⑴ 神经网络预测原理!
Back Propagation BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层(隐含层)可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。神经网络很多种,BP神经网络最常用。
⑵ matlabR2013b中神经网络训练好后,如何进行预测
预测的时候还是将需要的参数作为输入。训练的时候不是有15组样本吗(4*15和6*15的),说明输入节点数为4,输出节点数为6。因此预测时,将用于预测的4个参数作为输入,神经网络的6个输出即为预测结果。
神经网络因其很好的函数逼近能力而被广泛应用于非线性系统建模、辨识和控制中。根据应用场合的不同,神经网络可分为静态和动态神经网络两类。静态(或前馈)神经网络没有反馈成分,也不包含输人延时,输出直接由输人通过前向网络算出;动态神经网络的输出不仅依赖当前的输人,还与当前和过去的输入、输出有关。
⑶ 神经网络适合什么预测
这个问题,先可以理解为什么神经网络可以实现预测。
我们将我们平常看到的神经网络转90度来看。最下层(输入层)信息逐渐到上层(输出层)时候可以得到一个预测结果。其中起到关键作用的就是中间的隐藏层。那么可以理解为隐藏层有什么作用导致了整个神经网络可以进行预测。
我们耳熟能详的解释是,隐藏层具有提取特征的能力。那么如何理解这个提取特征的能力?我们以一个公司选举为例,我们要选择一个人当作我们的团队的头头。A1、A2、A3、A4、A5表示5个小职员,B1、B2、B3是中层干部,C_pred表示我们要选择的头头。那么这个选举流程是每个中层干部(B1-B3)都要去分别听5个小职员(A1-A5)的建议,那么做为上级,在听取下级的建议时候,肯定是有倾向的,肯定会更多考虑某一个值得信任的下级的建议,因此可以看出来,中层干部针对不同的小员工的信息具有不同的建议分辨能力,就可以理解为上一层对下一层信息有选择性质的提取,那么中层干部(B1-B3)将提取的信息整合,选出一个头头C_pred。但是经过选举出来的这个头头,必须通过董事会的建议,而董事会已经有了合适的人选C_true,然后董事长告诉大家,C_true是我当年的发小,于是乎中层干部(B1-B3)听到这个信息马上去讨论改选择谁当头头,接着,中层干部(B1-B3)马上去发动手底下的小弟(A1-A5)重新讨论选举头头人问题,于是乎信息又一次次过滤,一次次汇报,最终董事长觉得这个C_pred和自己信息预测的C_true差不多,就通过的他心里的那个坎。
将人类的活动化为数学问题,那么我们可以认为,中层干部(B1-B3)针对不同小职员(A1-A5)的建议吸收程度,视为特征提取,将董事长心里预期C_true和中层干部(B1-B3)的建议后选择人C_pred的落差视为loss,然后将董事长的指示一层层传达上报的行为称为反向传播(BP),最终C_pred复合董事长心里预期,通过他心里的坎可以视为,结果大于score(置信度).
⑷ 神经网络训练好怎么预测
调用网络预测函数a=sim(net,p)
net是通过train函数训练样本集得到的最优网络,p为预测数据集,a就是想要的预测值
⑸ 如何利用matlab进行神经网络预测
matlab 带有神经网络工具箱,可直接调用,建议找本书看看,或者MATLAB论坛找例子。
核心调用语句如下:
%数据输入
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% BP网络训练
% %初始化网络结构
net=newff(inputn,outputn,[8 8]);
net.trainParam.epochs=100;
net.trainParam.lr=0.01;
net.trainParam.goal=0.01;
%网络训练
net=train(net,inputn,outputn);
%% BP网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
%网络预测输出
an=sim(net,inputn_test);
%网络输出反归一化
BPoutput=mapminmax('reverse',an,outputps);
%% 结果分析
⑹ 预测 一般有哪些方法 神经网络
时间序列预测只要能转化为训练样本,即可使用神经网络进行训练。目前常用的几类人工神经网络,如BP神经网络、Elman神经网络、RBF神经网络、GRNN神经网络、小波神经网络以及各类组合神经网络,都是可以应用在时间序列预测中的。
预测效果较好的一般有:1、GRNN神经网络、RBF神经网络。局部逼近网络由于只需调整局部权值,因此训练速度较快,拟合精度也较高。2、Elman神经网络。由于Elman神经网络的承接层的延时算子,使得网络可以记忆历史信息,这正好与时间序列预测的原理相同,极其适于应用于时间序列预测。
⑺ 请问:如何用人工神经网络来进行预测
用第1月到第25月的输入数据,和第1月到第25月的输出数据作为网络的训练数据,然后将你第26月的对应的输入作为网络的输入,就可以得出第26月的输出。
你可以在网上下个别人使用过的神经网络的模板或工具箱,修改成自己需要的就是了。
⑻ matlab怎么利用神经网络做预测
利用matlab做神经网络预测,可按下列步骤进行:
1、提供原始数据
2、训练数据预测数据提取及归一化
3、BP网络训练
4、BP网络预测
5、结果分析
⑼ 如何让利用神经网络进行预测,怎么在进行训练之后,怎么看出训练模型的好坏如何进行评判
可以用MATLAB神经网络工具箱,先提取样本,用mapminmax函数归一化,再newff函数建立网络,设置好训练参数后,使用train函数训练,最后用sim函数看预测结果。
在训练过程中,有一个performance可以观察,它的训练目标就是你设置的goal。在训练过程中,它会自动分出一部分样本作为validation验证,可以保证不过拟合。具体要评价效果还是应该看最后预测的精度。
附件是一个BP预测的实例。
⑽ bp神经网络如何用于预测
x(n+1)=F(x(n)+x(n-1)+.......x(n-1));由已知数据预测下一个数据这是单步预测。