A. 网络 之 三次握手&四次挥手 介绍
要了解三次握手&四次挥手的过程,就需要对TCP的报头以及有限状态机的概念有所了解,本文将介绍TCP报头的字段的含义,以及有限状态机各个状态的意义,最后对三次握手和四次挥手的过程做介绍
TCP(Transmission Control Protocol 传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793定义。在简化的计算机网络OSI模型中,它完成第四层传输层所指定的功能,用户数据报协议(UDP)是同一层内另一个重要的传输协议。在因特网协议族(Internet protocol suite)中,TCP层是位于IP层之上,应用层之下的中间层。不同主机的应用层之间经常需要可靠的、像管道一样的连接,但是IP层不提供这样的流机制,而是提供不可靠的包交换。
这里将介绍TCP报头的特性以及TCP报头各个字段的含义
.工作在传输层面向连接协议
.全双工协议
.半关闭
.错误检查
.将数据打包成段,排序
.确认机制
.数据恢复,重传
.流量控制,滑动窗口
.拥塞控制,慢启动和拥塞避免算法
.源端口、目标端口 :计算机上的进程要和其他进程通信是要通过计算机端口的,而一个计算机端口某个时刻只能被一个进程占用,所以通过指定源端口和目标端口,就可以知道是哪两个进程需要通信。源端口、目标端口是用16位表示的,可推算计算机的端口个数为2^16个
. 序列号 :表示本报文段所发送数据的第一个字节的编号。在TCP连接中所传送的字节流的每一个字节都会按顺序编号。由于序列号由32位表示,所以每2^32个字节,就会出现序列号回绕,再次从0 开始
. 确认号 :表示接收方期望收到发送方下一个报文段的第一个字节数据的编号。也就是告诉发送发:我希望你(指发送方)下次发送的数据的第一个字节数据的编号是这个确认号
. 数据偏移 :表示TCP报文段的首部长度,共4位,由于TCP首部包含一个长度可变的选项部分,需要指定这个TCP报文段到底有多长。它指出TCP 报文段的数据起始处距离TCP 报文段的起始处有多远。该字段的单位是32位(即4个字节为计算单位),4位二进制最大表示15,所以数据偏移也就是TCP首部最大60字节
. URG :表示本报文段中发送的数据是否包含紧急数据。后面的紧急指针字段(urgent pointer)只有当URG=1时才有效
. ACK :表示是否前面的确认号字段是否有效。ACK=1,表示有效。只有当ACK=1时,前面的确认号字段才有效。TCP规定,连接建立后,ACK必须为1,带ACK标志的TCP报文段称为确认报文段
. PSH :提示接收端应用程序应该立即从TCP接收缓冲区中读走数据,为接收后续数据腾出空间。如果为1,则表示对方应当立即把数据提交给上层应用,而不是缓存起来,如果应用程序不将接收到的数据读走,就会一直停留在TCP接收缓冲区中
. RST :如果收到一个RST=1的报文,说明与主机的连接出现了严重错误(如主机崩溃),必须释放连接,然后再重新建立连接。或者说明上次发送给主机的数据有问题,主机拒绝响应,带RST标志的TCP报文段称为复位报文段
. SYN :在建立连接时使用,用来同步序号。当SYN=1,ACK=0时,表示这是一个请求建立连接的报文段;当SYN=1,ACK=1时,表示对方同意建立连接。SYN=1,说明这是一个请求建立连接或同意建立连接的报文。只有在前两次握手中SYN才置为1,带SYN标志的TCP报文段称为同步报文段
. FIN :表示通知对方本端要关闭连接了,标记数据是否发送完毕。如果FIN=1,即告诉对方:“我的数据已经发送完毕,你可以释放连接了”,带FIN标志的TCP报文段称为结束报文段
. 窗口大小 :表示现在充许对方发送的数据量,也就是告诉对方,从本报文段的确认号开始允许对方发送的数据量
. 校验和 :提供额外的可靠性
. 紧急指针 :标记紧急数据在数据字段中的位置
. 选项部分 :其最大长度可根据TCP首部长度进行推算。TCP首部长度用4位表示,选项部分最长为:(2^4-1)*4-20=40字节
常见选项 :
.最大报文段长度:MaxiumSegment Size,MSS
.窗口扩大:Windows Scaling
.时间戳:Timestamps
.a 最大报文段长度
指明自己期望对方发送TCP报文段时那个数据字段的长度。默认是536字节。数据字段的长度加上TCP首部的长度才等于整个TCP报文段的长度。MSS不宜设的太大也不宜设的太小。若选择太小,极端情况下,TCP报文段只含有1字节数据,在IP层传输的数据报的开销至少有40字节(包括TCP报文段的首部和IP数据报的首部)。这样,网络的利用率就不会超过1/41。若TCP报文段非常长,那么在IP层传输时就有可能要分解成多个短数据报片。在终点要把收到的各个短数据报片装配成原来的TCP报文段。当传输出错时还要进行重传,这些也都会使开销增大。因此MSS应尽可能大,只要在IP层传输时不需要再分片就行。在连接建立过程中,双方都把自己能够支持的MSS接入这一字段。MSS只出现在SYN报文中。即:MSS出现在SYN=1的报文段中
.b 窗口扩大
为了扩大窗口,由于TCP首部的窗口大小字段长度是16位,所以其表示的最大数是65535。但是随着时延和带宽比较大的通信产
生(如卫星通信),需要更大的窗口来满足性能和吞吐率,所以产生了这个窗口扩大选项
.c 时间戳
可以用来计算RTT(往返时间),发送方发送TCP报文时,把当前的时间值放入时间戳字段,接收方收到后发送确认报文时,把这个时间戳字段的值复制到确认报文中,当发送方收到确认报文后即可计算出RTT。也可以用来防止回绕序号PAWS,也可以说可以用来区分相同序列号的不同报文。因为序列号用32为表示,每2^32个序列号就会产生回绕,那么使用时间戳字段就很容易区分相同序列号的不同报文
2.3 TCP协议PORT
.传输层通过port号,确定应用层协议
.Port number:
. tcp :0-65535,传输控制协议,面向连接的协议;通信前需要建立虚拟链路;结束后拆除链路.
. udp :0-65535,User Datagram Protocol,无连接的协议.
. IANA :互联网数字分配机构(负责域名,数字资源,协议分配)
0-1023:系统端口或特权端口(仅管理员可用) ,众所周知,永久的分配给固定的系统应用使用,22/tcp(ssh), 80/tcp(http), 443/tcp(https)
1024-49151:用户端口或注册端口,但要求并不严格,分配给程序注册为某应用使用,1433/tcp(SqlServer),1521/tcp(oracle),
3306/tcp(mysql),11211/tcp/udp(memcached)
49152-65535:动态端口或私有端口,客户端程序随机使用的端口
其范围的定义:/proc/sys/net/ipv4/ip_local_port_range
有限状态机,(英语:Finite-state machine, FSM),又称有限状态自动机,简称状态机,是表示有限个状态以及在这些状态之间的转移和动作等行为的数学模型。
常见的计算机就是使用有限状态机作为计算模型的:对于内存的不同状态,CPU通过读取内存值进行计算,更新内存中的状态。CPU还通过消息总线接受外部输入设备(如键盘、鼠标)的指令,计算后更改内存中的状态,计算结果输出到外部显示设备(如显示器),以及持久化存储在硬盘。
TCP协议也存在有限状态机的概念,TCP 协议的操作可以使用一个具有 11 种状态的有限状态机来表示
.CLOSED 没有任何连接状态
.LISTEN 侦听状态,等待来自远方TCP端口的连接请求
.SYN-SENT 在发送连接请求后,等待对方确认
.SYN-RECEIVED 在收到和发送一个连接请求后,等待对方确认
.ESTABLISHED 代表传输连接建立,双方进入数据传送状态
.FIN-WAIT-1 主动关闭,主机已发送关闭连接请求,等待对方确认
.FIN-WAIT-2 主动关闭,主机已收到对方关闭传输连接确认,等待对方发送关闭传输连接请求
.TIME-WAIT 完成双向传输连接关闭,等待所有分组消失
.CLOSE-WAIT 被动关闭,收到对方发来的关闭连接请求,并已确认
.LAST-ACK 被动关闭,等待最后一个关闭传输连接确认,并等待所有分组消失
.CLOSING 双方同时尝试关闭传输连接,等待对方确认
.客户端通过connect系统调用主动与服务器建立连接connect系统调用首先给服务器发送一个同步报文段,使连接转移到SYN_SENT状态。
.此后connect系统调用可能因为如下两个原因失败返回:
.1、如果connect连接的目标端口不存在(未被任何进程监听),或者该端口仍被处于TIME_WAIT状态的连接所占用(见后文),则服务器将给客户端发送一个复位报文段,connect调用失败。
.2、如果目标端口存在,但connect在超时时间内未收到服务器的确认报文段,则connect调用失败。
.connect调用失败将使连接立即返回到初始的CLOSED状态。如果客户端成功收到服务器的同步报文段和确认,则connect调用成功返回,连接转移至ESTABLISHED状态
.当客户端执行主动关闭时,它将向服务器发送一个结束报文段FIN,同时连接进入FIN_WAIT_1状态。若此时客户端收到服务器专门用于确认目的的确认报文段,则连接转移至FIN_WAIT_2状态。当客户端处于FIN_WAIT_2状态时,服务器处于CLOSE_WAIT状态,这一对状态是可能发生半关闭的状态。此时如果服务器也关闭连接(发送结束报文段),则客户端将给予确认并进入TIME_WAIT状态
.客户端从FIN_WAIT_1状态可能直接进入TIME_WAIT状态(不经过FIN_WAIT_2状态),前提是处于FIN_WAIT_1状态的服务器直接收到带确认信息的结束报文段(而不是先收到确认报文段,再收到结束报文段)
注意,客户端先发送一个FIN给服务端,自己进入了FIN_WAIT_1状态,这时等待接收服务端的报文,该报文会有三种可能:
a 只有服务端的ACK,只收到服务器的ACK,客户端会进入FIN_WAIT_2状态,后续当收到服务端的FIN时,回应发送一个ACK,会进入到TIME_WAIT状态,这个状态会持续2MSL(TCP报文段在网络中的最大生存时间,RFC 1122标准的建议值是2min).客户端等待2MSL,是为了当最后一个ACK丢失时,可以再发送一次。因为服务端在等待超时后会再发送一个FIN给客户端,进而客户端知道ACK已丢失
b 只有服务端的FIN,回应一个ACK给服务端,进入CLOSING状态,然后接收到服务端的ACK时,进入TIME_WAIT状态
c 同时收到服务端的ACK和FIN,直接进入TIME_WAIT状态
.收到服务器ACK后,客户端处于FIN_WAIT_2状态,此时需要等待服务器发送结束报文段,才能转移至TIME_WAIT状态,否则它将一直停留在这个状态。如果不是为了在半关闭状态下继续接收数据,连接长时间地停留在FIN_WAIT_2状态并无益处。连接停留在FIN_WAIT_2状态的情况可能发生在:客户端执行半关闭后,未等服务器关闭连接就强行退出了。此时客户端连接由内核来接管,可称之为孤儿连接(和孤儿进程类似)。
.Linux为了防止孤儿连接长时间存留在内核中,定义了两个内核参数:
./proc/sys/net/ipv4/tcp_max_orphans 指定内核能接管的孤儿连接数目
./proc/sys/net/ipv4/tcp_fin_timeout指定孤儿连接在内核中生存的时间
TCP协议中的三次握手和四次挥手
客户机端的三次握手和四次挥手
服务器端的三次握手和四次挥手
1 client 首先发送一个连接试探,此时ACK=0,表示确认号无效,SYN=1表示这是一个请求连接或连接接受报文,同时表示这个数据包不携带数据,seq=x表示此时client自己数据的初始序号是x,这时候client进入syn_sent状态,表示客户端等等服务器的回复
2 server 监听到连接请求报文后,如同意建立连接,则向client发送确认,将TCP报文首部的SYN和ACK都置为1,因为client上一个请求连接的报文中seq=x,所以服务器端这次就发ack=x+1,表示服务器端希望客户端下一个报文段的第一个数据字节序号是x+1,同时表示x为止的所有数据都已经正确收到了,其中,此时服务器端发送seq=y表示server自己的初始序号是y,这时服务器进入了SYN_RCVD状态,表示服务器已经收到了客户端的请求,等待client的确认。
3 client收到确认后还要再次给服务器端发送确认,同时携带要发给server的数据。ACK=1表示确认号ack=y+1有效,client这时的序号seq为x+1
一旦client确认后,这个TCP连接的client 和 server 都直接进入到established状态,可以发起http请求了
4.2 四次挥手详解
第一次挥手:client向server,发送FIN报文段,表示关闭数据传送,此时ACK=0,seq=u,表示客户端此时数据的报文序号是u,此时,client进入FIN_WAIT_1状态,表示没有数据要传输了
第二次挥手:server收到FIN报文段后进入CLOSE_WAIT状态(被动关闭),然后发送ACK确认,表示同意你关闭请求了,主机到主机的数据链路关闭,同时发送seq=v,表示此时server端的数据包字节序号是v,ack=u+1,表示希望client发送的下一个包的序号是u+1,表示确认了序号u之前的包都已经收到,客户端收到server的ACK报文后,进入FIN_WAIT_2状态
第三次挥手:server等待client发送完数据,发送FIN=1,ACK=1到client请求关闭,server进入LAST_ACK状态。此时发送的seq有变化,因为上一个ACK的后server端可能又发送了一些数据,说以数据字节序号发送了变化,为w,但是ack还是保持不变
第四次挥手:client收到server发送的FIN后,回复ACK确认到server,client进入TIME_WAIT状态。发送ack=w+1,表示希望服务器下个发送的报文的字节序号是w+1,确认了服务器之前发送的w字节都已经正确收到,发送seq=u+1表示当前client的字节序号是u+1.server收到client的ACK后就关闭连接了,状态为CLOSED。client等待2MSL,仍然没有收到server的回复,说明server已经正常关闭了,client关闭连接。
其中,MSL(Maximum Segment Lifetime):报文最大生存时间,是任何报文段被丢弃前在网络内的最长时间。当client回复server的FIN后,等待(2-4分钟),即使两端的应用程序结束。
TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态的原因是如果client直接进入CLOSED状态,由于IP协议不可靠性或网络问题,导致client最后发出的ACK报文未被server接收到,那么server在超时后继续向client重新发送FIN,而client已经关闭,那么找不到向client发送FIN的连接,server这时收到RST并把错误报告给高层,不符合TCP协议的可靠性特点。如果client直接进入CLOSED状态,而server还有数据滞留在网络中,当有一个新连接的端口和原来server的相同,那么当原来滞留的数据到达后,client认为这些数据是新连接的。等待2MSL确保本次连接所有数据消失。
当客户端等待2MSL后服务器端没有再次发送确认的报文后,client认为该次断开连接已经正常结束,client进入closed状态。四次挥手正式结束
B. 计算机网络中的三次握手问题
第一步应用层的程序都开始传输数据了,很明显三次握手已经完成了
C. 三次握手机制用于解决什么
用于解决网络中出现重复请求报文的问题。
第一次:首先A发送一个(SYN)到B,意思是A要和B建立连接进行通信,如果是只有一次握手,这样肯定是不行的,A压根都不知道B是不是收到了这个请求。
第二次:B收到A要建立连接的请求之后,发送一个确认(SYN+ACK)给A,意思是收到A的消息了,B这里也是通的,表示可以建立连接。如果只有两次通信,这时候B不确定A是否收到了确认消息,有可能这个确认消息由于某些原因丢了。
第三次:A如果收到了B的确认消息之后,再发出一个确认(ACK)消息,意思是告诉B,这边是通的,然后A和B就可以建立连接相互通信了。
(3)握手计算机网络扩展阅读:
注意事项:
刚接触网络编程时,感觉网络连接的建立、网络数据的收发、网络连接的断开这些操作仅仅是调用几个socket AIP就可以搞定的事情,跟网络中讲述的TCP三次握手等内容完全扯不上关系。
listen函数:内核为任何一个给定的套接字维护两个队列 1.未完成连接状态(客户端发送的第一个SYN已经到服务器,服务器等待TCP三次握手完成,这些套接字处于SYN_RCVD状态)。
D. 计算机网络中的“三次握手”是什么
TCP握手协议
在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接。
第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;
SYN: 同步序列编号(Synchronize Sequence Numbers)
第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;
第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。
完成三次握手,客户端与服务器开始传送数据,在上述过程中,还有一些重要的概念:
未连接队列:在三次握手协议中,服务器维护一个未连接队列,该队列为每个客户端的SYN包(syn=j)开设一个条目,该条目表明服务器已收到SYN包,并向客户发出确认,正在等待客户的确认包。这些条目所标识的连接在服务器处于Syn_RECV状态,当服务器收到客户的确认包时,删除该条目,服务器进入ESTABLISHED状态。
Backlog参数:表示未连接队列的最大容纳数目。
SYN-ACK 重传次数 服务器发送完SYN-ACK包,如果未收到客户确认包,服务器进行首次重传,等待一段时间仍未收到客户确认包,进行第二次重传,如果重传次数超过系统规定的最大重传次数,系统将该连接信息从半连接队列中删除。注意,每次重传等待的时间不一定相同。
半连接存活时间:是指半连接队列的条目存活的最长时间,也即服务从收到SYN包到确认这个报文无效的最长时间,该时间值是所有重传请求包的最长等待时间总和。有时我们也称半连接存活时间为Timeout时间、SYN_RECV存活时间。
E. 计算机网络自学笔记:TCP
如果你在学习这门课程,仅仅为了理解网络工作原理,那么只要了解TCP是可靠传输,数据传输丢失时会重传就可以了。如果你还要参加研究生考试或者公司面试等,那么下面内容很有可能成为考查的知识点,主要的重点是序号/确认号的编码、超时定时器的设置、可靠传输和连接的管理。
1 TCP连接
TCP面向连接,在一个应用进程开始向另一个应用进程发送数据之前,这两个进程必须先相互“握手”,即它们必须相互发送某些预备报文段,以建立连接。连接的实质是双方都初始化与连接相关的发送/接收缓冲区,以及许多TCP状态变量。
这种“连接”不是一条如电话网络中端到端的电路,因为它们的状态完全保留在两个端系统中。
TCP连接提供的是全双工服务 ,应用层数据就可在从进程B流向进程A的同时,也从进程A流向进程B。
TCP连接也总是点对点的 ,即在单个发送方与单个接收方之间建立连接。
一个客户机进程向服务器进程发送数据时,客户机进程通过套接字传递数据流。
客户机操作系统中运行的 TCP软件模块首先将这些数据放到该连接的发送缓存里 ,然后会不时地从发送缓存里取出一块数据发送。
TCP可从缓存中取出并放入报文段中发送的数据量受限于最大报文段长MSS,通常由最大链路层帧长度来决定(也就是底层的通信链路决定)。 例如一个链路层帧的最大长度1500字节,除去数据报头部长度20字节,TCP报文段的头部长度20字节,MSS为1460字节。
报文段被往下传给网络层,网络层将其封装在网络层IP数据报中。然后这些数据报被发送到网络中。
当TCP在另一端接收到一个报文段后,该报文段的数据就被放人该连接的接收缓存中。应用程序从接收缓存中读取数据流(注意是应用程序来读,不是操作系统推送)。
TCP连接的每一端都有各自的发送缓存和接收缓存。
因此TCP连接的组成包括:主机上的缓存、控制变量和与一个进程连接的套接字变量名,以及另一台主机上的一套缓存、控制变量和与一个进程连接的套接字。
在这两台主机之间的路由器、交换机中,没有为该连接分配任何缓存和控制变量。
2报文段结构
TCP报文段由首部字段和一个数据字段组成。数据字段包含有应用层数据。
由于MSS限制了报文段数据字段的最大长度。当TCP发送一个大文件时,TCP通常是将文件划分成长度为MSS的若干块。
TCP报文段的结构。
首部包括源端口号和目的端口号,它用于多路复用/多路分解来自或送至上层应用的数据。另外,TCP首部也包括校验和字段。报文段首部还包含下列字段:
32比特的序号字段和32比特的确认号字段。这些字段被TCP发送方和接收方用来实现可靠数据传输服务。
16比特的接收窗口字段,该字段用于流量控制。该字段用于指示接收方能够接受的字节数量。
4比特的首部长度字段,该字段指示以32比特的字为单位的TCP首部长度。一般TCP首部的长度就是20字节。
可选与变长的选项字段,该字段用于当发送方与接收方协商最大报文段长度,或在高速网络环境下用作窗口调节因子时使用。
标志字段ACK比特用于指示确认字段中的ACK值的有效性,即该报文段包括一个对已被成功接收报文段的确认。 SYN和FIN比特用于连接建立和拆除。 PSH、URG和紧急指针字段通常没有使用。
•序号和确认号
TCP报文段首部两个最重要的字段是序号字段和确认号字段。
TCP把数据看成一个无结构的但是有序的字节流。TCP序号是建立在传送的字节流之上,而不是建立在传送的报文段的序列之上。
一个报文段的序号是该报文段首字节在字节流中的编号。
例如,假设主机A上的一个进程想通过一条TCP连接向主机B上的一个进程发送一个数据流。主机A中的TCP将对数据流中的每一个字节进行编号。假定数据流由一个包含4500字节的文件组成(可以理解为应用程序调用send函数传递过来的数据长度),MSS为1000字节(链路层一次能够传输的字节数),如果主机决定数据流的首字节编号是7。TCP模块将为该数据流构建5个报文段(也就是分5个IP数据报)。第一个报文段的序号被赋为7;第二个报文段的序号被赋为1007,第三个报文段的序号被赋为2007,以此类推。前面4个报文段的长度是1000,最后一个是500。
确认号要比序号难理解一些。前面讲过,TCP是全双工的,因此主机A在向主机B发送数据的同时,也可能接收来自主机B的数据。从主机B到达的每个报文段中的序号字段包含了从B流向A的数据的起始位置。 因此主机B填充进报文段的确认号是主机B期望从主机A收到的下一报文段首字节的序号。
假设主机B已收到了来自主机A编号为7-1006的所有字节,同时假设它要发送一个报文段给主机A。主机B等待主机A的数据流中字节1007及后续所有字节。所以,主机B会在它发往主机A的报文段的确认号字段中填上1007。
再举一个例子,假设主机B已收到一个来自主机A的包含字节7-1006的报文段,以及另一个包含字节2007-3006的报文段。由于某种原因,主机A还没有收到字节1007-2006的报文段。
在这个例子中,主机A为了重组主机B的数据流,仍在等待字节1007。因此,A在收到包含字节2007-3006的报文段时,将会又一次在确认号字段中包含1007。 因为TCP只确认数据流中至第一个丢失报文段之前的字节数据,所以TCP被称为是采用累积确认。
TCP的实现有两个基本的选择:
1接收方立即丢弃失序报文段;
2接收方保留失序的字节,并等待缺少的字节以填补该间隔。
一条TCP连接的双方均可随机地选择初始序号。 这样做可以减少将那些仍在网络中的来自两台主机之间先前连接的报文段,误认为是新建连接所产生的有效报文段的可能性。
•例子telnet
Telnet由是一个用于远程登录的应用层协议。它运行在TCP之上,被设计成可在任意一对主机之间工作。
假设主机A发起一个与主机B的Telnet会话。因为是主机A发起该会话,因此主机A被标记为客户机,主机B被标记为服务器。用户键入的每个字符(在客户机端)都会被发送至远程主机。远程主机收到后会复制一个相同的字符发回客户机,并显示在Telnet用户的屏幕上。这种“回显”用于确保由用户发送的字符已经被远程主机收到并处理。因此,在从用户击键到字符显示在用户屏幕上之间的这段时间内,每个字符在网络中传输了两次。
现在假设用户输入了一个字符“C”,假设客户机和服务器的起始序号分别是42和79。前面讲过,一个报文段的序号就是该报文段数据字段首字节的序号。因此,客户机发送的第一个报文段的序号为42,服务器发送的第一个报文段的序号为79。前面讲过,确认号就是主机期待的数据的下一个字节序号。在TCP连接建立后但没有发送任何数据之前,客户机等待字节79,而服务器等待字节42。
如图所示,共发了3个报文段。第一个报文段是由客户机发往服务器,其数据字段里包含一字节的字符“C”的ASCII码,其序号字段里是42。另外,由于客户机还没有接收到来自服务器的任何数据,因此该报文段中的确认号字段里是79。
第二个报文段是由服务器发往客户机。它有两个目的:第一个目的是为服务器所收到的数据提供确认。服务器通过在确认号字段中填入43,告诉客户机它已经成功地收到字节42及以前的所有字节,现在正等待着字节43的出现。第二个目的是回显字符“C”。因此,在第二个报文段的数据字段里填入的是字符“C”的ASCII码,第二个报文段的序号为79,它是该TCP连接上从服务器到客户机的数据流的起始序号,也是服务器要发送的第一个字节的数据。
这里客户机到服务器的数据的确认被装载在一个服务器到客户机的数据的报文段中,这种确认被称为是捎带确认.
第三个报文段是从客户机发往服务器的。它的唯一目的是确认已从服务器收到的数据。
3往返时延的估计与超时
TCP如同前面所讲的rdt协议一样,采用超时/重传机制来处理报文段的丢失问题。最重要的一个问题就是超时间隔长度的设置。显然,超时间隔必须大于TCP连接的往返时延RTT,即从一个报文段发出到收到其确认时。否则会造成不必要的重传。
•估计往返时延
TCP估计发送方与接收方之间的往返时延是通过采集报文段的样本RTT来实现的,就是从某报文段被发出到对该报文段的确认被收到之间的时间长度。
也就是说TCP为一个已发送的但目前尚未被确认的报文段估计sampleRTT,从而产生一个接近每个RTT的采样值。但是,TCP不会为重传的报文段计算RTT。
为了估计一个典型的RTT,采取了某种对RTT取平均值的办法。TCP据下列公式来更新
EstimatedRTT=(1-)*EstimatedRTT+*SampleRTT
即估计RTT的新值是由以前估计的RTT值与sampleRTT新值加权组合而成的。
参考值是a=0.125,因此是一个加权平均值。显然这个加权平均对最新样本赋予的权值
要大于对老样本赋予的权值。因为越新的样本能更好地反映出网络当前的拥塞情况。从统计学观点来讲,这种平均被称为指数加权移动平均
除了估算RTT外,还需要测量RTT的变化,RTT偏差的程度,因为直接使用平均值设置计时器会有问题(太灵敏)。
DevRTT=(1-β)*DevRTT+β*|SampleRTT-EstimatedRTT|
RTT偏差也使用了指数加权移动平均。B取值0.25.
•设置和管理重传超时间隔
假设已经得到了估计RTT值和RTT偏差值,那么TCP超时间隔应该用什么值呢?TCP将超时间隔设置成大于等于估计RTT值和4倍的RTT偏差值,否则将造成不必要的重传。但是超时间隔也不应该比估计RTT值大太多,否则当报文段丢失时,TCP不能很快地重传该报文段,从而将给上层应用带来很大的数据传输时延。因此,要求将超时间隔设为估计RTT值加上一定余量。当估计RTT值波动较大时,这个余最应该大些;当波动比较小时,这个余量应该小些。因此使用4倍的偏差值来设置重传时间。
TimeoutInterval=EstimatedRTT+4*DevRTT
4可信数据传输
因特网的网络层服务是不可靠的。IP不保证数据报的交付,不保证数据报的按序交付,也不保证数据报中数据的完整性。
TCP在IP不可靠的尽力而为服务基础上建立了一种可靠数据传输服务。
TCP提供可靠数据传输的方法涉及前面学过的许多原理。
TCP采用流水线协议、累计确认。
TCP推荐的定时器管理过程使用单一的重传定时器,即使有多个已发送但还未被确认的报文段也一样。重传由超时和多个ACK触发。
在TCP发送方有3种与发送和重传有关的主要事件:从上层应用程序接收数据,定时器超时和收到确认ACK。
从上层应用程序接收数据。一旦这个事件发生,TCP就从应用程序接收数据,将数据封装在一个报文段中,并将该报文段交给IP。注意到每一个报文段都包含一个序号,这个序号就是该报文段第一个数据字节的字节流编号。如果定时器还没有计时,则当报文段被传给IP时,TCP就启动一个该定时器。
第二个事件是超时。TCP通过重传引起超时的报文段来响应超时事件。然后TCP重启定时器。
第三个事件是一个来自接收方的确认报文段(ACK)。当该事件发生时,TCP将ACK的值y与变量SendBase(发送窗口的基地址)进行比较。TCP状态变量SendBase是最早未被确认的字节的序号。就是指接收方已正确按序接收到数据的最后一个字节的序号。TCP采用累积确认,所以y确认了字节编号在y之前的所有字节都已经收到。如果Y>SendBase,则该ACK是在确认一个或多个先前未被确认的报文段。因此发送方更新其SendBase变量,相当于发送窗口向前移动。
另外,如果当前有未被确认的报文段,TCP还要重新启动定时器。
快速重传
超时触发重传存在的另一个问题是超时周期可能相对较长。当一个报文段丢失时,这种长超时周期迫使发送方等待很长时间才重传丢失的分组,因而增加了端到端时延。所以通常发送方可在超时事件发生之前通过观察冗余ACK来检测丢包情况。
冗余ACK就是接收方再次确认某个报文段的ACK,而发送方先前已经收到对该报文段的确认。
当TCP接收方收到一个序号比所期望的序号大的报文段时,它认为检测到了数据流中的一个间隔,即有报文段丢失。这个间隔可能是由于在网络中报文段丢失或重新排序造成的。因为TCP使用累计确认,所以接收方不向发送方发回否定确认,而是对最后一个正确接收报文段进行重复确认(即产生一个冗余ACK)
如果TCP发送方接收到对相同报文段的3个冗余ACK.它就认为跟在这个已被确认过3次的报文段之后的报文段已经丢失。一旦收到3个冗余ACK,TCP就执行快速重传 ,
即在该报文段的定时器过期之前重传丢失的报文段。
5流量控制
前面讲过,一条TCP连接双方的主机都为该连接设置了接收缓存。当该TCP连接收到正确、按序的字节后,它就将数据放入接收缓存。相关联的应用进程会从该缓存中读取数据,但没必要数据刚一到达就立即读取。事实上,接收方应用也许正忙于其他任务,甚至要过很长时间后才去读取该数据。如果应用程序读取数据时相当缓慢,而发送方发送数据太多、太快,会很容易使这个连接的接收缓存溢出。
TCP为应用程序提供了流量控制服务以消除发送方导致接收方缓存溢出的可能性。因此,可以说 流量控制是一个速度匹配服务,即发送方的发送速率与接收方应用程序的读速率相匹配。
前面提到过,TCP发送方也可能因为IP网络的拥塞而被限制,这种形式的发送方的控制被称为拥塞控制(congestioncontrol)。
TCP通过让接收方维护一个称为接收窗口的变量来提供流量控制。接收窗口用于告诉发送方,该接收方还有多少可用的缓存空间。因为TCP是全双工通信,在连接两端的发送方都各自维护一个接收窗口变量。 主机把当前的空闲接收缓存大小值放入它发给对方主机的报文段接收窗口字段中,通知对方它在该连接的缓存中还有多少可用空间。
6 TCP连接管理
客户机中的TCP会用以下方式与服务器建立一条TCP连接:
第一步: 客户机端首先向服务器发送一个SNY比特被置为1报文段。该报文段中不包含应用层数据,这个特殊报文段被称为SYN报文段。另外,客户机会选择一个起始序号,并将其放置到报文段的序号字段中。为了避免某些安全性攻击,这里一般随机选择序号。
第二步: 一旦包含TCP报文段的用户数据报到达服务器主机,服务器会从该数据报中提取出TCPSYN报文段,为该TCP连接分配TCP缓存和控制变量,并向客户机TCP发送允许连接的报文段。这个允许连接的报文段还是不包含应用层数据。但是,在报文段的首部却包含3个重要的信息。
首先,SYN比特被置为1。其次,该 TCP报文段首部的确认号字段被置为客户端序号+1最后,服务器选择自己的初始序号,并将其放置到TCP报文段首部的序号字段中。 这个允许连接的报文段实际上表明了:“我收到了你要求建立连接的、带有初始序号的分组。我同意建立该连接,我自己的初始序号是XX”。这个同意连接的报文段通常被称为SYN+ACK报文段。
第三步: 在收到SYN+ACK报文段后,客户机也要给该连接分配缓存和控制变量。客户机主机还会向服务器发送另外一个报文段,这个报文段对服务器允许连接的报文段进行了确认。因为连接已经建立了,所以该ACK比特被置为1,称为ACK报文段,可以携带数据。
一旦以上3步完成,客户机和服务器就可以相互发送含有数据的报文段了。
为了建立连接,在两台主机之间发送了3个分组,这种连接建立过程通常被称为 三次握手(SNY、SYN+ACK、ACK,ACK报文段可以携带数据) 。这个过程发生在客户机connect()服务器,服务器accept()客户连接的阶段。
假设客户机应用程序决定要关闭该连接。(注意,服务器也能选择关闭该连接)客户机发送一个FIN比特被置为1的TCP报文段,并进人FINWAIT1状态。
当处在FINWAIT1状态时,客户机TCP等待一个来自服务器的带有ACK确认信息的TCP报文段。当它收到该报文段时,客户机TCP进入FINWAIT2状态。
当处在FINWAIT2状态时,客户机等待来自服务器的FIN比特被置为1的另一个报文段,
收到该报文段后,客户机TCP对服务器的报文段进行ACK确认,并进入TIME_WAIT状态。TIME_WAIT状态使得TCP客户机重传最终确认报文,以防该ACK丢失。在TIME_WAIT状态中所消耗的时间是与具体实现有关的,一般是30秒或更多时间。
经过等待后,连接正式关闭,客户机端所有与连接有关的资源将被释放。 因此TCP连接的关闭需要客户端和服务器端互相交换连接关闭的FIN、ACK置位报文段。
F. http和https的区别http与TCP/IP区别http/TCP三次握手四次挥手
https, 全称Hyper Text Transfer Protocol Secure,相比http,多了一个secure,这一个secure是怎么来的呢?这是由TLS(SSL)提供的,这个又是什么呢?估计你也不想知道。大概就是一个叫openSSL的library提供的。https和http都属于application layer,基于TCP(以及UDP)协议,但是又完全不一样。TCP用的port是80, https用的是443(值得一提的是,google发明了一个新的协议,叫QUIC,并不基于TCP,用的port也是443, 同样是用来给https的。谷歌好牛逼啊。)总体来说,https和http类似,但是比http安全。
http缺省工作在TCP协议80端口(需要国内备案),用户访问网站http://打头的都是标准http服务,http所封装的信息都是明文的,通过抓包工具可以分析其信息内容,如果这些信息内容包含你的银行卡账号、密码,你肯定无法接受这种服务,那有没有可以加密这些敏感信息的服务呢?那就是https!
https是http运行在SSL/TLS之上,SSL/TLS运行在TCP之上。所有传输的内容都经过加密,加密采用对称加密,但对称加密的密钥用服务器方的证书进行了非对称加密。此外客户端可以验证服务器端的身份,如果配置了客户端验证,服务器方也可以验证客户端的身份。
https缺省工作在tcp协议443端口,它的工作流程一般如以下方式:
1、完成tcp三次同步握手;
2、客户端验证服务器数字证书,通过,进入步骤3;
3、DH算法协商对称加密算法的密钥、hash算法的密钥;
4、SSL安全加密隧道协商完成;
5、网页以加密的方式传输,用协商的对称加密算法和密钥加密,保证数据机密性;用协商的hash算法进行数据完整性保护,保证数据不被篡改。
附:https一般使用的加密与hash算法如下:
非对称加密算法:RSA,DSA/DSS
对称加密算法:AES,RC4,3DES
hash算法:MD5,SHA1,SHA256
如果https是网银服务,以上SSL安全隧道成功建立才会要求用户输入账户信息,账户信息是在安全隧道里传输,所以不会泄密!
TPC/IP协议是传输层协议,主要解决数据如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据。Web使用HTTP协议作应用层协议,以封装HTTP 文本信息,然后使用TCP/IP做传输层协议将它发到网络上。
下面的图表试图显示不同的TCP/IP和其他的协议在最初OSI(Open System Interconnect)模型中的位置:
CA证书是什么?
CA(Certificate Authority)是负责管理和签发证书的第三方权威机构,是所有行业和公众都信任的、认可的。
CA证书,就是CA颁发的证书,可用于验证网站是否可信(针对HTTPS)、验证某文件是否可信(是否被篡改)等,也可以用一个证书来证明另一个证书是真实可信,最顶级的证书称为根证书。除了根证书(自己证明自己是可靠),其它证书都要依靠上一级的证书,来证明自己。
https大致过程:
1、建立服务器443端口连接 ;
2、SSL握手:随机数,证书,密钥,加密算法;
3、发送加密请求 ;
4、发送加密响应;
5、关闭SSL;
6、关闭TCP.
SSL握手大致过程:
1、客户端发送随机数1,支持的加密方法(如RSA公钥加密);
2、服务端发送随机数2,和服务器公钥,并确认加密方法;
3、客户端发送用服务器公钥加密的随机数3;
4、服务器用私钥解密这个随机数3,用加密方法计算生成对称加密的密钥给客户端;
5、接下来的报文都用双方协定好的加密方法和密钥,进行加密.
1、TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接
2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保证可靠交付
3、TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流(流模式);UDP是面向报文的(报文模式),UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)
4、每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
5、TCP要求系统资源较多,UDP较少。TCP首部开销20字节;UDP的首部开销小,只有8个字节
SYN:同步序列编号; ACK=1: 确认序号 ; FIN附加标记的报文段(FIN表示英文finish)
一个TCP连接必须要经过三次“对话”才能建立起来,其中的过程非常复杂,只简单的 描述下这三次对话的简单过程:主机A向主机B发出连接请求数据包:“我想给你发数据,可以吗?”,这是第一次对话;主机B向主机A发送同意连接和要求同步 (同步就是两台主机一个在发送,一个在接收,协调工作)的数据包:“可以,你什么时候发?”,这是第二次对话;主机A再发出一个数据包确认主机B的要求同 步:“我现在就发,你接着吧!”,这是第三次对话。三次“对话”的目的是使数据包的发送和接收同步,经过三次“对话”之后,主机A才向主机B正式发送数据。
为什么需要“三次握手”?
在谢希仁着《计算机网络》第四版中讲“三次握手”的目的是“ 为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误 ”。在另一部经典的《计算机网络》一书中讲“三次握手”的目的是为了解决“网络中存在延迟的重复分组”的问题。这两种不一样的表述其实阐明的是同一个问题。
谢希仁版《计算机网络》中的例子是这样的,“已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。 本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。 采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。”。 主要目的防止server端一直等待,浪费资源。
为什么需要“四次挥手”?
可能有人会有疑问,在tcp连接握手时为何ACK是和SYN一起发送,这里ACK却没有和FIN一起发送呢。原因是 因为tcp是全双工模式,接收到FIN时意味将没有数据再发来,但是还是可以继续发送数据。
握手,挥手过程中各状态介绍:
3次握手过程状态:
LISTEN: 这个也是非常容易理解的一个状态,表示服务器端的某个SOCKET处于监听状态,可以接受连接了。
SYN_SENT : 当客户端SOCKET执行CONNECT连接时,它首先发送SYN报文,因此也随即它会进入到了SYN_SENT状态,并等待服务端的发送三次握手中的第2个报文。SYN_SENT状态表示客户端已发送SYN报文。(发送端)
SYN_RCVD : 这个状态与SYN_SENT遥想呼应这个状态表示接受到了SYN报文,在正常情况下,这个状态是服务器端的SOCKET在建立TCP连接时的三次握手会话过程中的一个中间状态,很短暂,基本上用netstat你是很难看到这种状态的,除非你特意写了一个客户端测试程序,故意将三次TCP握手过程中最后一个 ACK报文不予发送。因此这种状态时,当收到客户端的ACK报文后,它会进入到ESTABLISHED状态。(服务器端)
ESTABLISHED :这个容易理解了,表示连接已经建立了。
4次挥手过程状态:(可参考下图):
FIN_WAIT_1: 这个状态要好好解释一下,其实FIN_WAIT_1和FIN_WAIT_2状态的真正含义都是表示等待对方的FIN报文。而这两种状态的区别是: FIN_WAIT_1状态实际上是当SOCKET在ESTABLISHED状态时,它想主动关闭连接,向对方发送了FIN报文,此时该SOCKET即进入到FIN_WAIT_1状态。而当对方回应ACK报文后,则进入到FIN_WAIT_2状态, 当然在实际的正常情况下,无论对方何种情况下,都应该马上回应ACK报文,所以FIN_WAIT_1状态一般是比较难见到的,而FIN_WAIT_2状态还有时常常可以用netstat看到。(主动方)
FIN_WAIT_2: 上面已经详细解释了这种状态,实际上FIN_WAIT_2状态下的SOCKET,表示 半连接 ,也即有一方要求close连接,但另外还告诉对方,我暂时还有点数据需要传送给你(ACK信息),稍后再关闭连接。(主动方)
TIME_WAIT: 表示收到了对方的FIN报文,并发送出了ACK报文 ,就等2MSL后即可回到CLOSED可用状态了。如果FIN_WAIT_1状态下,收到了对方同时带FIN标志和ACK标志的报文时,可以直接进入到TIME_WAIT状态,而无须经过FIN_WAIT_2状态。(主动方)
CLOSING(比较少见): 这种状态比较特殊,实际情况中应该是很少见,属于一种比较罕见的例外状态。正常情况下,当你发送FIN报文后,按理来说是应该先收到(或同时收到)对方的 ACK报文,再收到对方的FIN报文。但是CLOSING状态表示你发送FIN报文后,并没有收到对方的ACK报文,反而却也收到了对方的FIN报文。什么情况下会出现此种情况呢?其实细想一下,也不难得出结论:那就是如果双方几乎在同时close一个SOCKET的话,那么就出现了双方同时发送FIN报文的情况,也即会出现CLOSING状态,表示双方都正在关闭SOCKET连接。
CLOSE_WAIT: 这种状态的含义其实是表示在等待关闭。怎么理解呢? 当对方close一个SOCKET后发送FIN报文给自己,你系统毫无疑问地会回应一个ACK报文给对方,此时则进入到CLOSE_WAIT状态。接下来呢,实际上你真正需要考虑的事情是察看你是否还有数据发送给对方,如果没有的话,那么你也就可以 close这个SOCKET,发送FIN报文给对方,也即关闭连接。 所以你在 CLOSE_WAIT状态下,需要完成的事情是等待你去关闭连接。 (被动方)
LAST_ACK: 这个状态还是比较容易好理解的,它是被动关闭一方在发送FIN报文后,最后等待对方的ACK报文。当收到ACK报文后,也即可以进入到CLOSED可用状态了。(被动方)
CLOSED: 表示连接中断。
TCP的具体状态图可参考:
G. 计算机网络三次握手四次挥手用文字简单论述一下
哈哈,不错
H. 网络技术中的握手,是什么意思
握手在现实世界中是两个人都伸出手握在一块。
所以引申到网络协议中就是,需要建立链接的两台设备 A 和 B,A 发送数据给 B,B 随之回复数据给 A。这叫做“两次握手”
握手本质就是数据发送给对方,学习网络死扣这些字眼用处不大。
I. 在计算机网络中,TCP终止采用几次握手
三次握手:
1.发出请求
2.同意,同时发出ack
3.确认,同时发送ack