1. 请问用网络层地址定义虚拟局域网中用户可以随意移动结点而无须重新配置网络地址是什么意思请详细,通俗
其实就是DHCP(动态主机配置协议),配置DHCP服务器以后,你的电脑只要是在同一个局域网里面就可以获得IP地址,而不用自己手动配置。
2. 网络分为几个层
分七层:
1、物 理 层(Physical Layer)
要传递信息要利用些物理媒体双纽线、同轴电缆等具体物理媒体并OSI7层之内有人把物理媒体当作第0层物理层任务上层提供物理连接及们机械、电气、功能和过程特性 规定使用电缆和接头 类型传送信号电压等层数据还没有被组织仅作原始位流或电气电压处理单位比特。
2、 数 据 链 路 层(Data Link Layer)
数据链路层负责两相邻结点间线路上无差错传送帧单位数据每帧包括定数量数据和些必要控制信息和物理层相似数据链路层要负责建立、维持和释放数据链路连接传送数据时接收点检测所传数据有差错要通知发方重发帧 。
3、 网 络 层(Network Layer)
计算机网络进行通信两计算机之间能会经过多数据链路也能还要经过多通信子网网络层任务选择合适网间路由和交换结点 确保数据及时传送网络层数据链路层提供帧组成数据包包封装有网络层包头其含有逻辑地址信息-,源站点和目站点地址网络地址 。
4、 传 输 层(Transport Layer)
该层任务时根据通信子网特性佳利用网络资源并靠和经济方式两端系统(也源站和目站)会层之间提供建立、维护和取消传输连接功能负责靠地传输数据层信息传送单位报文 。
5、 会 层(Session Layer)
层也称会晤层或对层会层及上高层次数据传送单位,再另外命名统称报文会层,参与具体传输提供,包括访问验证和会管理内建立和维护应用之间通信机制服务器,验证用户登录便由会层完成 。
6、 表 示 层(Presentation Layer)
层主要解决拥护信息语法表示问题欲交换数据,从适合于某用户抽象语法转换适合于OSI系统内部使用传送语法,即提供格式化表示和转换数据服务数据压缩和解压缩,加密和解密等工作都由表示层负责 。
7、 应 用 层(Application Layer)
应用层确定进程之间通信性质满足用户需要及提供网络与用户应用软件之间接口服务。
3. 什么是网络层
网络层是OSI参考模型中的第三层,介于传输层和数据链路层之间,它在数据链路层提供的两个相邻端点之间的数据帧的传送功能上,进一步管理网络中的数据通信,将数据设法从源端经过若干个中间节点传送到目的端,从而向运输层提供最基本的端到端的数据传送服务。主要内容有:虚电路分组交换和数据报分组交换、路由选择算法、阻塞控制方法、X.25协议、综合业务数据网(ISDN)、异步传输模式(ATM)及网际互连原理与实现。
4. OSI网络七层的定义是什么
OSI 七层模型的每一层都具有清晰的特征。基本来说,第七至第四层处理数据源和数据目的地之间的端到端通信,而第三至第一层处理网络设备间的通信。另外, OSI 模型的七层也可以划分为两组:上层(层 7 、层 6 和层 5 )和下层(层 4 、层 3 、层 2 和层 1 )。 OSI 模型的上层处理应用程序问题,并且通常只应用在软件上。最高层,即应用层是与终端用户最接近的。 OSI 模型的下层是处理数据传输的。物理层和数据链路层应用在硬件和软件上。最底层,即物理层是与物理网络媒介(比如说,电线)最接近的,并且负责在媒介上发送数据。
各层的具体描述如下:
第七层:应用层
定义了用于在网络中进行通信和数据传输的接口 - 用户程式;
提供标准服务,比如虚拟终端、文件以及任务的传输和处理;
第六层:表示层
掩盖不同系统间的数据格式的不同性;
指定独立结构的数据传输格式;
数据的编码和解码;加密和解密;压缩和解压缩
第五层:会话层
管理用户会话和对话;
控制用户间逻辑连接的建立和挂断;
报告上一层发生的错误
第四层:传输层
管理网络中端到端的信息传送;
通过错误纠正和流控制机制提供可靠且有序的数据包传送;
提供面向无连接的数据包的传送;
第三层:网络层
定义网络设备间如何传输数据;
根据唯一的网络设备地址路由数据包;
提供流和拥塞控制以防止网络资源的损耗
第二层:数据链路层
定义操作通信连接的程序;
封装数据包为数据帧;
监测和纠正数据包传输错误
第一层:物理层
定义通过网络设备发送数据的物理方式;
作为网络媒介和设备间的接口;
定义光学、电气以及机械特性。
5. 用网络层地址定义虚拟局域网的优点如下:用户可以按照协议类型来组成虚拟局域网,有利于组成基于服务或...
1。不是的。
2。如果是网通的小区宽带,可能是一个局域网。
3。寝室内是局域网。
与隔壁的要看你们的网络怎么搭建的了。
服务器关了,你们可以玩局域网对战游戏的。
6. OSI网络七层结构是什么
网络七层协议:
1、应用层
与其它计算机进行通讯的一个应用,它是对应应用程序的通信服务的。例如,一个没有通信功能的字处理程序就不能执行通信的代码,从事字处理工作的程序员也不关心OSI的第7层。
2、表示层
这一层的主要功能是定义数据格式及加密。例如,FTP允许你选择以二进制或ASCII格式传输。如果选择二进制,那么发送方和接收方不改变文件的内容。
3、会话层
它定义了如何开始、控制和结束一个会话,包括对多个双向消息的控制和管理,以便在只完成连续消息的一部分时可以通知应用,从而使表示层看到的数据是连续的,在某些情况下,如果表示层收到了所有的数据,则用数据代表表示层。示例:RPC,SQL等。
4、传输层
这层的功能包括是否选择差错恢复协议还是无差错恢复协议,及在同一主机上对不同应用的数据流的输入进行复用,还包括对收到的顺序不对的数据包的重新排序功能。
5、网络层
这层对端到端的包传输进行定义,它定义了能够标识所有结点的逻辑地址,还定义了路由实现的方式和学习的方式。为了适应最大传输单元长度小于包长度的传输介质,网络层还定义了如何将一个包分解成更小的包的分段方法。
6、数据链路层
它定义了在单个链路上如何传输数据。这些协议与被讨论的各种介质有关。
7、物理层
OSI的物理层规范是有关传输介质的特性,这些规范通常也参考了其他组织制定的标准。连接头、帧、帧的使用、电流、编码及光调制等都属于各种物理层规范中的内容。物理层常用多个规范完成对所有细节的定义。
7. TCP/IP的五个层是什么
五个层分别是物理层、数据链路层、网络层、传输层、应用层。
假设两台机器AB,以A给B发信息,作为例子解释:
【物理层】
目标:实现AB之间可以发送01信号。
意义:就是物理上实现连接,AB之间用网线连接;或者无线链接。
【数据链路层】
目标:把信息编码成01,并找到B后发给它。
编码:将信息封装成一个数据包,包括头和数据两部分;头里面包含了A和B的物理地址,世上任何两台机器有唯一的物理地址。
发送:A以广播的形式,发给所有A可以发送到的机器,如果自己是B则拿过来,如果不是则丢弃。
【网络层】
目标:改善数据包发送的范围,减少网络负担。
问题:由于A会发送给所有机器,则如果连接的机器越多负担越重。
方案:将世界的机器分区域,一个区域内的网络通过广播发送,区域之间则通过新协议(IP)交流。
协议:物理地址是网卡本身的地址,IP4,IP6则是人为分配的地址,可以通过子网掩码来判断AB是否属于同一个区域。
【传输层】
目标:区分AB上不同应用程序对网络的使用。
方案:通过端口(0-65535),0-1023已经被系统使用了;端口好像进入一个大厦后,要进入房间的门牌号,端口的选择则通过新协议(TCP/UDP)实现。
协议:TCP、UDP分别是两种可靠性级别不同的协议。
【应用层】
目标:实现对AB不同应用程序的数据编码。
原因:不同应用程序根据自己的需求,对数据进行A上编码和B上解码。
8. TCP/IP有哪几层各层的功能是什么
TCP/IP协议分为4个层次,自底向上依次为网络接口层、网络层、传输层和应用层。
网络接口层负责接收IP数据报,并负责把这些数据报发送到指定网络上。
网络层功能为进行网络互连,根据网间报文IP地址,从一个网络通过路由器传到另一网络。
传输层的功能为通信双方的主机提供端到端的服务,传输层对信息流具有调节作用,提供可靠性传输,确保数据到达无误。
应用层的功能为对客户发出的一个请求,服务器作出响应并提供相应的服务。
9. 网络层的概念是什么
网络层是OSI参考模型中的第三层,介于运输层和数据链路层之间,它在数据链路层提供的两个相邻端点之间的数据帧的传送功能上,进一步管理网络中的数据通信,将数据设法从源端经过若直干个中间节点传送到目的端,从而向运输层提供最基本的端到端的数据传送服务。主要内容有:虚电路分组交换和数据报分组交换、路由选择算法、阻塞控制方法、X.25协议、综合业务数据网(ISDN)、异步传输模式(ATM)及网际互连原理与实现。
网络层的产生也是网络发展的结果.在联机系统和线路交换的环境中,网络层的功能没有太大意义.当数据终端增多时.它们之间有中继设备相连.此时会出现一台终端要求不只是与唯一的一台而是能和多台终端通信的情况,这就是产生了把任意两台数据终端设备的数据链接起来的问题,也就是路由或者叫寻径.另外,当一条物理信道建立之后,被一对用户使用,往往有许多空闲时间被浪费掉.人们自然会希望让多对用户共用一条链路,为解决这一问题就出现了逻辑信道技术和虚拟电路技术.
⑴网络层主要功能
网络层为建立网络连接和为上层提供服务,应具备以下主要功能.
1. 路由选择和中继.
2. 激活,终止网络连接.
3. 在一条数据链路上复用多条网络连接,多采取分时复用技术.
4. 差错检测
5. 排序,流量控制.
6. 服务选择.
7. 网络层管理.
8.分段和合段
9.流量控制
10.加速数据传送
11.复位
⑵网络层标准简介
网络层的一些主要标准如下.
ISO.DIS8208:称为"DTE用的X.25分组级协议".
ISO.DIS8348:称为"CO 网络服务定义"(面向连接).
ISO.DIS8349:称为"CL 网络服务定义"(面向无连接).
ISO.DIS8473:称为"CL 网络协议".
ISO.DIS8348:称为"网络层寻址".
除上述标准外,还有许多标准。这些标准都只是解决网络层的部分功能,所以往往需要在网络
层中同时使用几个标准才能完成整个网络层的功能.由于面对的网络不同,网络层将会采用不同的
标准组合.
在具有开放特性的网络中的数据终端设备,都要配置网络层的功能.现在市场上销售的网络硬
设备主要有网关和路由器.
1. 网络层功能概述
网络层是OSI参考模型中的第三层,是通信子网的最高层。网络层关系到通信子网的运行控制,体现了网络应用环境中资源子网访问通信子网的方式。
网络层的主要任务是设法将源结点出的数据包传送到目的结点,从而向传输层提供最基本的端到端的数据传送服务。概括地说,网络层应该具有以下功能:
(1) 为传输层提供服务
网络层提供的服务有两类:面向连接的网络服务和无连接的网络服务。
虚电路服务是网络层向传输层提供的一种使所有数据包按顺序到达目的结点的可靠的数据传送方式,进行数据交换的两个结点之间存在着一条为它们服务的虚电路;而数据报服务是不可靠的数据传送方式,源结点发送的每个数据包都要附加地址、序号等信息,目的结点收到的数据包不一定按序到达,还可能出现数据包的丢失现象。
典型的网络层协议是X.25,它是由ITU-T(国际电信联盟电信标准部)提出的一种面向连接的分组交换协议。
(2) 组包和拆包
在网络层,数据传输的基本单位是数据包(也称为分组)。在发送方,传输层的报文到达网络层时被分为多个数据块,在这些数据块的头部和尾部加上一些相关控制信息后,即组成了数据包(组包)。数据包的头部包含源结点和目标结点的网络地址(逻辑地址)。在接收方,数据从低层到达网络层时,要将各数据包原来加上的包头和包尾等控制信息去掉(拆包),然后组合成报文,送给传输层。
(3) 路由选择
路由选择也叫做路径选择,是根据一定的原则和路由选择算法在多结点的通信子网中选择一条最佳路径。确定路由选择的策略称为路由算法。
在数据报方式中,网络结点要为每个数据包做出路由选择;而在虚电路方式中,只需在建立连接时确定路由。
(4) 流量控制
流量控制的作用是控制阻塞,避免死锁。
网络的吞吐量(数据包数量/秒)与通信子网负荷(即通信子网中正在传输的数据包数量)有着密切的关系。
对防止出现阻赛和死锁,需进行流量控制,通常可采用滑动窗口、预约缓冲区、许可证和分组丢弃四种方法。
2. 路由选择算法简介
路由算法很多,大致可分为静态路由算法和动态路由算法两类。
(1) 静态路由算法
静态路由算法又称为非自适应算法,是按某种固定规则进行的路由选择。其特点是算法简单、容易实现,但效率和性能较差。属于静态路由算法的有以下几种:
☆ 最短路由选择:
☆ 扩散式路由选择:
☆ 随机路由选择:
☆ 集中路由选择:
(2) 动态路由算法
动态路由算法又称为自适应算法,是一种依靠网络的当前状态信息来决定路由的策略。这种策略能较好地适应网络流量、拓扑结构的变化,有利于改善网络的性能;但算法复杂,实现开销大。属于动态路由算法的有以下几种:
☆ 分布式路由选择策略:
☆ 集中路由选择策略:
3. 网络层的网络连接设备
(1) 路由器(Router)
在互联网中,两台主机之间传送数据的通路会有很多条,数据包从一台主机出发,中途要经过多个站点才能到达另一台主机。这些中间站点通常由称为路由器的设备担当,其作用就是为数据包选择一条合适的传送路径。
路由器工作在OSI模型的网络层,是根据数据包中的逻辑地址(网络地址)而不是MAC地址来转发数据包的。
路由器的主要工作是为经过路由器的每个数据包寻找一条最佳传输路径,并将该数据包有效地传送到目的站点。
路由器不仅有网桥的全部功能,还具有路径的选择功能,可根据网络的拥塞程度,自动选择适当的路径传送数据。
路由器与网桥不同之处在于,它并不是使用路由表来找到其他网络中指定设备的地址,而是依靠其它的路由器来完成任务。也就是说,网桥是根据路由表来转发或过滤数据包,而路由器是使用它的信息来为每一个数据包选择最佳路径。
路由器有静态和动态之分。静态路由器需要管理员来修改所有的网络路由表,一般只用于小型的网间互连;而动态路由器能根据指定的路由协议来完成修改路由器信息。
(2) 第三层交换机
随着技术的发展,有些交换机也具备了路由的功能。这些具有路由功能的交换机要在网络层对数据包进行操作,因此被称为第三层交换机。
10. 网络七层协议具体是什么
OSI是一个开放性的通行系统互连参考模型,他是一个定义的非常好的协议规范。OSI模型有7层结构,每层都可以有几个子层。下面我简单的介绍一下这7层及其功能。
OSI的7层从上到下分别是
7 应用层
6 表示层
5 会话层
4 传输层
3 网络层
2 数据链路层
1 物理层
其中高层,既7、6、5、4层定义了应用程序的功能,下面3层,既3、2、1层主要面向通过网络的端到端的数据流。下面我给大家介绍一下这7层的功能:
(1)应用层:与其他计算机进行通讯的一个应用,它是对应应用程序的通信服务的。例如,一个没有通信功能的字处理程序就不能执行通信的代码,从事字处理工作的程序员也不关心OSI的第7层。但是,如果添加了一个传输文件的选项,那么字处理器的程序员就需要实现OSI的第7层。示例:telnet,HTTP,FTP,WWW,NFS,SMTP等。
(2)表示层:这一层的主要功能是定义数据格式及加密。例如,FTP允许你选择以二进制或ASII格式传输。如果选择二进制,那么发送方和接收方不改变文件的内容。如果选择ASII格式,发送方将把文本从发送方的字符集转换成标准的ASII后发送数据。在接收方将标准的ASII转换成接收方计算机的字符集。示例:加密,ASII等。
(3)会话层:他定义了如何开始、控制和结束一个会话,包括对多个双向小时的控制和管理,以便在只完成连续消息的一部分时可以通知应用,从而使表示层看到的数据是连续的,在某些情况下,如果表示层收到了所有的数据,则用数据代表表示层。示例:RPC,SQL等。
(4)传输层:这层的功能包括是否选择差错恢复协议还是无差错恢复协议,及在同一主机上对不同应用的数据流的输入进行复用,还包括对收到的顺序不对的数据包的重新排序功能。示例:TCP,UDP,SPX。
(5)网络层:这层对端到端的包传输进行定义,他定义了能够标识所有结点的逻辑地址,还定义了路由实现的方式和学习的方式。为了适应最大传输单元长度小于包长度的传输介质,网络层还定义了如何将一个包分解成更小的包的分段方法。示例:IP,IPX等。
(6)数据链路层:他定义了在单个链路上如何传输数据。这些协议与被讨论的歌种介质有关。示例:ATM,FDDI等。
(7)物理层:OSI的物理层规范是有关传输介质的特性标准,这些规范通常也参考了其他组织制定的标准。连接头、针、针的使用、电流、电流、编码及光调制等都属于各种物理层规范中的内容。物理层常用多个规范完成对所有细节的定义。示例:Rj45,802.3等。
OSI分层的优点:
(1)人们可以很容易的讨论和学习协议的规范细节。
(2)层间的标准接口方便了工程模块化。
(3)创建了一个更好的互连环境。
(4)降低了复杂度,使程序更容易修改,产品开发的速度更快。
(5)每层利用紧邻的下层服务,更容易记住个层的功能。
大多数的计算机网络都采用层次式结构,即将一个计算机网络分为若干层次,处在高层次的系统仅是利用较低层次的系统提供的接口和功能,不需了解低层实现该功能所采用的算法和协议;较低层次也仅是使用从高层系统传送来的参数,这就是层次间的无关性。因为有了这种无关性,层次间的每个模块可以用一个新的模块取代,只要新的模块与旧的模块具有相同的功能和接口,即使它们使用的算法和协议都不一样。
网络中的计算机与终端间要想正确的传送信息和数据,必须在数据传输的顺序、数据的格式及内容等方面有一个约定或规则,这种约定或规则称做协议。网络协议主要有三个组成部分:
1、语义:
是对协议元素的含义进行解释,不同类型的协议元素所规定的语义是不同的。例如需要发出何种控制信息、完成何种动作及得到的响应等。
2、语法:
将若干个协议元素和数据组合在一起用来表达一个完整的内容所应遵循的格式,也就是对信息的数据结构做一种规定。例如用户数据与控制信息的结构与格式等。
3、时序:
对事件实现顺序的详细说明。例如在双方进行通信时,发送点发出一个数据报文,如果目标点正确收到,则回答源点接收正确;若接收到错误的信息,则要求源点重发一次。
70年代以来,国外一些主要计算机生产厂家先后推出了各自的网络体系结构,但它们都属于专用的。
为使不同计算机厂家的计算机能够互相通信,以便在更大的范围内建立计算机网络,有必要建立一个国际范围的网络体系结构标准。
国际标准化组织ISO 于1981年正式推荐了一个网络系统结构----七层参考模型,叫做开放系统互连模型(Open System Interconnection,OSI)。由于这个标准模型的建立,使得各种计算机网络向它靠拢, 大大推动了网络通信的发展。
OSI 参考模型将整个网络通信的功能划分为七个层次,见图1。它们由低到高分别是物理层(PH)、链路层(DL)、网络层(N)、传输层(T)、会议层(S)、表示层(P)、应用层(A)。每层完成一定的功能,每层都直接为其上层提供服务,并且所有层次都互相支持。第四层到第七层主要负责互操作性,而一层到三层则用于创造两个网络设备间的物理连接.
1.物理层
物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
1.1媒体和互连设备
物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等。通信用的互连设备指DTE和DCE间的互连设备。DTE既数据终端设备,又称物理设备,如计算机、终端等都包括在内。而DCE则是数据通信设备或电路连接设备,如调制解调器等。数据传输通常是经过DTE——DCE,再经过DCE——DTE的路径。互连设备指将DTE、DCE连接起来的装置,如各种插头、插座。LAN中的各种粗、细同轴电缆、T型接、插头,接收器,发送器,中继器等都属物理层的媒体和连接器。
1.2物理层的主要功能
1.2.1为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成.一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接.所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路.
1.2.2传输数据.物理层要形成适合数据传输需要的实体,为数据传送服务.一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞.传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要.
1.3物理层的一些重要标准
物理层的一些标准和协议早在OSI/TC97/C16 分技术委员会成立之前就已制定并在应用了,OSI也制定了一些标准并采用了一些已有的成果.下面将一些重要的标准列出,以便读者查阅.ISO2110:称为"数据通信----25芯DTE/DCE接口连接器和插针分配".它与EIA(美国电子工
业协会)的"RS-232-C"基本兼容。ISO2593:称为"数据通信----34芯DTE/DCE----接口连接器和插针分配"。ISO4092:称为"数据通信----37芯DTE/DEC----接口连接器和插针分配".与EIARS-449兼容。CCITT V.24:称为"数据终端设备(DTE)和数据电路终接设备之间的接口电路定义表".其功能与EIARS-232-C及RS-449兼容于100序列线上.
2.数据链路层
数据链路可以粗略地理解为数据通道。物理层要为终端设备间的数据通信提供传输媒体及其连接.媒体是长期的,连接是有生存期的.在连接生存期内,收发两端可以进行不等的一次或多次数据通信.每次通信都要经过建立通信联络和拆除通信联络两过程.这种建立起来的数据收发关系就叫作数据链路.而在物理媒体上传输的数据难免受到各种不可靠因素的影响而产生差错,为了弥补物理层上的不足,为上层提供无差错的数据传输,就要能对数据进行检错和纠错.数据链路的建立,拆除,对数据的检错,纠错是数据链路层的基本任务。
2.1链路层的主要功能
链路层是为网络层提供数据传送服务的,这种服务要依靠本层具备的功能来实现。链路层应具备如下功能:
2.1.1链路连接的建立,拆除,分离。
2.1.2帧定界和帧同步。链路层的数据传输单元是帧,协议不同,帧的长短和界面也有差别,但无论如何必须对帧进行定界。
2.1.3顺序控制,指对帧的收发顺序的控制。
2.1.4差错检测和恢复。还有链路标识,流量控制等等.差错检测多用方阵码校验和循环码校验来检测信道上数据的误码,而帧丢失等用序号检测.各种错误的恢复则常靠反馈重发技术来完成。
2.2数据链路层的主要协议
数据链路层协议是为发对等实体间保持一致而制定的,也为了顺利完成对网络层的服务。主要协议如下:
2.2.1ISO1745--1975:"数据通信系统的基本型控制规程".这是一种面向字符的标准,利用10个控制字符完成链路的建立,拆除及数据交换.对帧的收发情况及差错恢复也是靠这些字符来完成.ISO1155, ISO1177, ISO2626, ISO2629等标准的配合使用可形成多种链路控制和数据传输方式.
2.2.2ISO3309--1984:称为"HDLC 帧结构".ISO4335--1984:称为"HDLC 规程要素 ".ISO7809--1984:称为"HDLC 规程类型汇编".这3个标准都是为面向比特的数据传输控制而制定的.有人习惯上把这3个标准组合称为高级链路控制规程.
2.2.3ISO7776:称为"DTE数据链路层规程".与CCITT X.25LAB"平衡型链路访问规程"相兼容.
2.3链路层产品
独立的链路产品中最常见的当属网卡,网桥也是链路产品。MODEM的某些功能有人认为属于链路层,对些还有争议.数据链路层将本质上不可靠的传输媒体变成可靠的传输通路提供给网络层。在IEEE802.3情况下,数据链路层分成了两个子层,一个是逻辑链路控制,另一个是媒体访问控制。下图所示为IEEE802.3LAN体系结构。
AUI=连接单元接口 PMA=物理媒体连接
MAU=媒体连接单元 PLS=物理信令
MDI=媒体相关接口
3.网络层
网络层的产生也是网络发展的结果.在联机系统和线路交换的环境中,网络层的功能没有太大意义.当数据终端增多时.它们之间有中继设备相连.此时会出现一台终端要求不只是与唯一的一台而是能和多台终端通信的情况,这就是产生了把任意两台数据终端设备的数据链接起来的问题,也就是路由或者叫寻径.另外,当一条物理信道建立之后,被一对用户使用,往往有许多空闲时间被浪费掉.人们自然会希望让多对用户共用一条链路,为解决这一问题就出现了逻辑信道技术和虚拟电路技术.
3.1网络层主要功能
网络层为建立网络连接和为上层提供服务,应具备以下主要功能:
3.1.1路由选择和中继.
3.1.2激活,终止网络连接.
3.1.3在一条数据链路上复用多条网络连接,多采取分时复用技术 .
3.1.4差错检测与恢复.
3.1.5排序,流量控制.
3.1.6服务选择.
3.1.7网络管理.
3.2网络层标准简介
网络层的一些主要标准如下:
3.2.1 ISO.DIS8208:称为"DTE用的X.25分组级协议"
3.2.2 ISO.DIS8348:称为"CO 网络服务定义"(面向连接)
3.2.3 ISO.DIS8349:称为"CL 网络服务定义"(面向无连接)
3.2.4 ISO.DIS8473:称为"CL 网络协议"
3.2.5 ISO.DIS8348:称为"网络层寻址"
3.2.6 除上述标准外,还有许多标准。这些标准都只是解决网络层的部分功能,所以往往需要在网络层中同时使用几个标准才能完成整个网络层的功能.由于面对的网络不同,网络层将会采用不同的标准组合.
在具有开放特性的网络中的数据终端设备,都要配置网络层的功能.现在市场上销售的网络硬设备主要有网关和路由器.
4.传输层
传输层是两台计算机经过网络进行数据通信时,第一个端到端的层次,具有缓冲作用。当网络层服务质量不能满足要求时,它将服务加以提高,以满足高层的要求;当网络层服务质量较好时,它只用很少的工作。传输层还可进行复用,即在一个网络连接上创建多个逻辑连接。 传输层也称为运输层.传输层只存在于端开放系统中,是介于低3层通信子网系统和高3层之间的一层,但是很重要的一层.因为它是源端到目的端对数据传送进行控制从低到高的最后一层.
有一个既存事实,即世界上各种通信子网在性能上存在着很大差异.例如电话交换网,分组交换网,公用数据交换网,局域网等通信子网都可互连,但它们提供的吞吐量,传输速率,数据延迟通信费用各不相同.对于会话层来说,却要求有一性能恒定的界面.传输层就承担了这一功能.它采用分流/合流,复用/介复用技术来调节上述通信子网的差异,使会话层感受不到.
此外传输层还要具备差错恢复,流量控制等功能,以此对会话层屏蔽通信子网在这些方面的细节与差异.传输层面对的数据对象已不是网络地址和主机地址,而是和会话层的界面端口.上述功能的最终目的是为会话提供可靠的,无误的数据传输.传输层的服务一般要经历传输连接建立阶段,数据传送阶段,传输连接释放阶段3个阶段才算完成一个完整的服务过程.而在数据传送阶段又分为一般数据传送和加速数据传送两种。传输层服务分成5种类型.基本可以满足对传送质量,传送速度,传送费用的各种不同需要.传输层的协议标准有以下几种:
4.1 ISO8072:称为"面向连接的传输服务定义"
4.2 ISO8072:称为"面向连接的传输协议规范"
5.会话层
会话层提供的服务可使应用建立和维持会话,并能使会话获得同步。会话层使用校验点可使通信会话在通信失效时从校验点继续恢复通信。这种能力对于传送大的文件极为重要。会话层,表示层,应用层构成开放系统的高3层,面对应用进程提供分布处理,对话管理,信息表示,恢复最后的差错等.
会话层同样要担负应用进程服务要求,而运输层不能完成的那部分工作,给运输层功能差距以弥补.主要的功能是对话管理,数据流同步和重新同步。要完成这些功能,需要由大量的服务单元功能组合,已经制定的功能单元已有几十种.现将会话层主要功能介绍如下.
5.1为会话实体间建立连接。为给两个对等会话服务用户建立一个会话连接,应该做如下几项工作:
5.1.1将会话地址映射为运输地址
5.1.2选择需要的运输服务质量参数(QOS)
5.1.3对会话参数进行协商
5.1.3识别各个会话连接
5.1.4传送有限的透明用户数据
5.2数据传输阶段
这个阶段是在两个会话用户之间实现有组织的,同步的数据传输.用户数据单元为SSDU,而协议数据单元为SPDU.会话用户之间的数据传送过程是将SSDU转变成SPDU进行的.
5.3连接释放
连接释放是通过"有序释放","废弃","有限量透明用户数据传送"等功能单元来释放会话连接的.会话层标准为了使会话连接建立阶段能进行功能协商,也为了便于其它国际标准参考和引用,定义了12种功能单元.各个系统可根据自身情况和需要,以核心功能服务单元为基础,选配其他功能单元组成合理的会话服务子集.会话层的主要标准有"DIS8236:会话服务定义"和"DIS8237:会话协议规范".
6.表示层
表示层的作用之一是为异种机通信提供一种公共语言,以便能进行互操作。这种类型的服务之所以需要,是因为不同的计算机体系结构使用的数据表示法不同。例如,IBM主机使用EBCDIC编码,而大部分PC机使用的是ASCII码。在这种情况下,便需要会话层来完成这种转换。
通过前面的介绍,我们可以看出,会话层以下5层完成了端到端的数据传送,并且是可靠,无差错的传送.但是数据传送只是手段而不是目的,最终是要实现对数据的使用.由于各种系统对数据的定义并不完全相同,最易明白的例子是键盘,其上的某些键的含义在许多系统中都有差异.这自然给利用其它系统的数据造成了障碍.表示层和应用层就担负了消除这种障碍的任务.
对于用户数据来说,可以从两个侧面来分析,一个是数据含义被称为语义,另一个是数据的表示形式,称做语法.像文字,图形,声音,文种,压缩,加密等都属于语法范畴.表示层设计了3类15种功能单位,其中上下文管理功能单位就是沟通用户间的数据编码规则,以便双方有一致的数据形式,能够互相认识.ISO表示层为服务,协议,文本通信符制定了DP8822,DP8823,DIS6937/2等一系列标准.
7.应用层
应用层向应用程序提供服务,这些服务按其向应用程序提供的特性分成组,并称为服务元素。有些可为多种应用程序共同使用,有些则为较少的一类应用程序使用。应用层是开放系统的最高层,是直接为应用进程提供服务的。其作用是在实现多个系统应用进程相互通信的同时,完成一系列业务处理所需的服务.其服务元素分为两类:公共应用服务元素CASE和特定应用服务元素SASE.CASE提供最基本的服务,它成为应用层中任何用户和任何服务元素的用户,主要为应用进程通信,分布系统实现提供基本的控制机制.特定服务SASE则要满足一些特定服务,如文卷传送,访问管理,作业传送,银行事务,订单输入等.
这些将涉及到虚拟终端,作业传送与操作,文卷传送及访问管理,远程数据库访问,图形核心系统,开放系统互连管理等等.应用层的标准有DP8649"公共应用服务元素",DP8650"公共应用服务元素用协议",文件传送,访问和管理服务及协议.
讨论:OSI七层模型是一个理论模型,实际应用则千变万化,因此更多把它作为分析、评判各种网络技术的依据;对大多数应用来说,只将它的协议族(即协议堆栈)与七层模型作大致的对应,看看实际用到的特定协议是属于七层中某个子层,还是包括了上下多层的功能。
这样分层的好处有:
1.使人们容易探讨和理解协议的许多细节。
2.在各层间标准化接口,允许不同的产品只提供各层功能的一部分,(如路由器在一到三层),或者只提供协议功能的一部分。(如Win95中的Microsoft TCP/IP)
3. 创建更好集成的环境。
4. 减少复杂性,允许更容易编程改变或快速评估。
5. 用各层的headers和trailers排错。
6.较低的层为较高的层提供服务。
7. 把复杂的网络划分成为更容易管理的层。