导航:首页 > 网络连接 > 计算机网络内存数据

计算机网络内存数据

发布时间:2022-11-25 05:57:29

A. 简述计算机内存的分类及各自特点

1、SDRAM

(Synchronous Dynamic RAM,同步动态随机存储器)采用3.3V工作电压,内存数据位宽64位。 SDRAM与CPU通过一个相同的时钟频率锁在一起,使两者以相同的速度同步工作。 SDRAM它在每一个时钟脉冲的上升沿传输数据SDRAM内存金手指为168脚。

2、DDR SDRAM

( Double data Rate SDRAM,双倍速率同步动态随机存储器)采用2.5V工作电压,内存数据位宽64位。 DDR SDRAM (简称DDR内存)一个时钟脉冲传输两次数据,分别在时钟脉冲的上升沿和下降沿各传输一次数据,因此称为双倍速率的SDRAM。

3、DDR2 SDRAM

(Double Data Rate 2 SDRAM)采用1.8V工作电压,内存数据位宽64位。 DDR2内存和DDR内存一样,一个时钟脉冲传输两次数据,但DDR2内存却拥有两倍于上一代DDR内存的预读取能力,即4位数据预读取。

4、DDR3 SDRAM

(Double Data Rate 3 SDRAM)采用1.5 V工作电压,内存数据位宽64位。同样, DDR3内存拥有两倍于上一代DDR2内存的预读取能力,即8位数据预读取。

5、DDR4 SDRAM

(Double Data Rate 4 SDRAM)采用1.2V工作电压,内存数据位宽64位, 16位数据预读取。取消双通道机制,一条内存即为一条通道。工作频率最高可达4266 MHz,单根DDR4内存的数据传输带宽最高为34 GB/s。

B. 关于计算机网络的最简单的理解,说说看

以我大学考试的理解,无非是对于一些算法的理解(比如CRC算法、拥塞)和协议的分析(IPv4协议分析)

C. 计算机网络技术专业电脑配置内存要求

最低16G内存起,无论你是做设计渲染还是数据分析

D. 计算机网络

应用层(数据):确定进程之间通信的性质以满足用户需要以及提供网络与用户应用
表示层(数据):主要解决用户信息的语法表示问题,如加密解密
会话层(数据):提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制,如服务器验证用户登录便是由会话层完成的
传输层(段):实现网络不同主机上用户进程之间的数据通信,可靠
与不可靠的传输,传输层的错误检测,流量控制等
网络层(包):提供逻辑地址(IP)、选路,数据从源端到目的端的
传输
数据链路层(帧):将上层数据封装成帧,用MAC地址访问媒介,错误检测与修正
物理层(比特流):设备之间比特流的传输,物理接口,电气特性等

IP 地址编址方案将IP地址空间划分为 A、B、C、D、E 五类,其中 A、B、C 是基本类,D、E 类作为多播和保留使用,为特殊地址。
A 类地址:以 0 开头,第一个字节范围:0~127 。
B 类地址:以 10 开头,第一个字节范围:128~191 。
C 类地址:以 110 开头,第一个字节范围:192~223。
D 类地址:以 1110 开头,第一个字节范围:224~239 。
E 类地址:以 1111 开头,保留地址。

物理地址(MAC 地址),是数据链路层和物理层使用的地址。
IP 地址是网络层和以上各层使用的地址,是一种逻辑地址。
其中 ARP 协议用于 IP 地址与物理地址的对应。

网络层的 ARP 协议完成了 IP 地址与物理地址的映射。

TCP(Transmission Control Protocol),传输控制协议,是一种面向连接的、可靠的、基于字节流的传输层通信协议。
主要特点如下:

FTP :定义了文件传输协议
Telnet :它是一种用于远程登陆
SMTP :定义了简单邮件传送协议
POP3 :它是和 SMTP 对应,POP3 用于接收邮件
HTTP :从 Web 服务器传输超文本到本地浏览器的传送协议。

防止了服务器端的一直等待而浪费资源

服务器端准备为每个请求创建一个链接,并向其发送确认报文,然后等待客户端进行确认后创建。如果此时客户端一直不确认,会造成 SYN 攻击,即SYN 攻击,英文为 SYN Flood ,是一种典型的 DoS/DDoS 攻击。

TCP 协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。TCP 是全双工模式,这就意味着:

TIME_WAIT 表示收到了对方的 FIN 报文,并发送出了 ACK 报文,就等 2MSL后即可回到 CLOSED 可用状态了。如果 FIN_WAIT_1 状态下,收到了对方同时带 FIN 标志和 ACK 标志的报文时,可以直接进入到 TIME_WAIT 状态,而无须经过 FIN_WAIT_2 状态。
如果不等,释放的端口可能会重连刚断开的服务器端口,这样依然存活在网络里的老的 TCP 报文可能与新 TCP 连接报文冲突,造成数据冲突,为避免此种情况,需要耐心等待网络老的 TCP 连接的活跃报文全部死翘翘,2MSL 时间可以满足这个需求(尽管非常保守)!

建立连接后,两台主机就可以相互传输数据了。如下图所示:

因为各种原因,TCP 数据包可能存在丢失的情况,TCP 会进行数据重传。如下图所示:

TCP 协议操作是围绕滑动窗口 + 确认机制来进行的。
滑动窗口协议,是传输层进行流控的一种措施,接收方通过通告发送方自己的窗口大小,从而控制发送方的发送速度,从而达到防止发送方发送速度过快而导致自己被淹没的目的。
TCP 的滑动窗口解决了端到端的流量控制问题,允许接受方对传输进行限制,直到它拥有足够的缓冲空间来容纳更多的数据。

计算机网络中的带宽、交换结点中的缓存及处理机等都是网络的资源。在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就会变坏,这种情况就叫做拥塞。

通过拥塞控制来解决。拥堵控制,就是防止过多的数据注入网络中,这样可以使网络中的路由器或链路不致过载。注意,拥塞控制和流量控制不同,前者是一个 全局性 的过程,而后者指 点对点 通信量的控制。

拥塞控制的方法主要有以下四种:

1)慢开始
不要一开始就发送大量的数据,先探测一下网络的拥塞程度,也就是说由小到大逐渐增加拥塞窗口的大小。

2)拥塞避免
拥塞避免算法,让拥塞窗口缓慢增长,即每经过一个往返时间 RTT 就把发送方的拥塞窗口 cwnd 加 1 ,而不是加倍,这样拥塞窗口按线性规律缓慢增长。

3)快重传
快重传,要求接收方在收到一个 失序的报文段 后就立即发出 重复确认 (为的是使发送方及早知道有报文段没有到达对方),而不要等到自己发送数据时捎带确认。
快重传算法规定,发送方只要一连收到三个重复确认,就应当立即重传对方尚未收到的报文段,而不必继续等待设置的重传计时器时间到期。

4)快恢复
快重传配合使用的还有快恢复算法,当发送方连续收到三个重复确认时,就执行“乘法减小”算法,把 ssthresh 门限减半。

UDP(User Data Protocol,用户数据报协议),是与 TCP 相对应的协议。它是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发送过去。
主要特点如下:

DNS :用于域名解析服务
SNMP :简单网络管理协议
TFTP:简单文件传输协议

TCP 只支持点对点通信;UDP 支持一对一、一对多、多对一、多对多的通信模式。
TCP 有拥塞控制机制;UDP 没有拥塞控制,适合媒体通信,对实时应用很有用,如 直播,实时视频会议等

既使用 TCP 又使用 UDP 。

HTTP 协议,是 Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网服务器传输超文本到本地浏览器的传送协议。
主要特点如下:

请求报文包含三部分:
a、请求行:包含请求方法、URI、HTTP版本信息
b、请求首部字段
c、请求内容实体
响应报文包含三部分:
a、状态行:包含HTTP版本、状态码、状态码的原因短语
b、响应首部字段
c、响应内容实体

GET: 对服务器资源的简单请求。
POST: 用于发送包含用户提交数据的请求。
HEAD:类似于 GET 请求,不过返回的响应中没有具体内容,用于获取报头。
PUT:传说中请求文档的一个版本。
DELETE:发出一个删除指定文档的请求。
TRACE:发送一个请求副本,以跟踪其处理进程。
OPTIONS:返回所有可用的方法,检查服务器支持哪些方法。
CONNECT:用于 SSL 隧道的基于代理的请求。

1.明文发送,内容可能被窃听
2.不验证通信方的身份,因此可能遭遇伪装
3.无法证明报文的完整性,可能被篡改

综上所述:
需要 IP 协议来连接网络,TCP 是一种允许我们安全传输数据的机制,使用 TCP 协议来传输数据的 HTTP 是 Web 服务器和客户端使用的特殊协议。HTTP 基于 TCP 协议,所以可以使用 Socket 去建立一个 TCP 连接。

HTTPS ,实际就是在 TCP 层与 HTTP 层之间加入了 SSL/TLS 来为上层的安全保驾护航,主要用到对称加密、非对称加密、证书,等技术进行客户端与服务器的数据加密传输,最终达到保证整个通信的安全性。

端口不同:HTTP 与 HTTPS 使用不同的连接方式,端口不一样,前者是 80,后者是 443。
资源消耗:和 HTTP 通信相比,HTTPS 通信会由于加解密处理消耗更多的 CPU 和内存资源。
开销:HTTPS 通信需要证书,而证书一般需要向认证机构申请免费或者付费购买。

SSL 协议即用到了对称加密也用到了非对称加密

1)客户端发起 https 请求(就是用户在浏览器里输入一个 https 网址,然后连接到 server
的 443 端口)
2)服务端的配置(采用 https 协议的服务器必须要有一套数字证书,可以自己制作,
也可以向组织申请,这套证书就是一对公钥和私钥,这是非对称加密)。
3)传输证书(这个证书就是公钥,只是包含了很多信息)
4)客户端解析证书(由客户端 tls 完成,首先验证公钥是否有效,若发现异常,则弹出
一个警示框,提示证书存在问题,若无问题,则生成一个随机值(对称加密的私钥),然后用证书对随机值进行加密)
5)传输加密信息(这里传输的是加密后的随机值,目的是让服务端得到这个随机值,以后客户端和服务端的通信就可以通过这个随机值来进行加密了)
6)服务端解密信息(服务端用私钥(非对称加密)解密后得到了客户端传来的随机值(对称加密的私钥),然后把通信内容通过该值(对称加密的私钥随机值)进行对称加密。所谓对称加密就是,将信息和私钥(对称加密的私钥)通过某种算法混在一起,这样除非知道私钥(对称加密的私钥),不然无法获取内容,而正好客户端和服务端都知道这个私钥(对称加密的私钥),所以只要加密算法够彪悍,私钥够复杂,数据就够安全)
7)传输加密的信息
8)客户端解密信息,用随机数(对称加密的私钥)来解。

默认情况下建立 TCP 连接不会断开,只有在请求报头中声明 Connection: close 才会在请求完成后关闭连接。
在 HTTP/1.0 中,一个服务器在发送完一个 HTTP 响应后,会断开 TCP 链接。但是这样每次请求都会重新建立和断开 TCP 连接,代价过大。所以虽然标准中没有设定,某些服务器对 Connection: keep-alive 的 Header 进行了支持。意思是说,完成这个 HTTP 请求之后,不要断开 HTTP 请求使用的 TCP 连接。这样的好处是连接可以被重新使用,之后发送 HTTP 请求的时候不需要重新建立 TCP 连接,以及如果维持连接,那么 SSL 的开销也可以避免.

如果维持持久连接,一个 TCP 连接是可以发送多个 HTTP 请求的。

HTTP/1.1 存在一个问题,单个 TCP 连接在同一时刻只能处理一个请求,在 HTTP/1.1 存在 Pipelining 技术可以完成这个多个请求同时发送,但是由于浏览器默认关闭,所以可以认为这是不可行的。在 HTTP2 中由于 Multiplexing 特点的存在,多个 HTTP 请求可以在同一个 TCP 连接中并行进行。

TCP 连接有的时候会被浏览器和服务端维持一段时间。TCP 不需要重新建立,SSL 自然也会用之前的。

有。Chrome 最多允许对同一个 Host 建立六个 TCP 连接。不同的浏览器有一些区别。

如果图片都是 HTTPS 连接并且在同一个域名下,那么浏览器在 SSL 握手之后会和服务器商量能不能用 HTTP2,如果能的话就使用 Multiplexing 功能在这个连接上进行多路传输。不过也未必会所有挂在这个域名的资源都会使用一个 TCP 连接去获取,但是可以确定的是 Multiplexing 很可能会被用到。

如果发现用不了 HTTP2 呢?或者用不了 HTTPS(现实中的 HTTP2 都是在 HTTPS 上实现的,所以也就是只能使用 HTTP/1.1)。那浏览器就会在一个 HOST 上建立多个 TCP 连接,连接数量的最大限制取决于浏览器设置,这些连接会在空闲的时候被浏览器用来发送新的请求,如果所有的连接都正在发送请求呢?那其他的请求就只能等等了

E. 名词解析 1、DOS 2、INTERNET 3、计算机网络 4、内存 5、CPU

一、DOS是英文Disk Operating System的缩写,意思是“磁盘操作系统”。DOS是个人计算机上的一类操作系统。DOS主要是一种面向磁盘的系统软件,说得简单些,DOS就是人与机器的一座桥梁,是罩在机器硬件外面的一层“外壳”,有了DOS,我们就不必去深入了解机器的硬件结构,也不必去死记硬背那些枯燥的机器命令。我们只需通过一些接近于自然语言的DOS命令,就可以轻松地完成绝大多数的日常操作。

二、Internet,中文正式译名为因特网,又叫做国际互联网。它是由那些使用公用语言互相通信的计算机连接而成的全球网络。一旦你连接到它的任何一个节点上,就意味着您的计算机已经连入Internet网上了。Internet目前的用户已经遍及全球,有超过几亿人在使用Internet,并且它的用户数还在以等比级数上升。因特网(Internet)是一组全球信息资源的总汇。有一种粗略的说法,认为INTERNET是由于许多小的网络(子网)互联而成的一个逻辑网,每个子网中连接着若干台计算机(主机)。Internet以相互交流信息资源为目的,基于一些共同的协议,并通过许多路由器和公共互联网而成,它是一个信息资源和资源共享的集合。计算机网络只是传播信息的载体,而INTERNET的优越性和实用性则在于本身。因特网最高层域名分为机构性域名和地理性域名两大类,目前主要有14 种机构性域名。

三、计算机网络,是指将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统,网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统。
计算机网络就是通过线路互连起来的、资质的计算机集合,确切的说就是将分布在不同地理位置上的具有独立工作能力的计算机、终端及其附属设备用通信设备和通信线路连接起来,并配置网络软件,以实现计算机资源共享的系统。

四、内存是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。计算机中所有程序的运行都是在内存中进行的,因此内存的性能对计算机的影响非常大。 内存(Memory)也被称为内存储器,其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。 内存是由内存芯片、电路板、金手指等部分组成的。

五、中央处理器(英文Central Processing Unit,CPU)是一台计算机的运算核心和控制核心。CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。其功能主要是解释计算机指令以及处理计算机软件中的数据。CPU由运算器、控制器和寄存器及实现它们之间联系的数据、控制及状态的总线构成。差不多所有的CPU的运作原理可分为四个阶段:提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。 CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码,并执行指令。所谓的计算机的可编程性主要是指对CPU的编程。

F. 计算机的内存包括什么

内存是由内存芯片、电路板、金手指等部分组成的。

内存是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。计算机中所有程序的运行都是在内存中进行的,因此内存的性能对计算机的影响非常大。内存也被称为内存储器和主存储器,其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。

只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。

(6)计算机网络内存数据扩展阅读

内存颗粒的好坏直接影响到内存的性能,可以说也是内存最重要的核心元件。所以大家在购买时,尽量选择大厂生产出来的内存颗粒。

而采用这些顶级大厂内存颗粒的内存条品质性能,必然会比其他杂牌内存颗粒的产品要高出许多。内存PCB电路板的作用是连接内存芯片引脚与主板信号线,因此其做工好坏直接关系着系统稳定性。

目前主流内存PCB电路板层数一般是6层,这类电路板具有良好的电气性能,可以有效屏蔽信号干扰。而更优秀的高规格内存往往配备了8层PCB电路板,以起到更好的效能。

G. 简述计算机网络的组成,以及各个组成部分的作用

计算机网络由七层组成:

1、物理层:传递信息需要利用一些物理传输媒体,如双绞线、同轴电缆、光纤等。物理层的任务就是为上层提供一个物理的连接,以及该物理连接表现出来的机械、电气、功能和过程特性,实现透明的比特流传输。

2、数据链路层:数据链路层负责在2个相邻的结点之间的链路上实现无差错的数据帧传输。在接收方接收到数据出错时要通知发送方重发,直到这一帧无差错地到达接收结点,数据链路层就是把一条有可能出错的实际链路变成让网络层看起来像不会出错的数据链路。

3、网络层:网络中通信的2个计算机之间可能要经过许多结点和链路,还可能经过几个通信子网。网络层数据传输的单位是分组。网络层的主要任务是为要传输的分组选择一条合适的路径,使发送分组能够正确无误地按照给定的目的地址找到目的主机,交付给目的主机的传输层。

4、传输层:传输层的主要任务是通过通信子网的特性,最佳地利用网络资源,并以可靠与经济的方式为2个端系统的会话层之间建立一条连接通道,以透明地传输报文。传输层向上一层提供一个可靠的端到端的服务,使会话层不知道传输层以下的数据通信的细节。

5、会话层:在会话层以及以上各层中,数据的传输都以报文为单位,会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立以及维护应用之间的通信机制。如服务器验证用户登录便是由会话层完成的。

6、表示层:这一层主要解决用户信息的语法表示问题。它将要交换的数据从适合某一用户的抽象语法,转换为适合OSI内部表示使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩、加密和解密等工作都由表示层负责。

7、应用层:这是OSI参考模型的最高层。应用层确定进程之间通信的性质以满足用户的需求,以及提供网络与用户软件之间的接口服务。

(7)计算机网络内存数据扩展阅读:

传输层作为整个计算机网络的核心,是惟一负责总体数据传输和控制的一层。因为网络层不一定保证服务的可靠,而用户也不能直接对通信子网加以控制,因此在网络层之上,加一层即传输层以改善传输质量。

传输层利用网络层提供的服务,并通过传输层地址提供给高层用户传输数据的通信端口,使系统间高层资源的共享不必考虑数据通信方面和不可靠的数据传输方面的问题。

H. 计算机网络之RDMA技术(十)内存机制

姓名:周肇星;学号:22011110028;学院:通信工程学院

【嵌牛导读】RDMA技术全称远程直接数据存取,就是为了解决网络传输中服务器端数据处理的延迟而产生的。RDMA通过网络把资料直接传入计算机的存储区,将数据从一个系统快速移动到远程系统存储器中,而不对操作系统造成任何影响,这样就不需要用到多少计算机的处理功能。它消除了外部存储器复制和上下文切换的开销,因而能解放内存带宽和CPU周期用于改进应用系统性能。本专题将针对RDMA技术进行介绍!

【嵌牛鼻子】计算机网络,高性能网络,RDMA

【嵌牛提问】读完本文,对RDMA技术的SRQ有所认识了吗?

【嵌牛正文】

InfiniBand specification R1.3, Chapter3, 3.4.2, Page 104【通道适配器提供MTP机制及其功能】

InfiniBand specification R1.3, Chapter3, 3.5.3, Page 112【概述L_Key & R_Key】

InfiniBand specification R1.3, Chapter3, 3.5.4, Page 113【概述虚拟内存地址 & L_Key & R_Key】

InfiniBand specification R1.3, Chapter3, 3.6.1, Page 127【实现远程访问内存的两种机制】

用户可使用两种机制来实现远程访问内存(RDMA):

任何一种方法均会产生R_Key,用户可将R_Key和数据缓冲区的虚拟地址提供给远程节点,只有远端节点发来的RDMA请求中具有正确的R_Key才能访问特定的内存区域

注:QP、内存区域、内存窗口必须位于相同的保护域中

MR全称为Memory Region,可译为内存区域,指的是由RDMA软件层在内存中规划出的一片区域,用于存放收发的数据。IB协议中,用户在申请完用于存放数据的内存区域之后,都需要通过调用IB框架提供的API注册MR,才能让RDMA网卡访问这片内存区域

Memory Region,它是一片由用户注册的特殊的内存区域:一方面其中的内容不会被换页到硬盘中,另一方面RDMA网卡中记录了它的地址转换关系,使得硬件拿到用户指定在WR中的虚拟地址之后找到对应的物理地址

通道适配器提供了一种内存转换和保护(Memory Translation & Protection,MTP)机制,它将虚拟地址转换为物理地址,并验证访问权限。因此IBA应用程序无需对任何操作使用物理寻址

注册MR的过程中,硬件会在内存中创建并填写一个VA to PA的映射表,这样需要的时候就能通过查表把VA转换成PA了

现在假设左边的节点向右边的节点发起了RDMA WRITE操作,即直接向右节点的内存区域中写入数据。假设图中两端都已经完成了注册MR的动作,MR即对应图中的“数据Buffer”,同时也创建好了VA->PA的映射表。

对于右侧节点来说,无论是地址转换还是写入内存,完全不用其CPU的参与

因为HCA访问的内存地址来自于用户,如果用户传入了一个非法的地址(比如系统内存或者其他进程使用的内存),HCA对其进行读写可能造成信息泄露或者内存覆盖。所以我们需要一种机制来确保HCA只能访问已被授权的、安全的内存地址。IB协议中,APP在为数据交互做准备的阶段,需要执行注册MR的动作

而用户注册MR的动作会产生两把钥匙:L_KEY(Local Key)和R_KEY(Remote Key),钥匙的实体其实就是一串序列而已。它们将分别用于保障对于本端和远端内存区域的访问权限

因为物理内存是有限的,所以操作系统通过换页机制来暂时把某个进程不用的内存内容保存到硬盘中。当该进程需要使用时,再通过缺页中断把硬盘中的内容搬移回内存,这一过程几乎必然导致VA-PA的映射关系发生改变

由于HCA经常会绕过CPU对用户提供的VA所指向的物理内存区域进行读写,如果前后的VA-PA映射关系发生改变,那么我们在前文提到的VA->PA映射表将失去意义,HCA将无法找到正确的物理地址

为了防止换页所导致的VA-PA映射关系发生改变,注册MR时会"Pin"住这块内存(亦称“锁页”),即锁定VA-PA的映射关系。也就是说,MR这块内存区域会长期存在于物理内存中不被换页,直到完成通信之后,用户主动注销这片MR

Memory Window简称MW,中文为内存窗口。是一种由用户申请的,用于让远端节点访问本端内存区域的RDMA资源。每个MW都会绑定(称为bind)在一个已经注册的MR上,但是它相比于MR可以提供更灵活的权限控制。MW可以粗略理解为是MR的子集,一个MR上可以划分出很多MW,每个MW都可以设置自己的权限

用户注册MR的过程,需要从用户态陷入内核态,调用内核提供的函数pin住内存(防止换页),然后制作虚拟-物理地址映射表并下发给硬件

因为MR是由内核管理的,如果用户想修改一个已经存在的MR的信息,比如我想收回某个MR的远端写权限,只保留远端读权限;或者想要使一个之前已经授权给远端节点的R_Key失效,那么用户需要通过重注册MR(Reregister MR)接口来进行修改,该接口等价于先取消注册MR(Deregister MR),然后注册MR(Register MR)。上述流程需要陷入内核态来完成,而这个过程是耗时较长的

不同于需要通过控制路径修改权限的MR,MW在创建好之后,可以通过数据路径(即通过用户态直接下发WR到硬件的方式)动态的绑定到一个已经注册的MR上,并同时设置或者更改其访问权限,这个过程的速度远远超过重新注册MR的过程

IB规范通过下述两种机制,来确保MR可以按照用户的期望被正确且安全的访问

A给自己的房间(MR)配了两把钥匙(Memory Key),一把留作自用(L_Key),另一把钥匙(R_Key)邮寄(可以是任何通信方式)给了B。B可以在A不在家的时候(本端CPU不感知远端节点对本地内存的RDMA操作),通过钥匙(R_Key)打开门。打开门之后,可能B只能隔着玻璃查看房间的摆设(A只给了这个MR远程读权限),或者进入房间内发现漆黑一片什么也看不到,但是可以向房间里放物品(A只给了这个MR远程写权限),当然也有可能没有玻璃也开了灯(同时给了远程读写权限)

这里的权限,指的是本端/对端节点,对于本端内存的读/写权限,它们两两组合形成了四种权限(除了这四种权限之外,还有Atomic权限等)

上表中这四种权限中最低的是本地读(Local Read),是用户必须赋予MR/MW的权限,因为如果一块内存本地的用户都无法访问的话,那就失去意义了;另外还有个限制,如果某个MR需要配置远端写(Remote Write)或者远端原子操作权限(Remote Atomic),那么也一定要配置本地写(Local Write)权限。在此约束之下,每个MR或者MW都可以按需配置权限,比如注册的一个MR需要允许远端节点写入数据,而不允许读,那么我们就打开Remote Write权限,关闭Remote Read权限。这样HCA(网卡)收到对端发起的对这个MR范围内的某个地址的WRITE请求之后,就可以予以放行;而HCA收到对端对这个MR的READ操作时,就会拒绝这个请求,并返回错误信息给对端

Key是一串数字,由两部分组成:24bit的Index以及8bit的Key

其中,Index用于HCA快速索引到本地的虚拟-物理地址转换表等MR相关的信息,而Key用于校验整个字段的合法性,以防止未授权的用户任意传递Index

即Local Key,关联到一个MR上,用于HCA访问本端内存。当本端的某个进程试图使用一个已经注册的MR的内存时,HCA会校验其传递的L_Key。并且利用L_Key中的索引查找地址转换表,把虚拟地址翻译成物理地址然后访问内存

sge由起始地址、长度和秘钥组成。用户在填写WR时,如果需要HCA访问本端内存,那么就需要通过一个sge的链表(sgl)来描述内存块,这里sge的秘钥填的就是L_Key,也就是下图中的key1和key3,他们分别是MR1的L_Key和MR2的L_Key

即Remote Key,关联到一个MR或者MW上,用于远端节点访问本端内存。当远端节点试图访问本端的内存时,一方面本端的HCA会校验R_Key是否合法,另一方面会利用R_Key中的索引查地址转换表,把虚拟地址翻译成物理地址然后访问内存

凡是RDMA操作(即Write/Read/Atomic),用户都要在WR中携带远端内存区域的R_Key

指的是将一个MW“关联”到一个已经注册的MR的指定范围上,并配置一定的读写权限。绑定的结果会产生一个R_key,用户可以把这个R_Key传递给远端节点用于远程访问。注意一个MW可以被多次绑定,一个MR上也可以绑定多个MW。如果一个MR还有被绑定的MW,那么这个MR是不能被取消注册的

Bind有两种方式,一种是调用Post Send接口下发Bind MW WR,一种是调用Bind MW接口:

指的是用户通过下发一个带有Invalidate操作码的WR到硬件而使一个R_Key无效的操作

Invalidate操作的对象是R_Key而不是MW本身,即Invalidate之后的效果是:远端用户无法再使用这个R_Key访问对应的MW,而MW资源仍然存在,以后仍然可以生成新的R_Key给远端使用

按照Invalidate操作的发起方不同,又可以进一步分成两种:

I. 如何查看自己电脑的网络配置

使用win+r打开命令提示符,以下是查看电脑信息的一些命令
查看当前IP:开始--运行--(window+r)输入 cmd -- ipconfig、ipconfig/all
查看电脑配置:开始--运行--(window+r)输入 dxdiag
查看注册表:开始--运行--(window+r)输入 regedit
查看系统属性:开始--运行--(window+r)输入 sysdm.cpl
查看系统信息:开始--运行--(window+r)输入 msinfo32
cmd下查看查看网络信息:
一、nbtstat(该命令使用TCP/IP上的NetBIOS显示协议统计和当前TCP/IP连接,使用这个命令你可以得到远程主机的NETBIOS信息,比如用户名、所属的工作组、网卡的MAC地址等。在此我们就有必要了解几个基本的参数。
-a 使用这个参数,只要你知道了远程主机的机器名称,就可以得到它的NETBIOS信息(下同)。
-A 这个参数也可以得到远程主机的NETBIOS信息,但需要你知道它的IP。
-n 列出本地机器的NETBIOS信息。)
二、netstat(这是一个用来查看网络状态的命令,操作简便功能强大。
-a 查看本地机器的所有开放端口,可以有效发现和预防木马,可以知道机器所开的服务等信息。
这里可以看出本地机器开放有FTP服务、Telnet服务、邮件服务、WEB服务等。用法:netstat -a IP。
-r 列出当前的路由信息,告诉我们本地机器的网关、子网掩码等信息。用法:netstat -r IP。)
三、tracert(跟踪路由信息,使用此命令可以查出数据从本地机器传输到目标主机所经过的所有途径,这对我们了解网络布局和结构很有帮助。这里说明数据从本地机器传输到192.168.0.1的机器上,中间没有经过任何中转,说明这两台机器是在同一段局域网内。用法:tracert IP。)

J. 计算机网络数据:网络中的数据是不是被网卡接收 然后经过内存到达CPU

是的,你忽略了另外一个硬件,
主板:起系统总线作用,就是网卡到内存到CPU的通道

阅读全文

与计算机网络内存数据相关的资料

热点内容
网络卖产品需要多少钱 浏览:509
怎么让家里的网络快速如新 浏览:518
单位网络安全要求会议 浏览:681
全国网络安全军民融合 浏览:527
笔记本网络本地连接好还是无线 浏览:827
网络贷款多少钱利息 浏览:504
沈阳哪里能网络抢票 浏览:977
智慧屏看电视需要连接网络吗 浏览:859
怎么看电脑可不可以连xbox网络 浏览:280
华为家庭网络信号全覆盖 浏览:316
施乐无线网络连接设置 浏览:48
我的移动网络密码 浏览:800
如何提高网络文化出海 浏览:114
新网络词在哪里有 浏览:430
计算机网络重点简答题 浏览:175
开数据但网络连接超时 浏览:328
移动接网络的路由器怎么更换 浏览:1005
上海美猴网络怎么样 浏览:509
3g网络哪个运营商快 浏览:924
在校园如何使用有线网络 浏览:303

友情链接