导航:首页 > 网络营销 > 社交网络分析的应用场景有哪些

社交网络分析的应用场景有哪些

发布时间:2022-05-26 17:46:37

A. 请列举社交网络可视化分析软件哪些,各有什么特点

哎,社交网络可视化分析软件当中,他们的特点是可以起到一个可视化,操作简单并且互动感很强。

B. 对于社交网络的数据挖掘应该如何入手,使用哪些算法

3月13日下午,南京邮电大学计算机学院、软件学院院长、教授李涛在CIO时代APP微讲座栏目作了题为《大数据时代的数据挖掘》的主题分享,深度诠释了大数据及大数据时代下的数据挖掘。

众所周知,大数据时代的大数据挖掘已成为各行各业的一大热点。
一、数据挖掘
在大数据时代,数据的产生和收集是基础,数据挖掘是关键,数据挖掘可以说是大数据最关键也是最基本的工作。通常而言,数据挖掘也称为DataMining,或知识发现Knowledge Discovery from Data,泛指从大量数据中挖掘出隐含的、先前未知但潜在的有用信息和模式的一个工程化和系统化的过程。
不同的学者对数据挖掘有着不同的理解,但个人认为,数据挖掘的特性主要有以下四个方面:
1.应用性(A Combination of Theory and Application):数据挖掘是理论算法和应用实践的完美结合。数据挖掘源于实际生产生活中应用的需求,挖掘的数据来自于具体应用,同时通过数据挖掘发现的知识又要运用到实践中去,辅助实际决策。所以,数据挖掘来自于应用实践,同时也服务于应用实践,数据是根本,数据挖掘应以数据为导向,其中涉及到算法的设计与开发都需考虑到实际应用的需求,对问题进行抽象和泛化,将好的算法应用于实际中,并在实际中得到检验。
2.工程性(An Engineering Process):数据挖掘是一个由多个步骤组成的工程化过程。数据挖掘的应用特性决定了数据挖掘不仅仅是算法分析和应用,而是一个包含数据准备和管理、数据预处理和转换、挖掘算法开发和应用、结果展示和验证以及知识积累和使用的完整过程。而且在实际应用中,典型的数据挖掘过程还是一个交互和循环的过程。
3.集合性(A Collection of Functionalities):数据挖掘是多种功能的集合。常用的数据挖掘功能包括数据探索分析、关联规则挖掘、时间序列模式挖掘、分类预测、聚类分析、异常检测、数据可视化和链接分析等。一个具体的应用案例往往涉及多个不同的功能。不同的功能通常有不同的理论和技术基础,而且每一个功能都有不同的算法支撑。
4.交叉性(An Interdisciplinary Field):数据挖掘是一门交叉学科,它利用了来自统计分析、模式识别、机器学习、人工智能、信息检索、数据库等诸多不同领域的研究成果和学术思想。同时一些其他领域如随机算法、信息论、可视化、分布式计算和最优化也对数据挖掘的发展起到重要的作用。数据挖掘与这些相关领域的区别可以由前面提到的数据挖掘的3个特性来总结,最重要的是它更侧重于应用。
综上所述,应用性是数据挖掘的一个重要特性,是其区别于其他学科的关键,同时,其应用特性与其他特性相辅相成,这些特性在一定程度上决定了数据挖掘的研究与发展,同时,也为如何学习和掌握数据挖掘提出了指导性意见。如从研究发展来看,实际应用的需求是数据挖掘领域很多方法提出和发展的根源。从最开始的顾客交易数据分析(market basket analysis)、多媒体数据挖掘(multimedia data mining)、隐私保护数据挖掘(privacy-preserving data mining)到文本数据挖掘(text mining)和Web挖掘(Web mining),再到社交媒体挖掘(social media mining)都是由应用推动的。工程性和集合性决定了数据挖掘研究内容和方向的广泛性。其中,工程性使得整个研究过程里的不同步骤都属于数据挖掘的研究范畴。而集合性使得数据挖掘有多种不同的功能,而如何将多种功能联系和结合起来,从一定程度上影响了数据挖掘研究方法的发展。比如,20世纪90年代中期,数据挖掘的研究主要集中在关联规则和时间序列模式的挖掘。到20世纪90年代末,研究人员开始研究基于关联规则和时间序列模式的分类算法(如classification based on association),将两种不同的数据挖掘功能有机地结合起来。21世纪初,一个研究的热点是半监督学习(semi-supervised learning)和半监督聚类(semi-supervised clustering),也是将分类和聚类这两种功能有机结合起来。近年来的一些其他研究方向如子空间聚类(subspace clustering)(特征抽取和聚类的结合)和图分类(graph classification)(图挖掘和分类的结合)也是将多种功能联系和结合在一起。最后,交叉性导致了研究思路和方法设计的多样化。
前面提到的是数据挖掘的特性对研究发展及研究方法的影响,另外,数据挖掘的这些特性对如何学习和掌握数据挖掘提出了指导性的意见,对培养研究生、本科生均有一些指导意见,如应用性在指导数据挖掘时,应熟悉应用的业务和需求,需求才是数据挖掘的目的,业务和算法、技术的紧密结合非常重要,了解业务、把握需求才能有针对性地对数据进行分析,挖掘其价值。因此,在实际应用中需要的是一种既懂业务,又懂数据挖掘算法的人才。工程性决定了要掌握数据挖掘需有一定的工程能力,一个好的数据额挖掘人员首先是一名工程师,有很强大的处理大规模数据和开发原型系统的能力,这相当于在培养数据挖掘工程师时,对数据的处理能力和编程能力很重要。集合性使得在具体应用数据挖掘时,要做好底层不同功能和多种算法积累。交叉性决定了在学习数据挖掘时要主动了解和学习相关领域的思想和技术。
因此,这些特性均是数据挖掘的特点,通过这四个特性可总结和学习数据挖掘。
二、大数据的特征
大数据(bigdata)一词经常被用以描述和指代信息爆炸时代产生的海量信息。研究大数据的意义在于发现和理解信息内容及信息与信息之间的联系。研究大数据首先要理清和了解大数据的特点及基本概念,进而理解和认识大数据。
研究大数据首先要理解大数据的特征和基本概念。业界普遍认为,大数据具有标准的“4V”特征:
1.Volume(大量):数据体量巨大,从TB级别跃升到PB级别。
2.Variety(多样):数据类型繁多,如网络日志、视频、图片、地理位置信息等。
3.Velocity(高速):处理速度快,实时分析,这也是和传统的数据挖掘技术有着本质的不同。
4.Value(价值):价值密度低,蕴含有效价值高,合理利用低密度价值的数据并对其进行正确、准确的分析,将会带来巨大的商业和社会价值。
上述“4V”特点描述了大数据与以往部分抽样的“小数据”的主要区别。然而,实践是大数据的最终价值体现的唯一途径。从实际应用和大数据处理的复杂性看,大数据还具有如下新的“4V”特点:
5.Variability(变化):在不同的场景、不同的研究目标下数据的结构和意义可能会发生变化,因此,在实际研究中要考虑具体的上下文场景(Context)。
6.Veracity(真实性):获取真实、可靠的数据是保证分析结果准确、有效的前提。只有真实而准确的数据才能获取真正有意义的结果。
7.Volatility(波动性)/Variance(差异):由于数据本身含有噪音及分析流程的不规范性,导致采用不同的算法或不同分析过程与手段会得到不稳定的分析结果。
8.Visualization(可视化):在大数据环境下,通过数据可视化可以更加直观地阐释数据的意义,帮助理解数据,解释结果。
综上所述,以上“8V”特征在大数据分析与数据挖掘中具有很强的指导意义。
三、大数据时代下的数据挖掘
在大数据时代,数据挖掘需考虑以下四个问题:
大数据挖掘的核心和本质是应用、算法、数据和平台4个要素的有机结合。
因为数据挖掘是应用驱动的,来源于实践,海量数据产生于应用之中。需用具体的应用数据作为驱动,以算法、工具和平台作为支撑,最终将发现的知识和信息应用到实践中去,从而提供量化的、合理的、可行的、且能产生巨大价值的信息。
挖掘大数据中隐含的有用信息需设计和开发相应的数据挖掘和学习算法。算法的设计和开发需以具体的应用数据作为驱动,同时在实际问题中得到应用和验证,而算法的实现和应用需要高效的处理平台,这个处理平台可以解决波动性问题。高效的处理平台需要有效分析海量数据,及时对多元数据进行集成,同时有力支持数据化对算法及数据可视化的执行,并对数据分析的流程进行规范。
总之,应用、算法、数据、平台这四个方面相结合的思想,是对大数据时代的数据挖掘理解与认识的综合提炼,体现了大数据时代数据挖掘的本质与核心。这四个方面也是对相应研究方面的集成和架构,这四个架构具体从以下四个层面展开:
应用层(Application):关心的是数据的收集与算法验证,关键问题是理解与应用相关的语义和领域知识。
数据层(Data):数据的管理、存储、访问与安全,关心的是如何进行高效的数据使用。
算法层(Algorithm):主要是数据挖掘、机器学习、近似算法等算法的设计与实现。
平台层(Infrastructure):数据的访问和计算,计算平台处理分布式大规模的数据。
综上所述,数据挖掘的算法分为多个层次,在不同的层面有不同的研究内容,可以看到目前在做数据挖掘时的主要研究方向,如利用数据融合技术预处理稀疏、异构、不确定、不完整以及多来源数据;挖掘复杂动态变化的数据;测试通过局部学习和模型融合所得到的全局知识,并反馈相关信息给预处理阶段;对数据并行分布化,达到有效使用的目的。
四、大数据挖掘系统的开发
1.背景目标
大数据时代的来临使得数据的规模和复杂性都出现爆炸式的增长,促使不同应用领域的数据分析人员利用数据挖掘技术对数据进行分析。在应用领域中,如医疗保健、高端制造、金融等,一个典型的数据挖掘任务往往需要复杂的子任务配置,整合多种不同类型的挖掘算法以及在分布式计算环境中高效运行。因此,在大数据时代进行数据挖掘应用的一个当务之急是要开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
之前提到一个数据挖掘有多种任务、多种功能及不同的挖掘算法,同时,需要一个高效的平台。因此,大数据时代的数据挖掘和应用的当务之急,便是开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
2.相关产品
现有的数据挖掘工具
有Weka、SPSS和SQLServer,它们提供了友好的界面,方便用户进行分析,然而这些工具并不适合进行大规模的数据分析,同时,在使用这些工具时用户很难添加新的算法程序。
流行的数据挖掘算法库
如Mahout、MLC++和MILK,这些算法库提供了大量的数据挖掘算法。但这些算法库需要有高级编程技能才能进行任务配置和算法集成。
最近出现的一些集成的数据挖掘产品
如Radoop和BC-PDM,它们提供友好的用户界面来快速配置数据挖掘任务。但这些产品是基于Hadoop框架的,对非Hadoop算法程序的支持非常有限。没有明确地解决在多用户和多任务情况下的资源分配。
3.FIU-Miner
为解决现有工具和产品在大数据挖掘中的局限性,我们团队开发了一个新的平台——FIU-Miner,它代表了A Fast,Integrated,and User-Friendly System for Data Miningin Distributed Environment。它是一个用户友好并支持在分布式环境中进行高效率计算和快速集成的数据挖掘系统。与现有数据挖掘平台相比,FIU-Miner提供了一组新的功能,能够帮助数据分析人员方便并有效地开展各项复杂的数据挖掘任务。
与传统的数据挖掘平台相比,它提供了一些新的功能,主要有以下几个方面:
A.用户友好、人性化、快速的数据挖掘任务配置。基于“软件即服务”这一模式,FIU-Miner隐藏了与数据分析任务无关的低端细节。通过FIU-Miner提供的人性化用户界面,用户可以通过将现有算法直接组装成工作流,轻松完成一个复杂数据挖掘问题的任务配置,而不需要编写任何代码。
B.灵活的多语言程序集成。允许用户将目前最先进的数据挖掘算法直接导入系统算法库中,以此对分析工具集合进行扩充和管理。同时,由于FIU-Miner能够正确地将任务分配到有合适运行环境的计算节点上,所以对这些导入的算法没有实现语言的限制。
C.异构环境中有效的资源管理。FIU-Miner支持在异构的计算环境中(包括图形工作站、单个计算机、和服务器等)运行数据挖掘任务。FIU-Miner综合考虑各种因素(包括算法实现、服务器负载平衡和数据位置)来优化计算资源的利用率。
D.有效的程序调度和执行。
应用架构上包括用户界面层、任务和系统管理层、逻辑资源层、异构的物理资源层。这种分层架构充分考虑了海量数据的分布式存储、不同数据挖掘算法的集成、多重任务的配置及系统用户的交付功能。一个典型的数据挖掘任务在应用之中需要复杂的主任务配置,整合多种不同类型的挖掘算法。因此,开发和建立这样的计算平台和工具,支持应用领域的数据分析人员进行有效的分析是大数据挖掘中的一个重要任务。
FIU-Miner系统用在了不同方面:如高端制造业、仓库智能管理、空间数据处理等,TerraFly GeoCloud是建立在TerraFly系统之上的、支持多种在线空间数据分析的一个平台。提供了一种类SQL语句的空间数据查询与挖掘语言MapQL。它不但支持类SQL语句,更重要的是可根据用户的不同要求,进行空间数据挖掘,渲染和画图查询得到空间数据。通过构建空间数据分析的工作流来优化分析流程,提高分析效率。
制造业是指大规模地把原材料加工成成品的工业生产过程。高端制造业是指制造业中新出现的具有高技术含量、高附加值、强竞争力的产业。典型的高端制造业包括电子半导体生产、精密仪器制造、生物制药等。这些制造领域往往涉及严密的工程设计、复杂的装配生产线、大量的控制加工设备与工艺参数、精确的过程控制和材料的严格规范。产量和品质极大地依赖流程管控和优化决策。因此,制造企业不遗余力地采用各种措施优化生产流程、调优控制参数、提高产品品质和产量,从而提高企业的竞争力。
在空间数据处理方面,TerraFly GeoCloud对多种在线空间数据分析。对传统数据分析而言,其难点在于MapQL语句比较难写,任务之间的关系比较复杂,顺序执行之间空间数据分许效率较低。而FIU-Miner可有效解决以上三个难点。
总结而言,大数据的复杂特征对数据挖掘在理论和算法研究方面提出了新的要求和挑战。大数据是现象,核心是挖掘数据中蕴含的潜在信息,并使它们发挥价值。数据挖掘是理论技术和实际应用的完美结合。数据挖掘是理论和实践相结合的一个例子。
-
-

C. 一个人的成功不在于他的个人能力有多强,而在于其调动资源的能力。这句话的理

摘要 社群电商是最近几年随移动互联网而发展起来的一种新型的电商模式,虽然它并没有颠覆传统电商或移动电商,但是在模式上对传统电商和移动电商做了较大的深化和延伸。在表现形式上,社群电商是一套用户管理体系,通过将用户社群化而充分激活沉淀用户,与传统的用户管理方式相比较,社群电商更注重用户之间的情感联系,通过社交网络工具对用户进行社群化改造,利用社会化媒体工具充分调动社群成员的活跃度和传播力。在社群电商模式下,用户因为被好的内容吸引,被良好的情感所激励,极大提升了用户在电商平台中的信任度和归属感,因而促成了更多的交易,完成商业变现。

D. 社交网络数据分析与应用

社交网络数据分析与应用
根据最近的一份调查数据显示,美国互联网媒体的市值已达10890亿美元,是传统媒体的3倍,类似的在中国,根据艾瑞咨询发布的2014年第二季度网络经济核心数据显示,截止2014年6月30日,中国主要上市互联网公司市值前五的为腾讯(1405.6亿美元)、网络(654.5亿美元)、京东(389.7亿美元)、奇虎360(120.9亿美元)、唯品会(111.9亿美元)。与此同时,以Facebook,Twitter,微博,微信等为代表的社交网络应用正蓬勃发展,开启了互联网时代的社交概念。据全球最大的社会化媒体传播咨询公司We Are Very Social Limited分析指出,目前社交类软件使用的人数已达25亿——占世界总人数约的35%,另据艾瑞咨询发布的2014年第二季度社区交友数据显示,2014年5月,社区交友类服务月度覆盖人数达到4.7亿,在总体网民中渗透率为92.5%;2014年5月社交服务在移动App端月度覆盖人数为1.9亿人,其中微博服务在移动端优势较为明显,月度覆盖人数达到1.1亿人;互联网媒体和社交网络是Web2.0时代两个非常重要的应用,那么一个自然的问题是这两个领域将会如何互动发展?本报告主要从数据分析(非财务、非战略)的角度尝试探讨网络结构会给互联网媒体带来什么样的机遇和挑战。具体而言,我们根据自己的研究经验只关注以下几个方面:新闻、影音和搜索,根据艾瑞咨询发布的2013网络经济核心数据显示,这三部分的收入占到中国市值TOP20互联网企业总市值的32.16%,其重要性不可忽视。我们通过具体的案例并结合理论前沿做探索性的研讨。
一、音乐推荐
根据《2013中国网络音乐市场年度报告》显示,2013年底,我国网络音乐用户规模达到4.5亿。其中,手机音乐用户人数由2012年的0.96亿增长到2013年的2.91亿,年增长率达203%。从网络音乐用户规模的飞跃式增长可以看到音乐流媒体服务蕴含着巨大的商机。在国外,科技巨头争夺音乐市场的野心也初露端倪,今年年初,苹果斥资30亿美元买下Beats Electronics,而谷歌也随后收购了流媒体音乐服务提供商Songza。
音乐产业在新媒体时代占据重要地位。本报告主要关注移动互联网环境下在线音乐服务商(酷狗音乐、QQ音乐、天天动听等)的发展现状并且对当前的音乐个性化推荐提出我们的一些见解。
1.1 音乐推荐与社交网络
根据国内知名研究机构CNIT-Research 8月份发布的《2014年第二季度中国手机音乐APP市场报告》的数据显示,排名前三的手机音乐App为酷狗音乐、QQ音乐、天天动听。他们所占的市场份额分别为:20.1%,17.0%以及15.8%。
酷狗音乐 QQ音乐 天天动听
其中,酷狗音乐和天天动听凭借在在线音乐领域长期积累的用户资源、高品质音质、卓越的UI界面以及完美的下载体验取胜。而QQ音乐主要依附强大的社交工具QQ应运而生,可谓是“社交音乐”领域的先驱者。从2014年第二季度手机音乐数据来看,QQ音乐增势迅猛,连续三个月用户下载量增速均超过行业增速水平,而酷狗音乐、天天动听均增速低于市场行业增速,用户市场份额有所下降。
根据速途研究院对手机音乐用户愿景的调查显示,有58%的用户希望增强个性化音乐推荐的功能,这说明有很多用户在收听音乐时其实并不清楚自己喜欢什么类型的歌曲,如果音乐电台能根据用户的个人喜好“猜出”用户喜欢什么歌曲并为其进行推荐,那将会给用户带来意想不到的完美体验。目前的很多音乐软件都支持推荐这一功能。以下是音乐App市场中常见的音乐产品的个性化推荐以及定制方式:
酷狗音乐 QQ音乐 天天动听
根据研究,推荐模式主要分为以下几种:(1) 热点推荐,可以根据大众的搜索记录,通过排行榜的形式得到,也可以根据近期发生的音乐娱乐事件推荐,如中国好声音、我是歌手等;(2)根据用户的听歌记录推荐,包括用户对每首歌的喜恶记录;(3)根据地理位置信息结合用户兴趣进行推荐;(4)根据用户喜欢的歌手信息进行推荐。但是,以上这些推荐模式都没有能够充分利用社交网络的信息。在社交网络风靡全球的时代,有越来越多的音乐服务商发现,社交网络可以帮助商家留住更多的用户,同时,充分利用社交网络信息将带来更加卓越完美的用户体验。可以看到,酷狗音乐和天天动听都允许用户使用第三方账户(微博、QQ)进行绑定登录,并提供分享到微博、微信等选项;QQ音乐特设了“动态”专栏,用于显示好友分享的音乐。另外,酷狗和QQ音乐都可以通过定位的方式推荐附近的志趣相投的好友。
酷狗音乐 QQ音乐 天天动听
上述事实说明,社交音乐存在巨大的潜力和价值。那么,这一方面有无突出的企业呢?其中英国的Last.fm和中国的QQ音乐可以算得上是这方面的一个代表。
Last.fm QQ音乐
Last.fm是 Audioscrobbler 音乐引擎设计团队的旗舰产品,有遍布232个国家超过1500万的活跃听众。2007年被CBS Interactive以2.8亿美元价格收购,目前,Last.fm是全球最大的社交音乐平台。QQ音乐是中国互联网领域领先的网络音乐平台及正版数字音乐服务提供商,在中国手机音乐市场所占份额跻身四大巨头(其他三个分别是酷狗、天天动听、酷我),月活跃用户已达到3亿,是中国社交音乐领域的领军人物。
以QQ音乐为例,我们详细分析它在利用社交网络信息进行个性化推荐的优势与可能存在的不足。QQ音乐依附强大的社交工具QQ而生,长期以来受到广大用户的喜爱,这与QQ背后的亿万级用户是无法割离的,可以说,QQ音乐是有先天的社交优势的。用户登录QQ音乐后,可以看到动态栏中显示的好友音乐动态,同时,它还允许用户绑定自己的微博账号,把音乐分享给微博好友。不仅如此,QQ音乐允许用户自己编辑生成歌单,并分享给好友,这起到了一定的自媒体的作用。在“明星部落”这一功能中,QQ音乐允许粉丝之间交流互动,并形成一定的社交规模。从上述总结中,我们已经可以看到,QQ音乐已经有意识的把社交信息融合到产品设计和运营中,以增加客户粘性。但是从数据分析的基础和推荐算法的构建上,是否真正做到有效利用社交网络信息了呢?为此,使用QQ音乐于2012年全面更新升级的“猜你喜欢”功能,并发现了如下问题:当笔者没有任何听歌记录时,这一模块并不能为笔者推荐歌曲。根据提示内容,目前该功能可能主要依靠用户的历史听歌记录进行推荐。同样的问题出现在QQ音乐馆的推荐栏中:大部分初始推荐音乐来源于当下热门音乐歌曲,缺少个性化成分。
QQ音乐:猜你喜欢 QQ音乐馆
以上事实说明音乐服务商在推荐算法上没有充分利用社交网络的信息。事实上,在获得用户个人绑定社交网络账号的基础上,可以得到用户的朋友关系,进一步可以获得用户好友的听歌记录,这些歌曲可以成为初始推荐曲目的备选项,将这些备选项通过一定规则(热度、好友相似度)排序,可以用于音乐推荐;另外,众所周知,社交网络(如微博)是明星与粉丝互动的一个重要渠道,因此,可以重点提取用户对于社交网络中歌手以及音乐人的关注关系,以获得对用户偏好的推测。以上这些过程可以用下图表示。
可以看到,在以社交网络绑定的音乐社区中,每个人并不是孤立的个体,而是通过好友关系,以及粉丝与明星的关注关系联系起来。音乐活动的多元化为QQ音乐的推荐场景带来了新的挑战。我们认为存在以下几个需要处理的问题:(1)如何高效利用好友的音乐信息对用户进行推荐?用户的好友众多,每个好友会留下很多音乐记录,这些信息综合起来的话数量极其庞大,如何迅速整合朋友及其收听记录并按照优先程度排序对用户进行推荐是提高用户体验的前提条件。(2)如何整合多种信息渠道进行推荐?随着时间的推进,一个音乐账户留下的信息是多元化的。例如,用户主动搜索的音乐记录、用户对历史收听音乐记录的反馈,用户选择的电台种类、用户自己总结生成的歌单、用户对朋友分享音乐的反馈信息等。因此,如何对这些异质的信息来源进行有效整合,或者,在资源有限的情况下,如何判断和筛选出对于提高推荐精度最有效的指标是提高音乐推荐效果的关键法宝。(3)如何整合当前音乐潮流趋势与用户个人兴趣基因?音乐是充满了潮流和娱乐性的产业,因此,用户的音乐兴趣不仅受其自身兴趣基因驱使,也受到当前音乐流驱使的影响。因此,如何结合用户个人兴趣以及音乐潮流趋势对用户进行有效推荐,是对于音乐这一特殊娱乐行业的特别要求。综上我们认为QQ音乐虽然是利用社交关系进行音乐推荐的先驱者,但是在利用网络数据的层面上仍有很大的改进和提升空间。
1.2 基于社交网络的音乐推荐
在此我们给出如何利用网络数据对用户进行推荐的技术思想。由于音乐推荐场景实体的多元化,我们将常见的推荐场景列举如下:推荐歌曲、推荐歌单、推荐电台、推荐歌手、推荐用户。接下来,我们将从音乐分类与结构化、用户信息整合、网络结构应用三个步骤详细阐述我们的观点。
音乐结构化与归一化
1.歌曲标签化
首先,基于音乐的不同风格,我们需要对系统中存在的海量歌曲进行分类,通过打标签的方式,使音频信息通过文本的方式结构化。分类的方法多种多样,标准各异,从几个音乐主流网站的标签组织形式看来,主要从客观、主观两个角度进行分析。从客观的角度讲,音乐可以按照流派、地域、年代、演奏乐器等方式分类,如“流行”、“摇滚”、“乡村音乐”、“90后”、“钢琴曲”等等,且大类下面可以设小类,如“流行”下可以设置“华语流行”、“欧美流行”等小类;从主观的角度讲,音乐风格与听歌时的心情、场景高度相关,如分为“甜蜜”、“安静”、“治愈”、“酒吧”、“咖啡馆”等等,这种标签使得用户在听音乐时仿佛有一种身临其境的感觉,带来更高的视听享受。除此之外,标签也可以由用户自己生成,如用户的热搜关键词记录、用户自行备注标签等。这在一定程度上正是利用自媒体的形式扩充标签库,使之更能反应用户兴趣。
2.歌手信息提取
除了可以将歌曲标签化,我们还可以进一步的对歌手信息进行提取。比如根据地域我们可以把歌手分为大陆、港台、欧美等,根据年代可以分为60后、70后、80后歌手,根据他们的曲风可以分为摇滚、抒情、朋克等。通过打标签的形式把歌手进行分类,从而形成结构化的数据格式,方便以后快速清晰的定位用户喜欢哪一类型的歌手。同样的我们也可以对歌单、作词者、作曲者进行标签化处理,例如歌单的标签可以模仿歌曲的形式,因为歌单是由歌曲组成,所以可以用歌曲的标签来代表歌单的标签。作词者和作曲者的标签可以参考歌手打标签的方法,另外值得注意的是,由于音乐人之间形成合作、作曲、写词等合作关系,可以认为是一个社交网络关系,常常可以见到的现象是某些歌手与词作者存在密切的合作关系,而这部分信息也可用于音乐的个性化推荐。例如,对于一些有特定合作的歌手和词(曲)作者,我们应该特别留意,比如周杰伦和方文山这对组合。
3.歌词的语义分析
歌曲的重要组成部分就是歌词,由于歌词属于文本,我们不可能直接对其打标签,所以首先要进行的是语义分析,通过语义分析我们可以大概知道歌词的内容,比如我们可以把歌词切分成短语,然后对每一个短语进行归纳总结,可以判断短语的情感极性(如积极还是消极),对短语进行主题分类,由于歌词数目庞大,可以利用自然语言处理的方式,如主题模型等预先提取主题,再通过人工加以校正。这样就可以对歌词进行标签化处理了。下面我们以歌曲为例,简要的说明具体标签化过程。
通过标签的形式我们可以对每个歌曲的主题予以分类和描述。用于描述一支单曲的标签数目越多,对于音乐主题的描述就更加清晰、明朗;但同时,冗余和重复的信息也可能越多,处理的难度就越大。因此,我们要对标签进行排序和筛选,一个比较简单高效的办法是选择最热门的N个标签作为我们的目标词库,并且对该词库定期进行更新。具体来说,我们将所有标签按照重要程度由高到低进行排序,选择前p个标签作为我们的标签集合。给定一首歌曲t,我们用一个超高维向量Xt=(Xt1,…,Xtp)∈?p表示它的标签信息,其中Xtj=1表示该歌曲含有第j个标签,否则,该歌曲不含有第j个标签。例如对于一首钢琴曲演奏的纯音乐,对其打的标签可能是:钢琴曲、安静、咖啡馆等。设钢琴曲、安静、咖啡馆分别对应于标号为1、3、5的标签,那么向量Xt可以表示为Xt=(1,0,1,0,1,0,…0) 。通过以上步骤,我们就可以把看似杂乱的音乐风格通过打标签的形式进行结构化,用一个只含0、1元素的超高维向量对每首歌曲进行分类。
对于歌单、电台这些由歌曲集合而成的实体,我们也可以通过标签的方式对其进行刻画。例如,对于给定的一个歌单m,我们同样用一个超高维向量

E. 社交网络的起源,发展历程及未来的发展趋势。越详细越好啊,多谢了各位

  1. 社交网络的起源
    六度分割原理及社交网络的兴起与发展
    有一个数学领域的猜想,名为SixDegreesofSeparation,中文翻译包括以下几种:六度分割理论或小世界理论等。理论指出:你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过六个人你就能够认识任何一个陌生人。
    虚拟虽然是网络世界的一种优势,但是和商业社会所要求的实名、信用隔着一条鸿沟。通过熟人之间,通过“六度分割”产生的聚合,将产生一个可信任的网络,这其中的商业潜能的确是无可估量的。社会、网络、地域、商业、Blog、SNS,这些词汇你也许都听麻木了。然而一旦那些预见先机的人找到聚合它们的商业价值,被改变的绝不仅仅是网络世界。
    “社交网络”是近些年最受关注的互联网名词,它的英文缩写是SNS,第一个S是Social社会化,第二个N代表Networking网络,第三个S是Services服务。SNS的概念起源于社会网络研究者提出的“六度理论”,即最多通过六个人你就能够认识任何一个陌生人。SNS将现实中的人际关系搬到了互联网上,让世界上的任何一个人都能联络彼此。

总体来看,社交网络不仅仅是一些新潮的商业模式,从历史维度来看,它更是一个推动互联网向现实世界无限靠近的关键力量。目前,社交网络含盖以人类社交为核心的所有网络服务形式,互联网是一个能够相互交流,相互沟通,相互参与的互动平台,社交网络使得互联网从研究部门、学校、政府、商业应用平台扩展成一个人类社会交流的工具。现在社交网络更是把其范围拓展到移动手机平台领域,借助手机的普遍性和无线网络的应用,利用各种交友/即时通讯/邮件收发器等软件,使手机成为新的社交网络的载体。

2.国内社交网络的发展历史及现状

中国社交网络的从无到有
随着国外社交网站的日渐盛行,社交网络也开始踏入中国的互联网世界。2003年,Uuzone在南京成立,又名优友地带。优友是一个Web2.0公司,社交网络,你可以在优友写Blog,使用网络IP电话,建立自己的小圈子,它是一个面向18到25岁受过良好教育的年轻人的网络社交平台。UU地带致力于以网络沟通人与人,倡导通过网络拓展人际关系圈,让用户尽情享受社交和沟通的乐趣。UU地带以提高网络诚信、建立信任沟通为己任,为互联网应用带来清新健康的新风尚。同时,Uuzone也定位在满足用户在网络“非约会、非商务”的广泛性网络交往。
越来越多的用户带来社交新乐趣用户使用UU地带的服务,可以通过自己的朋友结识朋友的朋友,朋友的朋友的朋友„„从而获得更多高质量的、可信任的朋友,即为优友,并创建诚信安全的个人社交圈,从结交朋友、休闲娱乐、商务投资、学习探讨等等一系列的交流活动中获得乐趣。
作为中国早期的社交网站,在中国互联网刚刚起步的时期,确实取得了不小的成绩,其用户数量超过300万。然而,盈利模式的不清晰,导致其后来的发展一直差强人意,同时,优友地带有据可查的融资纪录,除了晨兴创投的100万美元外再无其他资金注入。而目前SNS网站的广告收入与成本支出有极大差距,盈利遥遥无期。因此,优友地带最终于2009年停止了所有的服务,成为SNS社区洗牌中的第一个牺牲者。(二)各类社交网站层出不穷
随着时间的推移,国内各种社交网站如雨后春笋般的出现在世人面前,诸如校内网(现人人网)、开心网、51.com、腾讯朋友、新浪微博等。
51.com成立于2005年8月。51.com致力于为用户提供稳定安全的数据存储空间和便捷的交流平台。51.com是由美国红杉资本中国基金(SequoiaCapitalChina)、巨人网络集团(GiantInteractiveGroup)、海纳亚洲创投(SusquehannaInternationalGroup)、英特尔资本(IntelCapital)、红点创投(RedpointVentures)等国际着名的企业和风险基金联合投资而成。2006年07月,入围全球着名风险投资业媒体RedHerring2006年亚洲最具发展潜力百强排行榜。2006年09月,位于IWebChoice排名之全球华语网站21名。2006年11月,注册用户破5000万。2007年05月,成功并购虚拟形象平台“Pixoart”。2007年06月,注册用户突破7000万。2007年07月,与英特尔资本、红点创投、美国红杉资本中国基金、海纳亚洲创投完成第二轮超过1500万美元投资协议。2008年01月,注册用户突破1亿,月独立用户超过2500万。2008年01月,网络发布《2007中国空间社区(博客)研究报告》显示,总体流量次于腾讯位居第二,用户活跃度(以独立IP平均页面浏览量为标准)居国内首位。2008年05月,上海总部迁居至浦东新区张江高科技园区。2008年07月,与巨人网络集团、上海浦东科委等投资者完成第三轮超过5000万美元投资协议。2008年07月,与巨人网络集团、上海浦东科委等投资者完成第三轮超过5000万美元投资协议。2008年12月,合作广告品牌客户累计超过200家。2009年04月,第一款游戏产品“51游戏”上线运营,进军网游行业。2009年07月,推出聊天软件“彩虹”(51挂挂升级版),形成完整的网站、游戏、IM三大产品线。2009年12月,即时交友软件“彩虹”正式上线。2009年12月,注册用户突破1.78亿,月独立用户超过4000万。
开心网由北京开心人信息技术有限公司创办于2008年3月,是国内第一家以办公室白领用户群体为主的社交网站。开心网为广大用户提供包括日记、相册、动态记录、转帖、社交游戏在内的丰富易用的社交工具,使其与家人、朋友、同学、同事在轻松互动中保持更加紧密的联系。自创办以来,开心网以发掘和满足用户需求、完善用户体验为导向,以技术和产品的不断创新为动力,致力于为广大用户提供一个真实、轻松的社交互动平台。在产品方面,开心网组件主要分为基础工具、社交游戏和其他应用三大类,其中社交游戏类别包括“开心城市”、“开心庄园”、“开心餐厅”等众多热门游戏;其他应用类别包括“天气预报”、“在线购票”、“模拟炒股”等众多实用工具。开心网提供的优质产品和服务深受用户的欢迎,先后获得“网民最喜欢的SNS类社区”、“2009年度最有价值网站(社交类)”等多项奖励。在技术领域,开心网团队始终致力于自主技术研发,采用国际领先的互联网技术,包括先进的共享交互网络、数据传输方案、分布式存储解决方案等,以满足大规模用户的各种复杂应用与海量数据交互,引领新一代互联网科技的发展,并且通过技术创新满足了用户更深层次的需求。
人人网是由千橡集团将旗下着名的校内网更名而来。2009年8月4日,将旗下着名的校内网更名为人人网,社会上所有人都可以来到这里,从而跨出了校园内部这个范围。人人网为整个中国互联网用户提供服务的SNS社交网站,给不同身份的人提供了一个互动交流平台,提高用户之间的交流效率,通过提供发布日志、保存相册、音乐视频等站内外资源分享等功能搭建了一个功能丰富高效的用户交流互动平台。
朋友网原名QQ校友,是腾讯公司打造的真实社交平台,为用户提供行业、公司、学校、班级、熟人等真实的社交场景。2011年7月5日,腾讯公司正式宣布旗下社区腾讯朋友更名为朋友网。
新浪微博是一个由新浪网推出,提供微型博客服务的类Twitter网站。用户可以通过网页、WAP页面、手机短信、彩信发布消息或上传图片。新浪可以把微博理解为“微型博客”或者“一句话博客”。您可以将您看到的、听到的、想到的事情写成一句话,或发一张图片,通过电脑或者手机随时随地分享给朋友,一起分享、讨论。您还可以关注您的朋友,即时看到朋友们发布的信息(字数140字以内)。
总体来说,中国社交网站在此阶段经历了爆炸式的发展,至今形成了多家并立的局面

3.对国内社交网络的未来发展的展望
社交网络将继续促进信息的自由流动,促进社会的进步,在和用户交互的过程中促进人影响人。
社交网站正在成为以人际关系为联接的互联网互动应用的集成平台。在不久的将来,由于社交网站学生和青年白领这两部分数量占优的网民用户群体的特殊需求的满足及社交网络的病毒式营销、口碑相传的推广方式,将推动中国社交网站用户的爆发式增长。由于添加了互动游戏,娱乐类社交网站的高频次游戏应用将直接影响网站的使用频率,将使用户具备更高的用户黏度。最终实现网站和用户双方的可延续价值更大化。
而商务社交网站出发点是商务人脉拓展,目的性较强,用户倾向于在有特定需求时使用网站,使用频次较低,但随着时间的推移,商务社交网站也纷纷开始在平台上构建更多的互动,有利于商务人脉的深层次培养,商务社交网站使用频率低的情况正在得到改善。社交网站是基于人与人之间关系的应用,亲友之间口碑相传的推广是最有效的渠道。有近八成用户获知正在使用的社交网站是来自朋友、同学、同事的推荐,占到74.6%,其他渠道获知的均少于20%。
由于社交网站的流行,它所带来的商业价值也是各大商家的必争利益,因此社交网站的热行亦将促进社会的经济发展,促进社会进步。目前数据显示,中国Top50位的SNS站点中,其中36个SNS站点部署了页面广告。广告是目前SNS网站的主要收入来源,但在未来,除了第三方个人和公司联合平台开发商继续开发插件并联合运营外,SNS站点还有可能联合专业的网页游戏开发商联合开发并运营,实现更大的盈利。
社交网络在于人的现实生活中有更多的融合点,隐私问题短期内将无法解。
在最近的一次调查中,有75.8%的用户表示,在社交网站上的好友是现实中的朋友。因此随着网络渗透率的提升和网民对于网络应用的深入,社交网站用户规模将会得到进一步扩大,越来越多的用户会将更多现实生活中的人际关系延伸到网络。社交网络将与人的现实生活有更多的融合点。
由于社交网络基于对用户真实身份的营销,SNS网站的精准完全基于网站用户的真实性,作为真实关系网络延伸的SNS网站会员的信息真实度较高,同时我们也可以依据用户信息和朋友圈子去判断一个用户的真实程度。因此,任何网友都可以轻易地了解到每一个用户的基本用户属性,也可以从用户的使用行为中分析得出兴趣、经历、偏好、朋友圈、购物记录,从而用户的隐私就被暴露无遗。随之出现社会上一些不法分子利用这些掌握的用户人口统计和行为信息进行不法活动。
云服务、移动计算和社交网络等技术将走向成熟并相互交融,从而形成一个全新的主流平台
过去几年来,转型一直是IDC(国际数据公司)年度预测的主题。这一次,迫于全球经济衰退的压力,一波颠覆性技术的浪潮已经形成,并在逐渐发展壮大。IDC预计,在2011年及以后的时间里,云服务、移动计算和社交网络等技术将走向成熟并相互交融,从而形成一个全新的主流平台,无论对IT业还是其所服务的其它行业均是如此。
“2011年,我们预计这些转型技术会发生重大转变,即从初步接纳状态演变为初步主流态势。”IDC高级副总裁兼首席分析师FrankGens说。“因此,我们将会看到,IT行业的活动会越来越多地围绕着这个下一代主力平台的构建和采用来展开,其主要特点为移动、基于云的应用和服务交付,以及社交业务和林林总总分析手段的价值发掘。这种平台的变迁将会在另一个IT支出得以强势回升的年份飞速发展。全球IT行业的支出也将得益于新兴市场的加速恢复,它将占到2011年全球所有新增IT净支出的一半以上。
社交网络具备更加实用的功能,富媒体化、多元化趋势将更加明显
网络社交不仅仅是一些新潮的商业模式,从历史维度来看,它更是一个推动互联网向现实世界无限靠近的关键力量。
随着社交网络的发展,越来越模糊的组织边界、越来越细分的人群以及越来越强大的个体出现在中国的主流社交网站中,所以更多媒体的嵌入,更多元化元素的渗透已经成为一种趋势去促成社交网络的不断更新与完善。

参考资料
六度空间理论
CNNIC中国互联网络信息中心社交网络统计数据中国的社交媒体腾讯社交网络分析
2011社交共享发展趋势
2010-2011年中国社交网络市场研究报告中国社交网络走向何方

F. 新媒体与运营作业:用案例分析一下社交网络分析方法在营销中的作用。跪谢各大神解答,谢谢

一个新东西即使做得再好,也是需要出来推广的,不推广是不行。

G. 大数据文本分析的应用场景有哪些

1.锤子新发布的功能“BigBang”分词功能。也算是大数据文本分析的应用,通过大数据文本分析,才能实现对词义的准确分析,从而做到更准确的分词。
2.网络舆情监控。这也当然是大数据文本分析的产物,提取网络文本的关键词,组成语义网络之后分析语义倾向,达到舆情监控的目的。
3.社交网络情绪监控。相信大家都看到了很多网络上直播自杀、发自杀预报的这样的事情,和舆情监控相同,就是对个人社交网络的信息进行监控,通过文本分析和机器学习的技术,分析出此人的情绪状况,一旦出现极端的负面情绪,可以通过一定的措施避免极端行为的发生。
4.证券行业投资情报获取。可以基于积累的大数据做进一步深层次的分析与挖掘,整合各社交网络、证券讨论社区群体信息提取加工成有价值的证券投资情报,对证券投资行为做辅助分析和预报。

H. 浅析用户行为分析的意义及5大应用场景

浅析用户行为分析的意义及5大应用场景
通过用户行为分析才能知道用户画像、用户在网站上个各种浏览、点击、购买背后的商业真相,用户行为分析的价值不言而喻。一、什么是用户行为?
用户行为由最简单的五个元素构成:时间、地点、人物、交互、交互的内容。
(一)什么是用户行为?
对用户行为进行分析,要将其定义为各种事件。比如用户搜索是一个事件,在什么时间、什么平台上、哪一个ID、做了搜索、搜索的内容是什么。这是一个完整的事件,也是对用户行为的一个定义;我们可以在网站或者是 APP 中定义千千万万个这样的事件。
有了这样的事件以后,就可以把用户行为连起来观察。用户首次进入网站后就是一个新用户,他可能要注册,那么注册行为就是一个事件。注册要填写个人信息,之后他可能开始搜索买东西,所有这些都是用户行为的事件。
(二)如何获取用户行为数据?
那么,我们又该如何去监测这些用户行为数据呢?
一种非常传统、非常普遍的方式就是通过写代码去定义这个事件。在网站需要监测用户行为数据的地方加载一段代码,比如说注册按钮、下单按钮等。加载了监测代码,我们才能知道用户是否点击了注册按钮、用户下了什么订单。
所有这些通过写代码来详细描述事件和属性的方式,国内都统称为“埋点”。这是一种非常耗费人力的工程,并且过程非常繁琐重复;但是大部分互联网公司仍然雇佣了大批埋点团队。
二、为什么要做用户行为分析?
既然这么麻烦,那为什么要做用户行为分析?
因为只有做了用户行为分析才能知道用户画像、才能知道用户在网站上个各种浏览、点击、购买背后的商业真相。
简单讲,分析的主要方式就是关注流失,尤其是对转化有要求的网站。我们希望用户不要流失,上来之后不要走。像很多 O2O 产品,用户一上来就有很多补贴;一旦钱烧完了,用户就都走了。这样的产品或者商业模式并不佳,我们希望用户真正找到平台的价值,不停的来,不要流失。
用户行为分析帮助分析用户怎么流失、为什么流失、在哪里流失。
比如最简单的一个搜索行为:某一个 ID 什么时间搜索了关键词、看了哪一页、哪几个结果,同时这个 ID 在哪个时间下单购买了,这个整个行为都非常重要的。如果中间他对搜索结果不满意,他肯定会再搜一次,把关键词换成别的,然后才能够搜索到结果。
用户行为分析还能做哪些事情?
当你有了很多用户行为数据、定义事件之后,你可以把用户数据做成一个按小时、按天,或者按用户级别、事件级别拆分的一个表。这个表用来做什么?一个是知道用户最简单事件,比如登录或者是购买,也可以知道哪些是优质用户、哪些是即将流失的客户,这样的数据每天或每个小时都能看到。
三、用户行为分析的五大场景
有了用户的行为数据以后,我们有哪些应用场景呢?
拉新,也就是获取新用户。
转化,比如电商特别注重订单转化率。
促活,如何让用户经常使用我们的产品。
留存,提前发现可能流失用户,降低流失率。
变现,发现高价值用户,提高销售效率。
(一)拉新
2008年我在 eBay 时,我的工作就是分析 SEM 和 SEO 的每个关键词的 ROI。eBay 每天要向谷歌买400万个关键词,除了SEM、SEO 我们还要分析其它各种合作伙伴渠道。比如一家小电商网站上面放了 eBay 的链接,而后用户通过该链接最终在 eBay 上完成了购买,eBay 就会分钱给这家网站。
eBay 特别注重是哪个搜索引擎、哪个关键词带来的流量;关键词是付费还是免费的。从谷歌那边搜素引擎词带来了很多流量,但是这些流量是否在 eBay 上成单,所以这个数据还要跟 eBay 本身数据结合、然后再做渠道分配,到底成单的是哪个渠道。整个数据链要从头到尾打通,需要把两边的数据整合之后才能做到。
(二)转化
以注册转化漏斗为例,第一步我们知道网页上有哪些注册入口,很多网站的注册入口不只一个,需要定义每个事件;我们还想知道下一步多少人、多少百分比的人点击了注册按钮、多少人打开了验证页;多少人登录了,多少人完成了整个完整的注册。
期间每一步都会有用户流失,漏斗做完后,我们就可以直观看到,每个环节的流失率。
(三)促活
还有一个是用户使用产品的流畅度。我们可以分析具体用户行为,比如访问时长,在那个页面上停留时间特别长,尤其在 APP 上会特别明显。再有是完善用户画像,拿用户行为分析做用户画像是比较准的。
举个例子,在美国有一个非常有名的在线视频网络 Netflix。Netflix 非常有意思,通过用户行为分析,他把你一家人都进行精准分析定义。你们一家人有多少人,是大人还是小孩,你最喜欢看的是哪三部电影?你的行为输出越多,他的推荐就会越来越精准。
(四)留存
用户流失不是说一下子就流失了,一些细微、小的一些行为,就能预示他将来会流失。
在LinkedIn的时候,我们要去追踪用户的使用行为。比如说有没有登录、登录之后有没有搜简历、有没有上传简历等等。用户这些点点滴滴的行为,都很重要。有了这些数据支撑,LinkedIn的产品、销售每天都要去看用户报告,最简单的就是用户使用行为有没有下降、哪些行为下降、哪些用户用的特别好等,以此来维护用户关系。
(五)变现
LinkedIn 是一家 2C 又 2B 的公司,在全球有4亿的用户,有很多真实用户的简历信息。2B 的业务是LinkedIn 为每一个企业 HR 销售的,目的就是帮助美国的企业去找中高端的人才,这里面有很多的不同的产品线。LinkedIn 本身就是一个社交网络,用户是经理、VP还是总监,还是业务类的,市场的、销售的等等这些数据在 LinkedIn 上都聚合成一个公司的纬度。
通过这个简单的分布,就可以迅速看出来人才流失情况。如果是蓝的多,说明这家公司的人才吸引方面是强的,如果是红色的多,说明这家公司人才储备和招聘方面正处于颓势。我们把数据展示给最终客户,基本上就可以拿到单子。我们可以通过数据来讲故事。我们一开始做了很多的报告,销售可以拿去讲故事,可以很快促进成单。
所有这些是通过用户行为分析做出来的,不是通过拍脑门或者是第三方数据,用户行为分析的价值不言而喻。

I. “社交网络分析”是门怎样的学科

首先,如其名,研究社会网络。社会网络的主体通常为人,(你要是非把猫猫狗狗物品啥的算上我也不跟你争论),每个人为一个节点,人与人之间的关系为边,关系有强弱有方向也有性质(如敌人情侣同盟等等)。其基础就是离散数学的图论。然后通过一些运算来计算聚集度,平均值啥的。也可以通过编程来实现更高层次的数据分析。然后,应用前景。众所周知,社交网络发展飞速,数据分析也是如火如荼。

社会网络分析有助于网站进行精准广告投放,以及内容推送,提高用户粘性(各种商业应用我就不展开了)。在社会学上的应用,我是学商务的我也不懂,就私里揣测,人际关系难道不是人类千百年来想要解决的难题吗,老师说的三元闭包理论真的很有用,两个人的孤岛关系是很难维持的。

J. 移动社交网络的移动社交网络的应用

随着智能手机、车载移动终端等多种移动设备的普及,以及传感网技术的应用,使用移动终端设备来访问社交网络逐渐成为主流。同时,利用车载GPS、手机、公共交通卡等移动终端提供的行为轨迹信息,可以对一些事件进行预测,或对基础设施等方案作出合理性评估。
移动社交网络带来了大量崭新的研究和应用机会,例如位置服务、出租车异常轨迹识别与检测、出租车最优载客寻找策略等。针对移动社交网络数据的管理与挖掘,已经成为学术界的一个研究热点。

阅读全文

与社交网络分析的应用场景有哪些相关的资料

热点内容
企业微信客户端网络连接错误 浏览:814
海南计算机网络安装建设加盟费 浏览:353
下列哪个神经网络会发生权重共享 浏览:495
打游戏为什么网络卡手机就跟着卡 浏览:424
凯迪拉克ct5网络设置 浏览:941
电脑启动后找不见网络符号 浏览:460
出现无线网络但是上不了网 浏览:675
电脑右下角没有网络状态图标 浏览:782
宽带是好的wifi无网络连接路由器 浏览:436
网络选择题怎么造 浏览:738
网络信号机品牌 浏览:883
乡下信号满格为啥网络很慢 浏览:89
网络直播上哪里找客户 浏览:87
恒邦网络在哪里有用 浏览:972
车机网络信号只有3g没有4g 浏览:360
无线网络技术发展趋势 浏览:465
路由器常出现拒绝进入网络 浏览:572
电子屏网络连接密码忘记了 浏览:139
wifi能看斗鱼看不了其他网络 浏览:574
天翼网关在电视上没有网络设置 浏览:699

友情链接