n+l层的服务提供者。n+1层虽然只直接使用了n层提供的服务,实际上它通过n层还间接地使用了n-1层以及以下所有各层的服务。、
层次结构的好处在于使每一层实现一种相对独立的功能。分层结构还有利于交流、理解和标准化。
所谓网络的层次模型就是计算机网络各层次及其协议的 集合。层次结构一般以垂直分层模型来表示, 层次结构的要点:
1)除了在物理媒体上进行的是实通信之外,其余各 对等实体间进行的都是虚通信。
2)对等层的虚通信必须遵循该层的协议。
3)n层的虚通信是通过n/n-l层间接口处n-l层提供的服务以及n-1层的通信(通常也
是虚通信)来实现的。
1.2.2网络体系结构
网络体系结构最常用的分为两种:
OSI七层结构和TCP/IP(TramferControlProtocol/InternetProtocol,传输控制协议/网际协议)四层结构。TCP/IP协议是Internet的核心协议。
1.OSI/RM基本参考模型
开放系统互联(OpenSystemIntercomectim)基本参考模型是由国际标准化组织(ISO)
制定的标准化开放式计算机网络层次结构模型,又称ISO/OSI参考模型。"开放"这个词表示能使任何两个遵守参考模型和有关标准的系统可以进行互联。
OSI/RM包括了体系结构、服务定义和协议规范三级抽象。OSI的体系结构定义了一个七层模型,用以进行进程间的通信,并作为一个框架来协调各层标准的制定gOSI的服务定义描述了各层所提供的服务,以及层与层之间的抽象接口和交互用的服务原语:OSI各层的协议规范,精确地定义了应当发送何种控制信息及何种过程来解释该控制信息。
OSI/RM的七层参考模型结构包括:从下至上分别为物理层、数据链路层、网络层、传输层,
会话层、表示层和应用层。
2.Internet层次模型
Internet网络结构以TCP/IP协议层次模型为核心,
共分四层结构:应用层、传输层、网际层和网络接口层。TCP/IP的体系结构与ISO的OSI七层参考模型的对应关系如图1-6所示。TCP/IP是Internet的核心,利用TCP/IP协议可以方便地实现各种网络的平滑、无缝连接。在TCP/IP四层模型中,作为最高层的应用层相当于OSI的5~7层,该层中包括了所有的高层协议,如常见的文件传输协议FTP(文件传输协议)、电子邮件SMTP,(简单邮件传送协议)、域名系统DNS(域名服务)、网络管理协议SNMP、访问WWW的超文本传输协议HTTP、远程终端访问协议TELNET等。
TCP/IP的次高层为传输层,相当于OSI的传输层,该层负责在源主机和目的主机之间提供端到端的数据传输服务。这一层上主要定义了两个协议:面向连接的传输控制协议TCP和无连接的用户数据报协议UDP(UserDatagramProtocol)。
TCP/IP的第二层相当于OSI的网络层,该层负责将报文(数据包)独立地从信源传送到信宿,主要解决路由选择、阻塞控制级网际互联问题。这一层上定义了网际协议(InternetProtocol,IP协议)、地址转换协议ARP(AddressResolutionProtocol)、反向地址转换协议RARP(ReverseARP)和网际控制报文协议ICMP()等协议。
TCP/IP的最低层为网络接口层,该层负责将IP分组封装成适合在物理网络上传输的帧格式并发送出去,或将从物理网络接收到的帧卸装并递交给高层。这一层与物理网络的具体实现有关,自身并无专用的协议。事实上,任何能传输IP报文的协议都可以运行。虽然该层一般不需要专门的TCP/IP协议,各物理网络可使用自己的数据链路层协议和物理层协议。
3.Internet主要协议
TCP/IP协议集的各层协议的总和亦称作协议枝。给出了TCP/IP协议集与OSI参
考模型的对应关系。其中每一层都有着多种协议。一般来说,TCP提供传输层服务,而IP提供网络层服务。
(l)TCP/IP的数据链路层
数据链路层不是TCP/IP协议的一部分,但它是TCP/IP与各种通信网之间的接口。这些通信网包括多种广域网和各种局域网。
一般情况下,各物理网络可以使用自己的数据链路层协议和物理层协议,不需要在数据链路层上设置专门的TCP/IP协议。但是,当使用串行线路连接主机与网络,或连接网络与网络时,例如用户使用电话线接入网络肘,则需要在数据链路层运行专门的SLIP(SerialLineIP)协议的PPP(PointtoPointProtocol)协议。
(2)TCP/IP网络层
网络层最重要的协议是IP,它将多个网络联成一个互联网,可以把高层的数据以多个数据报的形式通过互联网分发出去。
网络层的功能主要由IP来提供。除了提供端到端的报文分发功能外,IP还提供了很多扩充功能。例如:为了克服数据链路层对帧大小的限制,网络层提供了数据分块和重组功能,这使得很大的IP数据报能以较小的报文在网上传输。
网络层的另一个重要服务是在互相独立的局域网上建立互联网络,即网际网。网间的报文来往根据它的目的IP地址通过路由器传到另一网络。
IP的基本任务是通过互联网传送数据报,各个IP数据报之间是相互独立的。主机上的IP层向传输层提供服务。IP从源传输实体取得数据,通过它的数据链路层服务传给目的主机的IP层。IP不保证服务的可靠性,在主机资源不足的情况下,它可能丢弃某些数据报,同时IP也不检查被数据链路层丢弃的报文。
在传送时,高层协议将数据传给IP层,IP层再将数据封装为互联网数据报,并交给数据链路层协议通过局域网传送。若目的主机直接连在本局域网中,IP可直接通过网络将数据报传给
目的主机;若目的主机在其他网络中,则IP路由器传送数据报,而路由器则依次通过下一网络将数据报传送到目的主机或再下一个路由器。即IP数据报是通过互联网络逐步传递,直到终点 为止。
(3)TCP/IP传输层
TCP/IP在这一层提供了两个主要的协议:传输控制协议(TCP)和用户数据协议(UDP)。TCP提供的是一种可靠的数据流服务。当传送有差错数据,或网络故障,或网络负荷太
重不能正常工作时,就需要通过其他协议来保证通信的可靠。TCP就是这样的协议,它对应于OSI模型的传输层,它在IP协议的基础上,提供端到端的面向连接的可靠传输。
TCP采用"带重传的肯定确认"技术来实现传输的可靠性。简单的"带重传的肯定确认"是指与发送方通信的接收者,每接收一次数据,就送回一个确认报文J发送者对每个发出去的
报文都留一份记录,等到收到确认之后再发出下一报文。发送者发出报文时,启动计时器,若计时器计数完毕,确认还未到达,则发送者重新发送该报文。
TCP通信建立在面向连接的基础上,实现了一种"虚电路"的概念。双方通信之前,先建立一条连接,然后双方就可以在其上发送数据流。这种数据交换方式能提高效率,但事先建立连接和事后拆除连接需要开销。
4.TCP/IP协议族中的其他协议
TCP/IP是网络中使用的基本的通信协议,是一系列协议和服务的总集。虽然从名字上看
τCP/IP包括两个协议一一…传输控制协议(TCP)和网际协议(IP),但TCP/IP实际上是一组协议,包括了上百个各种功能的协议,如:远程登录、文件传输和电子邮件(PPP,ICMP,ARP/
RARP,UDP,FTP,HTTP,SMTP,SNMP,RIP,OSPF)等协议,而TCP协议和IP协议是保证数据完整传输的两个最基本的重要协议。通常说TCP/IP是指TCP/IP协议族,而不单单是TCP和IP。TCP/IP依靠TCP和IP这两个主要协议提供的服务,加上高层应用层的服务,共同实现了TCP/IP协议族的功能。
TCP/IP的最高层与OSI参考模型的上三层有较大区别,也没有非常明确的层次划分。其中FTP,TELNET,SMTP,DNS是几种广泛应用的协议,TCP/IP中还定义了许多别的高层协议。
(l)文件传输协议FTP
FTP(FileTransferProtocol):文件传输协议,允许用户将远程主机上的文件拷贝到自
己的计算机上。
文件传输协议是用于访问远程机器的专门协议,它使用户可以在本地机与远程机之间进行有关文件的操作。FTP工作时建立两条TCP连接,条用于传送文件,另一条用于传送控制。
FTP采用客户/服务器模式,它包含FTP客户端和FTP服务器。客户启动传送过程,而服 务器对其做出应答。客户FTP大多有交互式界面,使客户可以方便地上传或下载文件。
(2)远程终端访问TELNET
Telnet(RemoteLogin):提供远程登录功能,用户可以登录到远程的另一台计算机土,如同在远程主机上直接操作一样。
设备或终端进程交互的方讼,支持终端到终端的连接及进程到进程分布式计算的通信。
(3)域名服务DNS
DNS是一个域名服务的协议,提供域名到IP地址的转换,允许对域名资源进行分散管理。(4)简单邮件传送协议SMTP
SMTP(SimpleMailTransferProtocol,简单邮件传输协议),用于传输电子邮件。
互联网标准中的电子邮件是基于文件的协议,用于可靠、有效的数据传输。SMTP作为应用层的服务,并不关心它下面采用的是何种传输服务,它可通过网络在TCP连接上传送邮件, 或者简单地在同一机器的进程之间通过进程通信的通道来传送邮件。
邮件发送之前必须协商好发送者、接收者。SMTP服务进程同意为接收方发送邮件时,它将邮件直接交给接收方用户或将邮件经过若干段网络传输,直到邮件交给接收方用户。在邮件传输过程中,所经过的路由被记录下来。这样,当邮件不能正常传输时可按原路由找到发送者。
13网络互联基础
1.3.1IP地址
IP地址和域名是Internet使用的、符合TCP/IP协议规定的地址方案。这种地址方案与日常生活中涉及的电话号码和通信地址相似,涉及到Internet服务的每一环节。IP协议要求所有Internet的网络节点要有统一规定格式的地址,简称IP地址。IP地址是运行TCP/IP协议的唯一标识符。TCP/IP协议是上层协议,无论下层是何种拓扑结构的网络,均应统一在上层IP地址上。任何网络接入Internet,均应使用IP地址。
IP地址是唯一的、全球识别的InterIEt网络地址,采用32位二进制(即4字节)的格式。
在Internet上,每台计算机或网络设备都被分配一个IP地址,这个IP地址在整个InterIIet网络中是唯一的,保证了Internet成为全球开放互联的网络系统。
1.3.2IP地址的格式和分类
IP地址可表达为二进制格式和十进制格式。二进制的IP地址为32位,分为4个8位二进制数。为书写方便起见,常将每个字节作为一段并以十进制数来表示,每段间用"."分隔,每段取值为0~255,。例如:135.111.5.27(二进制格式:10000111.01101111.00000101.00011011)就是合怯的IP地址。
IP地址由网络标识和主机标识两部分组成。常用的IP地址有ATB,C三类,每类均规定
了网络标识和主机标识在32位中所占的位数。这三类IP地址的格式表示范围分别为:
A类地址:0.0.0.O~127.255.255.255
B类地址:128.0.0.O~191.255.255.255
C类地址:192.0.0.O~233.255.255.255
A类IP地址一般用于主机数多达160余万台的大型网络,前8位代表网络号,后3个8
位代表主机号。32位的最高位为Og十进制的第一组数值范围为000~127。IP地址范围为:001.x.y.z~126.x.y.z。
B类IP地址一般用于中等规模的各地区网管中心,前两个8位二进制代表网络号,后两个8位代表主机号。32位的最高两位为10;十进制的第一组数值范围为128~191。IP地址范围为:128.x.y.Z~191.x.y.z。
C类地址一般用于规模较小的本地网络,如校园网、企业网、政府机构网等。前三个8位代表网络号,最后8位代表主机号。32位的最高3位为110,十进制第一组数值范围为192~223。IP地址范围为:192.x.y.z~223.x.y.z。一个C类地址可连接256个主机。
A类地址一般分配给具有大量主机的网络使用,B类地址通常分配给规模中等的网络使用,C类地址通常分配给小型局域网使用。为了确保唯→性,IP地址由世界各大地区的权威机构InterNIC()管理和分配。
1.3.3子网的划分与掩码
在Internet中,如果每个物理网络就要占用一个网络号,是不够用的。另外,如果每个单位增添新的物理网络(例如新建楼房或新部门中新建的网络)就要向Internet的NIC申请新网络号,也太麻烦,并且不便于IP地址的分配管理。
,
在IP地址的某个网络标识中,可以包含大量的主机(如A类地址的主机标识域为24位,B类地址的主机标识域为16位),而在实际应用中不可能将这么多的主机连接到单一的网络中, 这将给网络寻址和管理带来不便。为解决这个问题,可以在网络中引入"子网"的概念。
注意:这里的子网与前面所说的通信子网是两个完全不同的概念。将主机标识域进一步划分为子网标识和子网主机标识,通过灵活定义子网标识域的位数,可以控制每个子网的规模。将一个大型网络划分为若干个既相对独立又相互联系的子网后,网络内部各子网便可独立寻址和管理,各子网间通过跨子网的路由器连接,这样也提高了网络的安全性。
利用子网掩码可以判断两台主机是否在同一子网中。子网掩码与IP地址一样也是32位二进制数,不同的是它的子网主机标识部分为全"。"。若两台主机的IP地址分别与它们的子网掩码相"与"后的结果相同,则说明这两台主机在同一网中。
1.子网划分
为使多个物理网络共用一个IP地址,可以采取把IP地址中主机号部分进一步划分为子网号和主机号两部分。例如:一个B类IP地址,可以把第三个字节作为子网号,第四个字节作为子网(物理网络)上主机号。
2.子网掩码
IP路由选择算法是根据IP数据报报头中目的地址的网络号,查找它的路由表,找到一个表项的目的网络号能与它匹配,然后用匹配上表项的中继IP地址作为发送该数据报到达目的主机的下一个路由器地址。IP数据报报头中目的地址的网络号是根据该地址最高位值来决定它是哪一类IP地址,网络号应占用多少位。
划分了子网后,就不能从地址的最高位值来判断网络号占用的位数了,用户可以自行决定子网号占用的位数。为了解决这个问题,必须使用子网掩码(mask)子网掩码是一个32位的数,其中取值为1的位,对应网络号或子&网号:取值为0的位,对应主机号。