Ⅰ 神经网络做数据预测时有几个输出元
输出层神经元指的是深度学习中输出层里面起到激活,传递等作用的神经元函数。
中文名
输出层神经元
应用领域
深度学习
快速
导航
相关试探函数算法思路最新研究
简介
神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。[1]
Ⅱ BP人工神经网络预测
完全可以,神经网络就是这样用的,极其适用于描述难以给出具体的数学表达式的非线性映射。通过历史样本对网络的训练,可以使网络映射该非线性关系,从而进行可靠性很高的预测。可以使用BP、Elman、RBF网络,这些网络效果较好。建议使用MATLAB编程,较为方便,因为该数学软件包含神经网络工具箱。
如果你装了Matlab,可以运行下附件的例子试一下。
Ⅲ 预测模型可分为哪几类
根据方法本身的性质特点将预测方法分为三类。
1、定性预测方法
根据人们对系统过去和现在的经验、判断和直觉进行预测,其中以人的逻辑判断为主,仅要求提供系统发展的方向、状态、形势等定性结果。该方法适用于缺乏历史统计数据的系统对象。
2、时间序列分析
根据系统对象随时间变化的历史资料,只考虑系统变量随时间的变化规律,对系统未来的表现时间进行定量预测。主要包括移动平均法、指数平滑法、趋势外推法等。该方法适于利用简单统计数据预测研究对象随时间变化的趋势等。
3、因果关系预测
系统变量之间存在某种前因后果关系,找出影响某种结果的几个因素,建立因与果之间的数学模型,根据因素变量的变化预测结果变量的变化,既预测系统发展的方向又确定具体的数值变化规律。
(3)用于预测的神经网络有哪些扩展阅读:
预测模型是在采用定量预测法进行预测时,最重要的工作是建立预测数学模型。预测模型是指用于预测的,用数学语言或公式所描述的事物间的数量关系。它在一定程度上揭示了事物间的内在规律性,预测时把它作为计算预测值的直接依据。
因此,它对预测准确度有极大的影响。任何一种具体的预测方法都是以其特定的数学模型为特征。预测方法的种类很多,各有相应的预测模型。
趋势外推预测方法是根据事物的历史和现实数据,寻求事物随时间推移而发展变化的规律,从而推测其未来状况的一种常用的预测方法。
趋势外推法的假设条件是:
(1)假设事物发展过程没有跳跃式变化,即事物的发展变化是渐进型的。
(2)假设所研究系统的结构、功能等基本保持不变,即假定根据过去资料建立的趋势外推模型能适合未来,能代表未来趋势变化的情况。
由以上两个假设条件可知,趋势外推预测法是事物发展渐进过程的一种统计预测方法。简言之,就是运用一个数学模型,拟合一条趋势线,然后用这个模型外推预测未来时期事物的发展。
趋势外推预测法主要利用描绘散点图的方法(图形识别)和差分法计算进行模型选择。
主要优点是:可以揭示事物发展的未来,并定量地估价其功能特性。
趋势外推预测法比较适合中、长期新产品预测,要求有至少5年的数据资料。
组合预测法是对同一个问题,采用多种预测方法。组合的主要目的是综合利用各种方法所提供的信息,尽可能地提高预测精度。组合预测有 2 种基本形式,一是等权组合, 即各预测方法的预测值按相同的权数组合成新的预测值;二是不等权组合,即赋予不同预测方法的预测值不同的权数。
这 2 种形式的原理和运用方法完全相同,只是权数的取定有所区别。 根据经验,采用不等权组合的组合预测法结果较为准确。
回归预测方法是根据自变量和因变量之间的相关关系进行预测的。自变量的个数可以一个或多个,根据自变量的个数可分为一元回归预测和多元回归预测。同时根据自变量和因变量的相关关系,分为线性回归预测方法和非线性回归方法。
回归问题的学习等价于函数拟合:选择一条函数曲线使其很好的拟合已知数据且能很好的预测未知数据。
Ⅳ bp神经网络
BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
如图所示拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,构成具有层次结构的前馈型神经网络系统。单计算层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络可以用作分类、聚类、预测等。神经网络需要有一定量的历史数据,通过历史数据的训练,网络可以学习到数据中隐含的知识。在你的问题中,首先要找到某些问题的一些特征,以及对应的评价数据,用这些数据来训练神经网络。
虽然BP网络得到了广泛的应用,但自身也存在一些缺陷和不足,主要包括以下几个方面的问题。
首先,由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。
其次,BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。
再次,网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。因此,网络往往存在很大的冗余性,在一定程度上也增加了网络学习的负担。
最后,网络的学习和记忆具有不稳定性。也就是说,如果增加了学习样本,训练好的网络就需要从头开始训练,对于以前的权值和阈值是没有记忆的。但是可以将预测、分类或聚类做的比较好的权值保存。
Ⅳ 几种常见的循环神经网络结构RNN、LSTM、GRU
传统文本处理任务的方法中一般将TF-IDF向量作为特征输入。显而易见,这样的表示实际上丢失了输入的文本序列中每个单词的顺序。在神经网络的建模过程中,一般的前馈神经网络,如卷积神经网络,通常接受一个定长的向量作为输入。卷积神经网络对文本数据建模时,输入变长的字符串或者单词串,然后通过滑动窗口加池化的方式将原先的输入转换成一个固定长度的向量表示,这样做可以捕捉到原文本中的一些局部特征,但是两个单词之间的长距离依赖关系还是很难被学习到。
循环神经网络却能很好地处理文本数据变长并且有序的输入序列。它模拟了人阅读一篇文章的顺序,从前到后阅读文章中的每一个单词,将前面阅读到的有用信息编码到状态变量中去,从而拥有了一定的记忆能力,可以更好地理解之后的文本。
其网络结构如下图所示:
由图可见,t是时刻,x是输入层,s是隐藏层,o是输出层,矩阵W就是隐藏层上一次的值作为这一次的输入的权重。
如果反复把式 2 带入到式 1,将得到:
其中f和g为激活函数,U为输入层到隐含层的权重矩阵,W为隐含层从上一时刻到下一时刻状态转移的权重矩阵。在文本分类任务中,f可以选取Tanh函数或者ReLU函数,g可以采用Softmax函数。
通过最小化损失误差(即输出的y与真实类别之间的距离),我们可以不断训练网络,使得得到的循环神经网络可以准确地预测文本所属的类别,达到分类目的。相比于卷积神经网络等前馈神经网络,循环神经网络由于具备对序列顺序信息的刻画能力,往往能得到更准确的结果。
RNN的训练算法为:BPTT
BPTT的基本原理和BP算法是一样的,同样是三步:
1.前向计算每个神经元的输出值;
2.反向计算每个神经元的误差项值,它是误差函数E对神经元j的加权输入的偏导数;
3.计算每个权重的梯度。
最后再用随机梯度下降算法更新权重。
具体参考: https://www.jianshu.com/p/39a99c88a565
最后由链式法则得到下面以雅可比矩阵来表达的每个权重的梯度:
由于预测的误差是沿着神经网络的每一层反向传播的,因此当雅克比矩阵的最大特征值大于1时,随着离输出越来越远,每层的梯度大小会呈指数增长,导致梯度爆炸;反之,若雅克比矩阵的最大特征值小于1,梯度的大小会呈指数缩小,产生梯度消失。对于普通的前馈网络来说,梯度消失意味着无法通过加深网络层次来改善神经网络的预测效果,因为无论如何加深网络,只有靠近输出的若干层才真正起到学习的作用。 这使得循环神经网络模型很难学习到输入序列中的长距离依赖关系 。
关于RNN梯度下降的详细推导可以参考: https://zhuanlan.hu.com/p/44163528
梯度爆炸的问题可以通过梯度裁剪来缓解,即当梯度的范式大于某个给定值时,对梯度进行等比收缩。而梯度消失问题相对比较棘手,需要对模型本身进行改进。深度残差网络是对前馈神经网络的改进,通过残差学习的方式缓解了梯度消失的现象,从而使得我们能够学习到更深层的网络表示;而对于循环神经网络来说,长短时记忆模型及其变种门控循环单元等模型通过加入门控机制,很大程度上弥补了梯度消失所带来的损失。
LSTM的网络机构图如下所示:
与传统的循环神经网络相比,LSTM仍然是基于xt和ht−1来计算ht,只不过对内部的结构进行了更加精心的设计,加入了输入门it 、遗忘门ft以及输出门ot三个门和一个内部记忆单元ct。输入门控制当前计算的新状态以多大程度更新到记忆单元中;遗忘门控制前一步记忆单元中的信息有多大程度被遗忘掉;输出门控制当前的输出有多大程度上取决于当前的记忆单元。
在经典的LSTM模型中,第t层的更新计算公式为
其中it是通过输入xt和上一步的隐含层输出ht−1进行线性变换,再经过激活函数σ得到的。输入门it的结果是向量,其中每个元素是0到1之间的实数,用于控制各维度流过阀门的信息量;Wi 、Ui两个矩阵和向量bi为输入门的参数,是在训练过程中需要学习得到的。遗忘门ft和输出门ot的计算方式与输入门类似,它们有各自的参数W、U和b。与传统的循环神经网络不同的是,从上一个记忆单元的状态ct−1到当前的状态ct的转移不一定完全取决于激活函数计算得到的状态,还由输入门和遗忘门来共同控制。
在一个训练好的网络中,当输入的序列中没有重要信息时,LSTM的遗忘门的值接近于1,输入门的值接近于0,此时过去的记忆会被保存,从而实现了长期记忆功能;当输入的序列中出现了重要的信息时,LSTM应当把其存入记忆中,此时其输入门的值会接近于1;当输入的序列中出现了重要信息,且该信息意味着之前的记忆不再重要时,输入门的值接近1,而遗忘门的值接近于0,这样旧的记忆被遗忘,新的重要信息被记忆。经过这样的设计,整个网络更容易学习到序列之间的长期依赖。
GRU是在LSTM上进行简化而得到的,GRU的网络结构如下所示:
Zt代表更新门,更新门的作用类似于LSTM中的遗忘门和输入门,它能决定要丢弃哪些信息和要添加哪些新信息。
Rt代表重置门,重置门用于决定丢弃先前信息的程度。
要注意的是,h只是一个变量,因此在每个时刻,包括最后的线性组合,h都是在用以前的自己和当前的备选答案更新自己。举例来说,这一个变量好比一杯酒,每次我们要把一部分酒倒出去,并把倒出去的酒和新加入的原料混合,然后在倒回来,这里的reset控制的就是要倒出去的,并且混合好之后再倒回来的酒的比例,而update控制的则是用多大的比例混合新原料和倒出来的之前调制好的酒。同理,也可以以此理解LSTM,LSTM的遗忘门功能上和reset相似,而输入门与update相似,不同之处在于LSTM还控制了当前状态的exposure,也就是输出门的功能,这是GRU所没有的。
1.百面机器学习
2. https://zhuanlan.hu.com/p/45649187
3. https://www.jianshu.com/p/39a99c88a565
Ⅵ 什么是BP神经网络
BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:
1、从训练集中取出某一样本,把信息输入网络中。
2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。
4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。
Ⅶ 人工智能:什么是人工神经网络
许多 人工智能 计算机系统的核心技术是人工神经网络(ANN),而这种网络的灵感来源于人类大脑中的生物结构。
通过使用连接的“神经元”结构,这些网络可以通过“学习”并在没有人类参与的情况下处理和评估某些数据。
这样的实际实例之一是使用人工神经网络(ANN)识别图像中的对象。在构建一个识别“猫“图像的一个系统中,将在包含标记为“猫”的图像的数据集上训练人工神经网络,该数据集可用作任何进行分析的参考点。正如人们可能学会根据尾巴或皮毛等独特特征来识别狗一样,人工神经网络(ANN)也可以通过将每个图像分解成不同的组成部分(如颜色和形状)进行识别。
实际上,神经网络提供了位于托管数据之上的排序和分类级别,可基于相似度来辅助数据的聚类和分组。可以使用人工神经网络(ANN)生成复杂的垃圾邮件过滤器,查找欺诈行为的算法以及可以精确了解情绪的客户关系工具。
人工神经网络如何工作
人工神经网络的灵感来自人脑的神经组织,使用类似于神经元的计算节点构造而成,这些节点沿着通道(如神经突触的工作方式)进行信息交互。这意味着一个计算节点的输出将影响另一个计算节点的处理。
神经网络标志着人工智能发展的巨大飞跃,在此之前,人工智能一直依赖于使用预定义的过程和定期的人工干预来产生所需的结果。人工神经网络可以使分析负载分布在多个互连层的网络中,每个互连层包含互连节点。在处理信息并对其进行场景处理之后,信息将传递到下一个节点,然后向下传递到各个层。这个想法是允许将其他场景信息接入网络,以通知每个阶段的处理。
单个“隐藏”层神经网络的基本结构
就像渔网的结构一样,神经网络的一个单层使用链将处理节点连接在一起。大量的连接使这些节点之间的通信得到增强,从而提高了准确性和数据处理吞吐量。
然后,人工神经网络将许多这样的层相互叠放以分析数据,从而创建从第一层到最后一层的输入和输出数据流。尽管其层数将根据人工神经网络的性质及其任务而变化,但其想法是将数据从一层传递到另一层,并随其添加附加的场景信息。
人脑是用3D矩阵连接起来的,而不是大量堆叠的图层。就像人类大脑一样,节点在接收到特定刺激时会在人工神经网络上“发射”信号,并将信号传递到另一个节点。但是,对于人工神经网络,输入信号定义为实数,输出为各种输入的总和。
这些输入的值取决于它们的权重,该权重用于增加或减少与正在执行的任务相对应的输入数据的重要性。其目标是采用任意数量的二进制数值输入并将其转换为单个二进制数值输出。
更复杂的神经网络提高了数据分析的复杂性
早期的神经网络模型使用浅层结构,其中只使用一个输入和输出层。而现代的系统由一个输入层和一个输出层组成,其中输入层首先将数据输入网络,多个“隐藏”层增加了数据分析的复杂性。
这就是“深度学习”一词的由来——“深度”部分专门指任何使用多个“隐藏”层的神经网络。
聚会的例子
为了说明人工神经网络在实际中是如何工作的,我们将其简化为一个实际示例。
想象一下你被邀请参加一个聚会,而你正在决定是否参加,这可能需要权衡利弊,并将各种因素纳入决策过程。在此示例中,只选择三个因素——“我的朋友会去吗?”、“聚会地点远吗?”、“天气会好吗?”
通过将这些考虑因素转换为二进制数值,可以使用人工神经网络对该过程进行建模。例如,我们可以为“天气”指定一个二进制数值,即‘1'代表晴天,‘0'代表恶劣天气。每个决定因素将重复相同的格式。
然而,仅仅赋值是不够的,因为这不能帮助你做出决定。为此需要定义一个阈值,即积极因素的数量超过消极因素的数量。根据二进制数值,合适的阈值可以是“2”。换句话说,在决定参加聚会之前,需要两个因素的阈值都是“1”,你才会决定去参加聚会。如果你的朋友要参加聚会(‘1'),并且天气很好(‘1'),那么这就表示你可以参加聚会。
如果天气不好(‘0'),并且聚会地点很远(‘0'),则达不到这一阈值,即使你的朋友参加(‘1'),你也不会参加聚会。
神经加权
诚然,这是神经网络基本原理的一个非常基本的例子,但希望它有助于突出二进制值和阈值的概念。然而,决策过程要比这个例子复杂得多,而且通常情况下,一个因素比另一个因素对决策过程的影响更大。
要创建这种变化,可以使用“神经加权”——-通过乘以因素的权重来确定因素的二进制值对其他因素的重要性。
尽管示例中的每个注意事项都可能使你难以决策,但你可能会更重视其中一个或两个因素。如果你不愿意在大雨中出行去聚会,那恶劣的天气将会超过其他两个考虑因素。在这一示例中,可以通过赋予更高的权重来更加重视天气因素的二进制值:
天气= w5
朋友= w2
距离= w2
如果假设阈值现在已设置为6,则恶劣的天气(值为0)将阻止其余输入达到所需的阈值,因此该节点将不会“触发”(这意味着你将决定不参加聚会)。
虽然这是一个简单的示例,但它提供了基于提供的权重做出决策的概述。如果要将其推断为图像识别系统,则是否参加聚会(输入)的各种考虑因素将是给定图像的折衷特征,即颜色、大小或形状。例如,对识别狗进行训练的系统可以对形状或颜色赋予更大的权重。
当神经网络处于训练状态时,权重和阈值将设置为随机值。然后,当训练数据通过网络传递时将不断进行调整,直到获得一致的输出为止。
神经网络的好处
神经网络可以有机地学习。也就是说,神经网络的输出结果并不受输入数据的完全限制。人工神经网络可以概括输入数据,使其在模式识别系统中具有价值。
他们还可以找到实现计算密集型答案的捷径。人工神经网络可以推断数据点之间的关系,而不是期望数据源中的记录是明确关联的。
它们也可以是容错的。当神经网络扩展到多个系统时,它们可以绕过无法通信的缺失节点。除了围绕网络中不再起作用的部分进行路由之外,人工神经网络还可以通过推理重新生成数据,并帮助确定不起作用的节点。这对于网络的自诊断和调试非常有用。
但是,深度神经网络提供的最大优势是能够处理和聚类非结构化数据,例如图片、音频文件、视频、文本、数字等数据。在分析层次结构中,每一层节点都在前一层的输出上进行训练,深层神经网络能够处理大量的这种非结构化数据,以便在人类处理分析之前找到相似之处。
神经网络的例子
神经网络应用还有许多示例,可以利用它从复杂或不精确数据中获得见解的能力。
图像识别人工神经网络可以解决诸如分析特定物体的照片等问题。这种算法可以用来区分狗和猫。更重要的是,神经网络已经被用于只使用细胞形状信息来诊断癌症。
近30年来,金融神经网络被用于汇率预测、股票表现和选择预测。神经网络也被用来确定贷款信用评分,学习正确识别良好的或糟糕的信用风险。而电信神经网络已被电信公司用于通过实时评估网络流量来优化路由和服务质量。