导航:首页 > 网络安全 > 如何能快速搭建神经网络

如何能快速搭建神经网络

发布时间:2022-05-06 20:42:45

❶ 无需深度学习框架,如何从零开始用Python构建神

搭建由一个输入层,一个隐藏层,一个输出层组成的三层神经网络。输入层中的节点数由数据的维度来决定,也就是2个。相应的,输出层的节点数则是由类的数量来决定,也是2个。(因为我们只有一个预测0和1的输出节点,所以我们只有两类输出,实际中,两个输出节点将更易于在后期进行扩展从而获得更多类别的输出)。以x,y坐标作为输入,输出的则是两种概率,一种是0(代表女),另一种是1(代表男)。

❷ 如何在R语言中进行神经网络模型的建立

不能发链接,所以我复制过来了。

#载入程序和数据
library(RSNNS)
data(iris)
#将数据顺序打乱
iris <- iris[sample(1:nrow(iris),length(1:nrow(iris))),1:ncol(iris)]
#定义网络输入
irisValues <- iris[,1:4]
#定义网络输出,并将数据进行格式转换
irisTargets <- decodeClassLabels(iris[,5])
#从中划分出训练样本和检验样本
iris <- splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)
#数据标准化
iris <- normTrainingAndTestSet(iris)
#利用mlp命令执行前馈反向传播神经网络算法
model <- mlp(iris$inputsTrain, iris$targetsTrain, size=5, learnFunc="Quickprop", learnFuncParams=c(0.1, 2.0, 0.0001, 0.1),maxit=100, inputsTest=iris$inputsTest, targetsTest=iris$targetsTest)
#利用上面建立的模型进行预测
predictions <- predict(model,iris$inputsTest)
#生成混淆矩阵,观察预测精度
confusionMatrix(iris$targetsTest,predictions)
#结果如下:
# predictions
#targets 1 2 3
# 1 8 0 0
# 2 0 4 0
# 3 0 1 10

❸ 怎样用python构建一个卷积神经网络

用keras框架较为方便

首先安装anaconda,然后通过pip安装keras

❹ 如何建立神经网络模型

人工神经网络有很多种,我只会最常用的BP神经网络。不同的网络有不同的结构和不同的学习算法。
简单点说,人工神经网络就是一个函数。只是这个函数有别于一般的函数。它比普通的函数多了一个学习的过程。
在学习的过程中,它根据正确结果不停地校正自己的网络结构,最后达到一个满意的精度。这时,它才开始真正的工作阶段。
学习人工神经网络最好先安装MathWords公司出的MatLab软件。利用该软件,你可以在一周之内就学会建立你自己的人工神经网络解题模型。
如果你想自己编程实现人工神经网络,那就需要找一本有关的书籍,专门看神经网络学习算法的那部分内容。因为“学习算法”是人工神经网络的核心。最常用的BP人工神经网络,使用的就是BP学习算法。

❺ 如何用tensorflow搭建卷积神经网络

在MNIST数据集上,搭建一个简单神经网络结构,一个包含ReLU单元的非线性化处理的两层神经网络。在训练神经网络的时候,使用带指数衰减的学习率设置、使用正则化来避免过拟合、使用滑动平均模型来使得最终的模型更加健壮。
程序将计算神经网络前向传播的部分单独定义一个函数inference,训练部分定义一个train函数,再定义一个主函数main。

二、分析与改进设计
1. 程序分析改进
第一,计算前向传播的函数inference中需要将所有的变量以参数的形式传入函数,当神经网络结构变得更加复杂、参数更多的时候,程序的可读性将变得非常差。
第二,在程序退出时,训练好的模型就无法再利用,且大型神经网络的训练时间都比较长,在训练过程中需要每隔一段时间保存一次模型训练的中间结果,这样如果在训练过程中程序死机,死机前的最新的模型参数仍能保留,杜绝了时间和资源的浪费。
第三,将训练和测试分成两个独立的程序,将训练和测试都会用到的前向传播的过程抽象成单独的库函数。这样就保证了在训练和预测两个过程中所调用的前向传播计算程序是一致的。
2. 改进后程序设计
mnist_inference.py
该文件中定义了神经网络的前向传播过程,其中的多次用到的weights定义过程又单独定义成函数。
通过tf.get_variable函数来获取变量,在神经网络训练时创建这些变量,在测试时会通过保存的模型加载这些变量的取值,而且可以在变量加载时将滑动平均值重命名。所以可以直接通过同样的名字在训练时使用变量自身,在测试时使用变量的滑动平均值。
mnist_train.py
该程序给出了神经网络的完整训练过程。
mnist_eval.py
在滑动平均模型上做测试。
通过tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)获取最新模型的文件名,实际是获取checkpoint文件的所有内容。

❻ 如何建立bp神经网络预测 模型

建立BP神经网络预测 模型,可按下列步骤进行:

1、提供原始数据

2、训练数据预测数据提取及归一化

3、BP网络训练

4、BP网络预测

5、结果分析

现用一个实际的例子,来预测2015年和2016年某地区的人口数。

已知2009年——2014年某地区人口数分别为3583、4150、5062、4628、5270、5340万人

执行BP_main程序,得到

[ 2015, 5128.631704710423946380615234375]

[ 2016, 5100.5797325642779469490051269531]

代码及图形如下。

❼ 神经网络控制器怎样搭建

你先用PID控制得到训练数据,然后用训练数据去训练神经网络,最后能生成一个神经网络控制器,这样就可以了!

❽ 如何构建深度神经网络

找好损失函数,设置好步长, 把电脑放到散热好的地方, 运行, 等待

❾ 如何简单地创建复杂神经网络

别整这么麻烦,其实就是y=f(k),每一个周期是一个k的坐标刻度,k作为输入,y作为输出,你把实验数据都输入神经网络就搞定了,请教个最简单的BP神经网络matlab仿真

阅读全文

与如何能快速搭建神经网络相关的资料

热点内容
中国移动网络要不要交网费 浏览:766
苹果只有2g网络怎么解决 浏览:414
我想做电脑以及网络综合布线工作 浏览:94
视频上出现网络异常是怎么回事 浏览:242
公益网络安全宣传官证书加分吗 浏览:469
网络营销我为家乡代言 浏览:215
网络如何注册新公司 浏览:747
hp台式机网络同传怎么关闭 浏览:683
无线网络访问权利 浏览:960
有没有软件可以测试出来网络卡顿 浏览:929
小米下拉网络投屏开关如何设置 浏览:897
网络游戏设置时间 浏览:560
如何网络订购曲阜门票 浏览:106
网络消费还有哪些新的特征 浏览:796
古剑奇谭网络版交易平台哪个好 浏览:816
越南手机什么制式网络 浏览:930
尔雅网络课怎么设置 浏览:892
网络电视盒怎么还有维护密码 浏览:309
非wifi网络缓存 浏览:130
台式机的网络想换成wifi 浏览:659

友情链接