A. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别
如下:
1、DNN:存在着一个问题——无法对时间序列上的变化进行建模。然而,样本出现的时间顺序对于自然语言处理、语音识别、手写体识别等应用非常重要。对了适应这种需求,就出现了另一种神经网络结构——循环神经网络RNN。
2、CNN:每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被称为前向神经网络。
3、RNN:神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出!
介绍
神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosenblatt。
在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。
B. 机器学习之人工神经网络算法
机器学习中有一个重要的算法,那就是人工神经网络算法,听到这个名称相信大家能够想到人体中的神经。其实这种算法和人工神经有一点点相似。当然,这种算法能够解决很多的问题,因此在机器学习中有着很高的地位。下面我们就给大家介绍一下关于人工神经网络算法的知识。
1.神经网络的来源
我们听到神经网络的时候也时候近一段时间,其实神经网络出现有了一段时间了。神经网络的诞生起源于对大脑工作机理的研究。早期生物界学者们使用神经网络来模拟大脑。机器学习的学者们使用神经网络进行机器学习的实验,发现在视觉与语音的识别上效果都相当好。在BP算法诞生以后,神经网络的发展进入了一个热潮。
2.神经网络的原理
那么神经网络的学习机理是什么?简单来说,就是分解与整合。一个复杂的图像变成了大量的细节进入神经元,神经元处理以后再进行整合,最后得出了看到的是正确的结论。这就是大脑视觉识别的机理,也是神经网络工作的机理。所以可以看出神经网络有很明显的优点。
3.神经网络的逻辑架构
让我们看一个简单的神经网络的逻辑架构。在这个网络中,分成输入层,隐藏层,和输出层。输入层负责接收信号,隐藏层负责对数据的分解与处理,最后的结果被整合到输出层。每层中的一个圆代表一个处理单元,可以认为是模拟了一个神经元,若干个处理单元组成了一个层,若干个层再组成了一个网络,也就是”神经网络”。在神经网络中,每个处理单元事实上就是一个逻辑回归模型,逻辑回归模型接收上层的输入,把模型的预测结果作为输出传输到下一个层次。通过这样的过程,神经网络可以完成非常复杂的非线性分类。
4.神经网络的应用。
图像识别领域是神经网络中的一个着名应用,这个程序是一个基于多个隐层构建的神经网络。通过这个程序可以识别多种手写数字,并且达到很高的识别精度与拥有较好的鲁棒性。可以看出,随着层次的不断深入,越深的层次处理的细节越低。但是进入90年代,神经网络的发展进入了一个瓶颈期。其主要原因是尽管有BP算法的加速,神经网络的训练过程仍然很困难。因此90年代后期支持向量机算法取代了神经网络的地位。
在这篇文章中我们大家介绍了关于神经网络的相关知识,具体的内容就是神经网络的起源、神经网络的原理、神经网络的逻辑架构和神经网络的应用,相信大家看到这里对神经网络知识有了一定的了解,希望这篇文章能够帮助到大家。
C. 神经网络算法的人工神经网络
人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信 息存储、良好的自组织自学习能力等特点。BP(Back Propagation)算法又称为误差 反向传播算法,是人工神经网络中的一种监督式的学习算法。BP 神经网络算法在理 论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许 多领域都有着广泛的应用前景。 人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。
神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。
树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。每个神经元的突触数目正常,最高可达10个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。
人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。
人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。
与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。 (1)人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。
普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。
人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境 (即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。
(2)泛化能力
泛化能力指对没有训练过的样本,有很好的预测能力和控制能力。特别是,当存在一些有噪声的样本,网络具备很好的预测能力。
(3)非线性映射能力
当对系统对于设计人员来说,很透彻或者很清楚时,则一般利用数值分析,偏微分方程等数学工具建立精确的数学模型,但当对系统很复杂,或者系统未知,系统信息量很少时,建立精确的数学模型很困难时,神经网络的非线性映射能力则表现出优势,因为它不需要对系统进行透彻的了解,但是同时能达到输入与输出的映射关系,这就大大简化设计的难度。
(4)高度并行性
并行性具有一定的争议性。承认具有并行性理由:神经网络是根据人的大脑而抽象出来的数学模型,由于人可以同时做一些事,所以从功能的模拟角度上看,神经网络也应具备很强的并行性。
多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。在寻找上述问题答案的研究过程中,这些年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。
下面将人工神经网络与通用的计算机工作特点来对比一下:
若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。
人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。虽然人脑每日有大量神经细胞死亡 (平均每小时约一千个),但不影响大脑的正常思维活动。
普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。元器件的局部损坏及程序中的微小错误都可能引起严重的失常。 心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。
生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。
人工神经网络早期的研究工作应追溯至上世纪40年代。下面以时间顺序,以着名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。
1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。
1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。
50年代末,F·Rosenblatt设计制作了“感知机”,它是一种多层的神经网络。这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。当时,世界上许多实验室仿效制作感知机,分别应用于文字识别、声音识别、声纳信号识别以及学习记忆问题的研究。然而,这次人工神经网络的研究高潮未能持续很久,许多人陆续放弃了这方面的研究工作,这是因为当时数字计算机的发展处于全盛时期,许多人误以为数字计算机可以解决人工智能、模式识别、专家系统等方面的一切问题,使感知机的工作得不到重视;其次,当时的电子技术工艺水平比较落后,主要的元件是电子管或晶体管,利用它们制作的神经网络体积庞大,价格昂贵,要制作在规模上与真实的神经网络相似是完全不可能的;另外,在1968年一本名为《感知机》的着作中指出线性感知机功能是有限的,它不能解决如异感这样的基本问题,而且多层网络还不能找到有效的计算方法,这些论点促使大批研究人员对于人工神经网络的前景失去信心。60年代末期,人工神经网络的研究进入了低潮。
另外,在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自适应网络。当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。
随着人们对感知机兴趣的衰退,神经网络的研究沉寂了相当长的时间。80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。这一背景预示,向人工神经网络寻求出路的时机已经成熟。美国的物理学家Hopfield于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及付诸应用的现实性。随即,一大批学者和研究人员围绕着 Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。
1985年,Ackley、Hinton和Sejnowski将模拟退火算法应用到神经网络训练中,提出了Boltzmann机,该算法具有逃离极值的优点,但是训练时间需要很长。
1986年,Rumelhart、Hinton和Williams提出了多层前馈神经网络的学习算法,即BP算法。它从证明的角度推导算法的正确性,是学习算法有理论依据。从学习算法角度上看,是一个很大的进步。
1988年,Broomhead和Lowe第一次提出了径向基网络:RBF网络。
总体来说,神经网络经历了从高潮到低谷,再到高潮的阶段,充满曲折的过程。
D. 人工智能的起源是什么
人工智能(Artificial Intelligence), 英文缩写为 AI, 是一门由计算机科学、控制论、信息论、语言学、神经生理学、心理学、数学、哲学等多种学科相互渗透而发展起来的综合性新学科。自问世以来AI经过波波折折,但终于作为一门边缘新学科得到世界的承认并且日益引起人们的兴趣和关注。不仅许多其他学科开始引入或借用AI技术,而且AI中的专家系统、自然语言处理和图象识别已成为新兴的知识产业的三大突破口。
人工智能的思想萌芽可以追溯到十七世纪的巴斯卡和莱布尼茨,他们较早萌生了有智能的机器的想法。十九世纪,英国数学家布尔和德o摩尔根提出了“思维定律“,这些可谓是人工智能的开端。十九世纪二十年代,英国科学家巴贝奇设计了第一架“计算机器“,它被认为是计算机硬件,也是人工智能硬件的前身。电子计算机的问世,使人工智能的研究真正成为可能。
作为一门学科,人工智能于1956年问世,是由“人工智能之父“McCarthy及一批数学家、信息学家、心理学家、神经生理学家、计算机科学家在Dartmouth大学召开的会议上,首次提出。对人工智能的研究,由于研究角度的不同,形成了不同的研究学派。这就是:符号主义学派、连接主义学派和行为主义学派。
传统人工智能是符号主义,它以Newell和Simon提出的物理符号系统假设为基础。物理符号系统是由一组符号实体组成,它们都是物理模式,可在符号结构的实体中作为组成成分出现,可通过各种操作生成其它符号结构。物理符号系统假设认为:物理符号系统是智能行为的充分和必要条件。主要工作是“通用问题求解程序“(General Problem Solver, GPS):通过抽象,将一个现实系统变成一个符号系统,基于此符号系统,使用动态搜索方法求解问题。
连接主义学派是从人的大脑神经系统结构出发,研究非程序的、适应性的、大脑风格的信息处理的本质和能力,研究大量简单的神经元的集团信息处理能力及其动态行为。
人们也称之为神经计算。研究重点是侧重于模拟和实现人的认识过程中的感觉、知觉过程、形象思维、分布式记忆和自学习、自组织过程。
行为主义学派是从行为心理学出发,认为智能只是在与环境的交互作用中表现出来。
人工智能的研究经历了以下几个阶段:
第一阶段:50年代人工智能的兴起和冷落
人工智能概念首次提出后,相继出现了一批显着的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮
DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(International Joint Conferences on Artificial Intelligence即IJCAI)。
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展
日本1982年开始了“第五代计算机研制计划“,即“知识信息处理计算机系统KIPS“,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展
1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮
由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。
IBM公司“深蓝“电脑击败了人类的世界国际象棋冠军,美国制定了以多Agent系统应用为重要研究内容的信息高速公路计划,基于Agent技术的Softbot(软机器人)在软件领域和网络搜索引擎中得到了充分应用,同时,美国Sandia实验室建立了国际上最庞大的“虚拟现实“实验室,拟通过数据头盔和数据手套实现更友好的人机交互,建立更好的智能用户接口。图像处理和图像识别,声音处理和声音识别取得了较好的发展,IBM公司推出了ViaVoice声音识别软件,以使声音作为重要的信息输入媒体。国际各大计算机公司又开始将“人工智能“作为其研究内容。人们普遍认为,计算机将会向网络化、智能化、并行化方向发展。二十一世纪的信息技术领域将会以智能信息处理为中心。
目前人工智能主要研究内容是:分布式人工智能与多智能主体系统、人工思维模型、知识系统(包括专家系统、知识库系统和智能决策系统)、知识发现与数据挖掘(从大量的、不完全的、模糊的、有噪声的数据中挖掘出对我们有用的知识)、遗传与演化计算(通过对生物遗传与进化理论的模拟,揭示出人的智能进化规律)、人工生命(通过构造简单的人工生命系统(如:机器虫)并观察其行为,探讨初级智能的奥秘)、人工智能应用(如:模糊控制、智能大厦、智能人机接口、智能机器人等)等等。
人工智能研究与应用虽取得了不少成果,但离全面推广应用还有很大的距离,还有许多问题有待解决,且需要多学科的研究专家共同合作。未来人工智能的研究方向主要有:人工智能理论、机器学习模型和理论、不精确知识表示及其推理、常识知识及其推理、人工思维模型、智能人机接口、多智能主体系统、知识发现与知识获取、人工智能应用基础等。
E. bp神经网络
BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
如图所示拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,构成具有层次结构的前馈型神经网络系统。单计算层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络可以用作分类、聚类、预测等。神经网络需要有一定量的历史数据,通过历史数据的训练,网络可以学习到数据中隐含的知识。在你的问题中,首先要找到某些问题的一些特征,以及对应的评价数据,用这些数据来训练神经网络。
虽然BP网络得到了广泛的应用,但自身也存在一些缺陷和不足,主要包括以下几个方面的问题。
首先,由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。
其次,BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。
再次,网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。因此,网络往往存在很大的冗余性,在一定程度上也增加了网络学习的负担。
最后,网络的学习和记忆具有不稳定性。也就是说,如果增加了学习样本,训练好的网络就需要从头开始训练,对于以前的权值和阈值是没有记忆的。但是可以将预测、分类或聚类做的比较好的权值保存。
F. 有科学家说,宇宙是一个巨大的神经网络,是谁的神经
最新的哈勃常数表明,我们的宇宙起源于138.2亿年前的一次大爆炸,时间和空间都是在大爆炸之后诞生的,所以讨论big bang之前发生了什么是没有意义的。
另一方面,宇宙虽然在膨胀,但空间并不是以宇宙中某一点为中心向各个方向膨胀的。宇宙膨胀的本质是空间结构的膨胀,所以宇宙中没有中心。
为什么我们的宇宙有可观测的直径?因为我们的宇宙正在膨胀,这个结论是着名天文学家哈勃发现的。(哈勃望远镜是以对天文学做出突出贡献的天文学家命名的。)哈勃发现空间本身在不断膨胀。仔细想想有点奇怪。我们的日常生活空间会扩大,但这是真的,观察结果证实了这一点。既然膨胀是均匀的,那么必然存在这样一种情况:两点之间的距离越远,膨胀效应引起的距离变化越明显。由此我们可以想象,一旦距离达到一定程度,膨胀速度可以超过光速!
G. 癫痫发作有单侧瞳孔散大的吗
癫痫发作时,一般不会出现单侧瞳孔散大。除非病人同时伴有脑肿瘤
H. 什么是神经网络,举例说明神经网络的应用
我想这可能是你想要的神经网络吧!
什么是神经网络:
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络的应用:
应用
在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:
生物原型
从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
建立模型
根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
算法
在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。
I. 神经网络从何而来
【嵌牛导读】神经网络从何而来?这里说的‘从何而来’,并不仅仅是从技术上去介绍一个方法的创造或发展,而更想探讨方法背后所蕴含的思想基础与演变之路。
【嵌牛鼻子】神经网络、深度学习
【嵌牛提问】神经网络的由来?
【嵌牛正文】深度学习与神经网络是近几年来计算机与人工智能领域最炙手可热的话题了。为了蹭这波热度,博主也打算分享一些自己的经验与思考。第一篇文章想探讨一个非常基础的问题:神经网络从何而来?这里说的‘从何而来’,并不仅仅是从技术上去介绍一个方法的创造或发展,而更想探讨方法背后所蕴含的思想基础与演变之路。
首先,需要为‘神经网络’正一下名。在人工智能领域,我们通常所说的神经网络(Neural Networks)全称是人工神经网络(Artificial Neural Network),与之对应的是我们用肉长成的生物神经网络(Biology Neural Network)。众所周知,人工神经网络受生物神经网络的启发而产生,并在几十年间不断进步演化。可要论人类对人工智能的探索历史,却远远长于这几十年。为了深刻了解神经网络出现的背景,我们有必要从更早的历史开始说起。
简单说,人工智能想做的事情就是去总结和提炼人类思考的过程,使之能够机械化、可重复。从各种神话、传说来看,我们的祖先在几千年前就对这件事儿充满了好奇与遐想。到两千多年前,一大批伟大的哲学家在希腊、中国和印度相继诞生,并将人类对这一问题的认识推向了新的高度。为避免本文成为枯燥的哲学史,这里不想举太多的例子。伟大的希腊哲学家亚里士多德在他的《前分析篇》中提出了着名的三段论(sollygism),类似于:
所有希腊人是人
所有人终有一死
因此所有希腊人终有一死
虽然这是我们现在已经无比熟悉的推理模式,但是要在2000年前从无到有系统总结出一系列这样的命题与推理模式,却着实不易。有了‘三段论’这种的武器,人们对问题的认识与决策就能从感性真正走向理性,做到可以重复。此外,我们熟悉的欧式几何也是当时这种逻辑推理学派的代表。欧式几何以一系列的公理为基础,基于一套严密的逻辑推理体系,最终得到结论的证明,现在仍然是每个学生需要反复训练的思维体操。
随着时间的演进,认知哲学与逻辑学也在不断的发展。在17世纪时,以笛卡尔、莱布尼茨为代表的哲学家进一步提出通过数学的方式对逻辑推演进行标准化,这也是对人脑推理与思考的再次抽象,为后续以后基于数字电路的人工智能打下了基础。之后,数理逻辑进一步发展,而到了20世纪中期,数理逻辑又一次取得了巨大的突破,哥德尔不完备理论、图灵机模型等的相继提出,科学家们既认识到了数理逻辑的局限性,也看到了将推理机械化的无限可能性,一种新的计算方式呼之欲出。
在图灵机的思想指导下,第一台电子计算机很快被设计出来,为人工智能的真正实现提供了物质上的基础。其实回望人工智能历史上的历次重大飞跃,硬件技术的发展无不扮演者重要的作用。很多看似有效的算法都苦于没有足够强大的计算平台支持无疾而终,而计算能力的提升也可以促进科学家们们摆脱束缚,在算法的研究道路上天马行空。深度学习这些年的迅猛发展,很大程度就是得益于大规模集群和图形处理器等技术的成熟,使得用复杂模型快速处理大规模数据成为可能。
1956年达特茅斯会议上,斯坦福大学科学家约翰·麦卡锡(John McCarthy)正式提出了‘人工智能’这一概念, 标志着一个学科的正式诞生,也标志着人工智能的发展开始进入了快车道。如果说逻辑符号操作是对人类思维的本质的抽象,那么利用电子计算机技术来模拟人类的符号推理计算也是一个自然而然的想法。在艾伦·纽威尔(Alan Newell)和赫伯特·西蒙(Herbert A.Simon)等大师的推动下,以逻辑推演为核心符号主义(symbolicism)流派很快占据了人工智能领域的重要地位。符号主义在很多领域取得了成功,比如在80年代风靡一时的专家系统,通过知识库和基于知识库的推理系统模拟专家进行决策,得到了广泛的应用。而本世纪初热炒的语义网络以及当下最流行的知识图谱,也可以看做这一流派的延续与发展。
符号主义最大的特点是知识的表示直观,推理的过程清晰,但是也存在着许多局限性。除去在计算能力方面的困扰,一个很大的问题就在于虽然我们可以通过逻辑推理解决一些复杂的问题,但是对一些看似简单的问题,比如人脸识别,却无能为力。当看到一张人脸的照片,我们可以毫不费力的识别出这个人是谁,可这个过程并不需要做什么复杂的推理,它在我们的大脑中瞬间完成,以至于我们对这个过程的细节却一无所知。看起来想通过挖掘一系列严密的推理规则解决这类问题是相对困难的,这也促使很多人去探索与人脑工作更加贴合的解决方案。实际上在符号主义出现的同时,人工智能的另一重要学派联结主义(Connectionism)也开始蓬勃发展,本文的‘主角’神经网络终于可以登场了。
在文章的一开始就提到,我们现在所说的人工神经网络是受生物神经网络启发而设计出来的。在1890年,实验心理学先驱William James在他的巨着《心理学原理》中第一次详细论述人脑结构及功能。其中提到神经细胞受到刺激激活后可以把刺激传播到另一个神经细胞,并且神经细胞激活是细胞所有输入叠加的结果。这一后来得到验证的假说也成为了人工神经网络设计的生物学基础。基于这一假说,一系列模拟人脑神经计算的模型被相继提出,具有代表性的有Hebbian Learning Rule, Oja's Rule和MCP Neural Model等,他们与现在通用的神经网络模型已经非常相似,例如在Hebbian Learning模型中,已经可以支持神经元之间权重的自动学习。而在1958年,Rosenblatt将这些模型付诸于实施,利用电子设备构建了真正意义上的第一个神经网络模型:感知机(Perceptron)。Rosenblatt现场演示了其学习识别简单图像的过程,在当时的社会引起了轰动,并带来了神经网络的第一次大繁荣。此后的几十年里,神经网络又经历了数次起起伏伏,既有春风得意一统天下的岁月,也有被打入冷宫无人问津的日子,当然,这些都是后话了。
本文更想讨论这样一个问题:神经网络产生的动机仅仅是对生物学中对神经机制的模仿吗?在神经网络产生的背后,还蕴含着一代代科学家怎么样的思想与情怀呢?事实上,在神经网络为代表的一类方法在人工智能中又被称为联结主义(Connectionism)。关于联结主义的历史,一般的文献介绍按照惯例会追溯到希腊时期哲学家们对关联性的定义与研究,例如我们的老朋友亚里士多德等等。然而当时哲学家研究的关联其实并不特指神经元之间的这种关联,比如前文提到的符号推理本身也是一种形式关联,在希腊哲学中并没有对这两者进行专门的区分。所以硬要把这些说成是连接主义的思想起源略微有一些牵强。
前文提到,在数理逻辑发展过程中,17世纪的欧陆理性主义起到了重要的作用。以笛卡尔、莱布尼茨等为代表的哲学家,主张在理性中存在着天赋观念,以此为原则并严格按照逻辑必然性进行推理就可以得到普遍必然的知识。与此同时,以洛克、休谟等哲学家为代表的英国经验主义,则强调人类的知识来自于对感知和经验归纳。这一定程度上是对绝对的真理的一种否定,人类的认识是存在主观的,随经验而变化的部分的。如果在这个思想的指导下,我们与其去寻找一套普世且完备的推理系统,不如去构造一套虽不完美但能够随着经验积累不断完善的学习系统。而休谟甚至提出了放弃揭示自然界的因果联系和必然规律,而是依据“习惯性联想”去描绘一连串的感觉印象。这其实和神经网络设计的初衷是非常类似的:重视经验的获得与归纳(通过样本进行学习),但对模型本身的严谨性与可解释行则没有那么关注,正如有时候我们愿意把神经网络模型看做是一个‘黑箱’。
然而单单一个‘黑箱’是不能成为经验的学习与整理的系统的,我们还需要去寻找构建‘黑箱’的一种方法论。现代哲学发展到20世纪初期时,在维特根斯坦和罗素等哲学家的倡导下,产生了逻辑经验主义学派。依托当时逻辑学的迅猛发展,这一主义既强调经验的作用,也重视通过严密的逻辑推理来得到结论,而非简单的归纳。在数理逻辑领域颇有建树的罗素有一位大名鼎鼎的学生诺伯特·维纳,他创立的控制论与系统论、信息论一道,为信息科学的发展提供了坚实的理论基础。而神经网络模型的创立也深受这‘三论’的影响。前文提到MCP神经元模型的两位创始人分别是罗素和维纳的学生。作为一个系统,神经网络接受外部的输入,得到输出,并根据环境进行反馈,对系统进行更新,直到达到稳定状态。这个过程,同样也是神经网络对环境信息传递的接受和重新编码的过程。如果如果把神经网络当做一个‘黑盒’,那么我们首先关心该是这个黑盒的输入与输出,以及如何根据环境给黑盒一个合理的反馈,使之能够进行调整。而黑盒内部的结构,则更多的成为了形式的问题。我们借鉴生物神经网络构造这个黑盒,恰好是一个好的解决方案,但这未必是唯一的解决方案或者说与人类大脑的神经元结构存在必然的联系。比如在统计学习领域中最着名的支持向量机(Support Vector Machines),最终是作为一种特殊的神经网络而提出的。可当其羽翼丰满之后,则和神经网络逐渐脱离关系,开启了机器学习的另一个门派。不同的模型形式之间可以互相转化,但是重视经验(样本),强调反馈的思想却一直保留下来。
前面说了这些,到底神经网络从何而来呢?总结下来就是三个方面吧:1.对理性逻辑的追求,对样本实证的重视,为神经网络的诞生提供了思想的基础。2.生物学与神经科学的发展为神经网络形式的出现提供了启发。3.计算机硬件的发展与计算能力的提升使神经网络从理想变成了现实。而这三方面的发展也催生着神经网络的进一步发展与深度学习的成熟:更大规模的数据,更完善的优化算法使网络能够学习到更多更准确的信息;对人脑的认识的提升启发设计出层次更深,结构更高效的网络结构;硬件存储与计算能力提升使海量数据的高效训练成为可能。而未来神经网络给我们带来的更多惊喜,也很大可能源自于这三个方面,让我们不妨多一些期待吧。
J. 人工智能学科诞生于什么时期
人工智能学科
学科起源
从学科起源的时间原点来看,人工智能学科以1956年美国达特茅斯学院夏季讨论班为缘起。
人工智能学科,是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
发展规划
《新一代人工智能发展规划》明确,启动实施人工智能重大项目、推动人工智能学科建设、布局人工智能创新发展实验区等一系列"中国方案",强化了人工智能基础理论和关键技术研究,促进人工智能与经济社会的高度融合。
学科专业
浙江大学计算机科学与技术学院作为新增的人工智能专业的主管学院,拥有五个一级学科,其中人工智能学科为2018年新设立。
专业学院
2019年4月22日,中国人民大学高瓴人工智能学院成立,高瓴人工智能学院是中国人民大学二级学院,承担人工智能学科的规划与建设,未来将开展本学科和相关交叉学科领域的本、硕、博人才培养和科学研究工作。
“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。