路由器的基本功能如下:
第一,网络互连:路由器支持各种局域网和广域网接口,主要用于互连局域网和广域网,实现不同网络互相通信;
第二,数据处理:提供包括分组过滤、分组转发、优先级、复用、加密、压缩和防火墙等功能;
第三,网络管理:路由器提供包括路由器配置管理、性能管理、容错管理和流量控制等功能。
拓展资料
路由器是互联网络中必不可少的网络设备之一,路由器是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读”懂对方的数据,从而构成一个更大的网络。 路由器有两大典型功能,即数据通道功能和控制功能。数据通道功能包括转发决定、背板转发以及输出链路调度等,一般由特定的硬件来完成;控制功能一般用软件来实现,包括与相邻路由器之间的信息交换、系统配置、系统管理等。
要解释路由器的概念,首先要介绍什么是路由。所谓“路由”,是指把数据从一个地方传送到另一个地方的行为和动作,而路由器,正是执行这种行为动作的机器,英文名称Router。
② 路由器里的IP 地址和端口号是起什么作用的
路由器里的IP地址和端口号指的都是局域网内电脑的IP地址和端口号
说通俗点路由器就像小区的门卫室,控制小区的进出,管理小区内部的住户
IP地址就是小区内部住宅的门牌号,端口就是指某栋住宅的门,窗等可以提供出入的地方
也就是说在路由器上设置IP地址和端口号
可以控制局域网内某台电脑对外的活动(比如和局域网内其他电脑联系,比如和局域网外的电脑联系,都受路由器控制),但是电脑自身的活动不受限制,比如看电影,处理文档等等
就像小区一样,门卫室可以通过防盗门防盗窗控制你住户的进出,但是无法限制你在室内的活动一样
③ 路由器主要的作用是什么
所谓路由就是指通过相互连接的网络把信息从源地点移动到目标地点的活动。一般来说,在路由过程中,信息至少会经过一个或多个中间节点。通常,人们会把路由和交换进行对比,这主要是因为在普通用户看来两者所实现的功能是完全一样的。其实,路由和交换之间的主要区别就是交换发生在OSI参考模型的第二层(数据链路层),而路由发生在第三层,即网络层。这一区别决定了路由和交换在移动信息的过程中需要使用不同的控制信息,所以两者实现各自功能的方式是不同的。
早在40多年之间就已经出现了对路由技术的讨论,但是直到80年代路由技术才逐渐进入商业化的应用。路由技术之所以在问世之初没有被广泛使用主要是因为80年代之前的网络结构都非常简单,路由技术没有用武之地。直到最近十几年,大规模的互联网络才逐渐流行起来,为路由技术的发展提供了良好的基础和平台。
路由器是互联网的主要节点设备。路由器通过路由决定数据的转发。转发策略称为路由选择(routing),这也是路由器名称的由来(router,转发者)。作为不同网络之间互相连接的枢纽,路由器系统构成了基于 TCP/IP 的国际互连网络 Internet 的主体脉络,也可以说,路由器构成了 Internet 的骨架。它的处理速度是网络通信的主要瓶颈之一,它的可*性则直接影响着网络互连的质量。因此,在园区网、地区网、乃至整个 Internet 研究领域中,路由器技术始终处于核心地位,其发展历程和方向,成为整个 Internet 研究的一个缩影。在当前我国网络基础建设和信息建设方兴未艾之际,探讨路由器在互连网络中的作用、地位及其发展方向,对于国内的网络技术研究、网络建设,以及明确网络市场上对于路由器和网络互连的各种似是而非的概念,都具有重要的意义。
路由器的作用
路由器的一个作用是连通不同的网络,另一个作用是选择信息传送的线路。选择通畅快捷的近路,能大大提高通信速度,减轻网络系统通信负荷,节约网络系统资源,提高网络系统畅通率,从而让网络系统发挥出更大的效益来。
从过滤网络流量的角度来看,路由器的作用与交换机和网桥非常相似。但是与工作在网络物理层,从物理上划分网段的交换机不同,路由器使用专门的软件协议从逻辑上对整个网络进行划分。例如,一台支持IP协议的路由器可以把网络划分成多个子网段,只有指向特殊IP地址的网络流量才可以通过路由器。对于每一个接收到的数据包,路由器都会重新计算其校验值,并写入新的物理地址。因此,使用路由器转发和过滤数据的速度往往要比只查看数据包物理地址的交换机慢。但是,对于那些结构复杂的网络,使用路由器可以提高网络的整体效率。路由器的另外一个明显优势就是可以自动过滤网络广播。从总体上说,在网络中添加路由器的整个安装过程要比即插即用的交换机复杂很多。
一般说来,异种网络互联与多个子网互联都应采用路由器来完成。
路由器的主要工作就是为经过路由器的每个数据帧寻找一条最佳传输路径,并将该数据有效地传送到目的站点。由此可见,选择最佳路径的策略即路由算法是路由器的关键所在。为了完成;这项工作,在路由器中保存着各种传输路径的相关数据——路径表(Routing Table),供路由选择;时使用。路径表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名字等内容。路径表可以是由系统管理员固定设置好的,也可以由系统动态修改,可以由路由器自动调整,也可以由主机控制。
1.静态路径表
由系统管理员事先设置好固定的路径表称之为静态(static)路径表,一般是在系统安装时就根据网络的配置情况预先设定的,它不会随未来网络结构的改变而改变。
2.动态路径表
动态(Dynamic)路径表是路由器根据网络系统的运行情况而自动调整的路径表。路由器根据路由选择协议(Routing Protocol)提供的功能,自动学习和记忆网络运行情况,在需要时自动计算数据传输的最佳路径。路由器的结构路由器的体系结构
从体系结构上看,路由器可以分为第一代单总线单CPU结构路由器、第二代单总线主从CPU结构路由器、第三代单总线对称式多CPU结构路由器;第四代多总线多CPU结构路由器、第五代共享内存式结构路由器、第六代交*开关体系结构路由器和基于机群系统的路由器等多类。
路由器的构成
路由器具有四个要素:输入端口、输出端口、交换开关和路由处理器。
输入端口是物理链路和输入包的进口处。端口通常由线卡提供,一块线卡一般支持4、8或16个端口,一个输入端口具有许多功能。第一个功能是进行数据链路层的封装和解封装。第二个功能是在转发表中查找输入包目的地址从而决定目的端口(称为路由查找),路由查找可以使用一般的硬件来实现,或者通过在每块线卡上嵌入一个微处理器来完成。第三,为了提供QoS(服务质量),端口要对收到的包分成几个预定义的服务级别。第四,端口可能需要运行诸如SLIP(串行线网际协议)和PPP(点对点协议)这样的数据链路级协议或者诸如PPTP(点对点隧道协议)这样的网络级协议。一旦路由查找完成,必须用交换开关将包送到其输出端口。如果路由器是输入端加队列的,则有几个输入端共享同一个交换开关。这样输入端口的最后一项功能是参加对公共资源(如交换开关)的仲裁协议。
交换开关可以使用多种不同的技术来实现。迄今为止使用最多的交换开关技术是总线、交*开关和共享存贮器。最简单的开关使用一条总线来连接所有输入和输出端口,总线开关的缺点是其交换容量受限于总线的容量以及为共享总线仲裁所带来的额外开销。交*开关通过开关提供多条数据通路,具有N×N个交*点的交*开关可以被认为具有2N条总线。如果一个交*是闭合,输入总线上的数据在输出总线上可用,否则不可用。交*点的闭合与打开由调度器来控制,因此,调度器限制了交换开关的速度。在共享存贮器路由器中,进来的包被存贮在共享存贮器中,所交换的仅是包的指针,这提高了交换容量,但是,开关的速度受限于存贮器的存取速度。尽管存贮器容量每18个月能够翻一番,但存贮器的存取时间每年仅降低5%,这是共享存贮器交换开关的一个固有限制。输出端口在包被发送到输出链路之前对包存贮,可以实现复杂的调度算法以支持优先级等要求。与输入端口一样,输出端口同样要能支持数据链路层的封装和解封装,以及许多较高级协议。
路由处理器计算转发表实现路由协议,并运行对路由器进行配置和管理的软件。同时,它还处理那些目的地址不在线卡转发表中的包。
④ 路由器接收网络信号的原理是什么
传统地,路由器工作于OSI七层协议中的第三层,其主要任务是接收来自一个网络接口的数据包,根据其中所含的目的地址,决定转发到下一个目的地址。因此,路由器首先得在转发路由表中查找它的目的地址,若找到了目的地址,就在数据包的帧格前添加下一个MAC地址,同时IP数据包头的TTL(Time To Live)域也开始减数,并重新计算校验和。当数据包被送到输出端口时,它需要按顺序等待,以便被传送到输出链路上。 路由器在工作时能够按照某种路由通信协议查找设备中的路由表。如果到某一特定节点有一条以上的路径,则基本预先确定的路由准则是选择最优(或最经济)的传输路径。由于各种网络段和其相互连接情况可能会因环境变化而变化,因此路由情况的信息一般也按所使用的路由信息协议的规定而定时更新。 网络中,每个路由器的基本功能都是按照一定的规则来动态地更新它所保持的路由表,以便保持路由信息的有效性。为了便于在网络间传送报文,路由器总是先按照预定的规则把较大的数据分解成适当大小的数据包,再将这些数据包分别通过相同或不同路径发送出去。当这些数据包按先后秩序到达目的地后,再把分解的数据包按照一定顺序包装成原有的报文形式。路由器的分层寻址功能是路由器的重要功能之一,该功能可以帮助具有很多节点站的网络来存储寻址信息,同时还能在网络间截获发送到远地网段的报文,起转发作用;选择最合理的路由,引导通信也是路由器基本功能;多协议路由器还可以连接使用不同通信协议的网络段,成为不同通信协议网络段之间的通信平台。
⑤ 路由器在网络中的作用
路由器(Router)是一种负责寻径的网络设备,它在互连网络中从多条路径中寻找通讯量最少的一条网络路径提供给用户通信。路由器用于连接多个逻辑上分开的网络。对用户提供最佳的通信路径,路由器利用路由表为数据传输选择路径,路由表包含网络地址以及各地址之间距离的清单,路由器利用路由表查找数据包从当前位置到目的地址的正确路径。路由器使用最少时间算法或最优路径算法来调整信息传递的路径,如果某一网络路径发生故障或堵塞,路由器可选择另一条路径,以保证信息的正常传输。路由器可进行数据格式的转换,成为不同协议之间网络互连的必要设备。
路由器使用寻径协议来获得网络信息,采用基于“寻径矩阵”的寻径算法和准则来选择最优路径。按照OSI参考模型,路由器是一个网络层系统。路由器分为单协议路由器和多协议路由器。
Internet由各种各样的网络构成,路由器是其中非常重要的组成部分,整个Internet上的路由器不计其数。Intranet要并入Internet,兼作Internet服务,路由器是必不可少的组件,并且路由器的配置也比较复杂。
(一)路由器的寻址和路由选择
在互连网上交换信息的一个基本要求是每个站都具有可达的唯一地址。像邮政编址类似,互连网地址也由几部分组成。在互连网上,通常要求使用网络地址、主机地址和计算机上运行的应用。
规定了地址之后,接下来便是如何选择路径到达报文的终点。路由选择涉及规定路由选择参数以及如何获得这些参数。
在互连网中使用的地址是32位的IP地址,该地址由网络号和主机号组成。IP地址分为下述3类:
A类地址使用7位来标识网络,24位用来规定网络上的主机;
B类地址使用14位来标识网络,16位用来标识主机;
C类地址使用21位来标识网络,8位用来标识主机。
路由器在选择路径时常用的算法有两种:一是距离向量;二是链路状态。前一种由路由选择信息协议(RIP)使用,后一种由开放式最短路径优先协议(OSPF)使用。
现举例来说明路由器如何工作。假设由一个路由器连接了三个子网,子网地址(掩码)分别为1000、2000
和
3000,相互通信的两个站的地址分别是1400和2034。
假定编址为1400的站向2034发送报文。信源站首先将其网络地址掩码(1000)与终点网络地址掩码进行比较,因为两者不同,源站认识到报文接收者不在同一LAN上,
不能直接发送到接收者。于是该源站便从其路由选择表中把它所连接的路由器1的地址和该报文置于一个信封内,并将信封发给路由器1。
路由器1收到报文,丢掉信封,观察报文的终点地址,将其与它具有的3个网络地址掩码(1000,2000
和
3000)比较。由于与2000相同,
路由器便将报文直接发送给接收者。当然,这个例子是互连网络中最简单的一种,但基本原理是一样的。
(二)路由器与网桥的差别
路由器在网络层提供连接服务,用路由器连接的网络可以使用在数据链路层和物理层完全不同的协议。由于路由器操作的OSI层次比网桥高,所以,路由器提供的服务更为完善。路由器可根据传输费用、转接时延、网络拥塞或信源和终点间的距离来选择最佳路径。路由器的服务通常要由端用户设备明确地请求,它处理的仅仅是由其它端用户设备要求寻址的报文。
路由器与网桥的另一个重要差别是,路由器了解整个网络,维持互连网络的拓扑,了解网络的状态,因而可使用最有效的路径发送包。
网桥和路由器之间功能上的差别经常很模糊。由于网桥变得越来越复杂,它们现在能处理一些以前由路由器处理的日常杂务,这样使很多路由器失了业。执行路由功能的网桥有时也称为网桥路由器(brouters)。
⑥ 路由器工作原理
我们知道路由器是用来连接不同网段或网络的,在一个局域网中,如果不需与外界网络进行通信的话,内部网络的各工作站都能识别其它各节点,完全可以通过交换机就可以实现目的发送,根本用不上路由器来记忆局域网的各节点MAC地址。路由器识别不同网络的方法是通过识别不同网络的网络ID号进行的,所以为了保证路由成功,每个网络都必须有一个唯一的网络编号。路由器要识别另一个网络,首先要识别的就是对方网络的路由器IP地址的网络ID,看是不是与目的节点地址中的网络ID号相一致。如果是当然就向这个网络的路由器发送了,接收网络的路由器在接收到源网络发来的报文后,根据报文中所包括的目的节点IP地址中的主机ID号来识别是发给哪一个节点的,然后再直接发送。
为了更清楚地说明路由器的工作原理,现在我们假设有这样一个简单的网络。假设其中一个网段网络ID号为"A",在同一网段中有4台终端设备连接在一起,这个网段的每个设备的IP地址分别假设为:A1、A2、A3和A4。连接在这个网段上的一台路由器是用来连接其它网段的,路由器连接于A网段的那个端口IP地址为A5。同样路由器连接另一网段为B网段,这个网段的网络ID号为"B",那连接在B网段的另几台工作站设备设的IP地址我们设为:B1、B2、B3、B4,同样连接与B网段的路由器端口的IP地址我们设为B5,结构如图1所示。
在这样一个简单的网络中同时存在着两个不同的网段,现如果A网段中的A1用户想发送一个数据给B网段的B2用户,有了路由器就非常简单了。
首先A1用户把所发送的数据及发送报文准备好,以数据帧的形式通过集线器或交换机广播发给同一网段的所有节点(集线器都是采取广播方式,而交换机因为不能识别这个地址,也采取广播方式),路由器在侦听到A1发送的数据帧后,分析目的节点的IP地址信息(路由器在得到数据包后总是要先进行分析)。得知不是本网段的,就把数据帧接收下来,进一步根据其路由表分析得知接收节点的网络ID号与B5端口的网络ID号相同,这时路由器的A5端口就直接把数据帧发给路由器B5端口。B5端口再根据数据帧中的目的节点IP地址信息中的主机ID号来确定最终目的节点为B2,然后再发送数据到节点B2。这样一个完整的数据帧的路由转发过程就完成了,数据也正确、顺利地到达目的节点。
⑦ 网络无线路由器的作用是什么
你好,无线路由器的作用就是WiFi发射器,形成一个热点,实现手机,平板等电子产品免费上网。就可以使用免费的无线,其实你也可以使用随身WiFi来代替它,功能是一样的,不但便宜而且利于携带。
我最近买的一款腾讯全民WiFi就挺不错的,插到电脑上就会自动下载驱动安装,特别简单,而且信号也挺强的,支持多台设备同时连接,防木马,防蹭网,功能很多,而且还很便宜呢!
⑧ 路由器的作用和工作原理
路由器工作原理
路由器工作原理
传统地,路由器工作于OSI七层协议中的第三层,其主要任务是接收来自一个网络接口的数据包,根据其中所含的目的地址,决定转发到下一个目的地址。因此,路由器首先得在转发路由表中查找它的目的地址,若找到了目的地址,就在数据包的帧格前添加下一个MAC地址,同时IP数据包头的TTL(Time To Live)域也开始减数,并重新计算校验和。当数据包被送到输出端口时,它需要按顺序等待,以便被传送到输出链路上。
路由器在工作时能够按照某种路由通信协议查找设备中的路由表。如果到某一特定节点有一条以上的路径,则基本预先确定的路由准则是选择最优(或最经济)的传输路径。由于各种网络段和其相互连接情况可能会因环境变化而变化,因此路由情况的信息一般也按所使用的路由信息协议的规定而定时更新。
网络中,每个路由器的基本功能都是按照一定的规则来动态地更新它所保持的路由表,以便保持路由信息的有效性。为了便于在网络间传送报文,路由器总是先按照预定的规则把较大的数据分解成适当大小的数据包,再将这些数据包分别通过相同或不同路径发送出去。当这些数据包按先后秩序到达目的地后,再把分解的数据包按照一定顺序包装成原有的报文形式。路由器的分层寻址功能是路由器的重要功能之一,该功能可以帮助具有很多节点站的网络来存储寻址信息,同时还能在网络间截获发送到远地网段的报文,起转发作用;选择最合理的路由,引导通信也是路由器基本功能;多协议路由器还可以连接使用不同通信协议的网络段,成为不同通信协议网络段之间的通信平台。
一般来说,路由器的主要工作是对数据包进行存储转发,具体过程如下:
第一步:当数据包到达路由器,根据网络物理接口的类型,路由器调用相应的链路层功能模块,以解释处理此数据包的链路层协议报头。这一步处理比较简单,主要是对数据的完整性进行验证,如CRC校验、帧长度检查等。
第二步:在链路层完成对数据帧的完整性验证后,路由器开始处理此数据帧的IP层。这一过程是路由器功能的核心。根据数据帧中IP包头的目的IP地址,路由器在路由表中查找下一跳的IP地址;同时,IP数据包头的TTL(Time To Live)域开始减数,并重新计算校验和(Checksum)。
第三步:根据路由表中所查到的下一跳IP地址,将IP数据包送往相应的输出链路层,被封装上相应的链路层包头,最后经输出网络物理接口发送出去。
简单地说,路由器的主要工作就是为经过路由器的每个数据包寻找一条最佳传输路径,并将该数据包有效地传送到目的站点。由此可见,选择最佳路径策略或叫选择最佳路由算法是路由器的关键所在。为了完成这项工作,在路由器中保存着各种传输路径的相关数据——路由表(Routing Table),供路由选择时使用。上述过程描述了路由器的主要而且关键的工作过程,但没有说明其它附加性能,例如访问控制、网络地址转换、排队优先级等。
⑨ 问一下ip,网络地址和网络号有什么关系
4/5 分步阅读
网络号表示某个IP段,由IP地址和子网掩码运算获得,主机根据此号判断目的主机是在本网段(内网)还是需要送到网关(路由器)在外网上寻找。
2/5
每个IP地址都被分为两个部分即网络地址和主机地址。这样做的目的是为了在路由器转发数据包时更方便的寻址,就像邮递员送信时先把同一个省的邮件放在一起,然后同省中同一个市的邮件在放在一起进行寄送一样。那最终的收信人可能是同一个市的但住址门牌号不同。路由器先看数据包的中目的IP的网络地址,把这个数据包送到某个网络时后再根据该数据包中目的IP的主机部分从该网络中找到目的主机。所以我们可以认为网络地址=网络号,主机地址=主机号
3/5
子网号也可以认为和网络号意义相同。它只是在划分了子网后才会有的。
具体的计算方法如下:
将IP和子网掩码都转换为32的二进制,进行与运算,得到的结果就是该IP的网络地址或子网地址。与运算的特点是:有0,便为0,全1才为1。
4/5
具体过程如下:
11001010 -------202的二进制表示
11111111--------255的二进制表示
11001010--------与运算的结果=202
01110000-------112的二进制表示
11111111-------255的二进制表示
01110000-------与运算的结果=112
00001110------14的二进制表示
11111111------255的二进制表示
00001110-----与运算的结果=14
10001001-----137的二进制表示
11100000------224的二进制表示
10000000-------与运算的结果=128
5/5
所以一个主机的IP地址是202.112.14.137,掩码是255.255.255.224的网络地址是202.112.14.128,子网号是128。主机地址是202.112.14.137 这个就是网络号和主机号的区别
⑩ 路由表的工作原理以及怎么利用
路由器利用网络寻址功能使路由器能够在网络中确定一条最佳的路径,IP 地址的网络部分确定分组的目标网络,并通过IP地址的主机部分和设备的MAC地址确定到目标节点的连接。路由器的某一个接口接收到一个数据包时,会查看包中的目标网络地址以判断该包的目的地址在当前的路由表中是否存在(即路由器是否知道到达目标网络的路径),如果发现包的目标地址与本路由器的某个接口所连接的网络地址相同,那么马上数据转发到相应接口;如果发现包的目标地址不是自己的直连网段,路由器会查看自己的路由表,查找包的目的网络所对应的接口,并从相应的接口转发出去如果路由表中记录的网络地址与包的目标地址不匹配,则根据路由器配置转发到默认接口,在没有配置默认接口的情况下会给用户返回目标地址不可达的ICMP信息。
为了完成“路由”的工作,在路由器中保存着各种传输路径的相关数据--路由表(Routing Table),供路由选择时使用。路由表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名字等内容。路由表可以是由系统管理员固定设置好的,也可以由系统动态修改,可以由路由器自动调整,也可以由主机控制。在路由器中涉及到两个有关地址的名字概念,那就是:静态路由表和动态路由表。由系统管理员事先设置好固定的路由表称之为静态(static)路由表,一般是在系统安装时就根据网络的配置情况预先设定的,它不会随未来网络结构的改变而改变。动态(Dynamic)路由表是路由器根据网络系统的运行情况而自动调整的路由表。路由器根据路由选择协议(Routing Protocol)提供的功能,自动学习和记忆网络运行情况,在需要时自动计算数据传输的最佳路径。
为了简单地说明路由器的工作原理,现在我们假设有这样一个简单的网络。如图所示,A、B、C、D四个网络通过路由器连接在一起。
现在我们来看一下在如图所示网络环境下路由器又是如何发挥其路由、数据转发作用的。现假设网络A中一个用户A1要向C网络中的C3用户发送一个请求信号时,信号传递的步骤如下:
第1步:用户A1将目的用户C3的地址C3,连同数据信息以数据帧的形式通过集线器或交换机以广播的形式发送给同一网络中的所有节点,当路由器A5端口侦听到这个地址后,分析得知所发目的节点不是本网段的,需要路由转发,就把数据帧接收下来。
第2步:路由器A5端口接收到用户A1的数据帧后,先从报头中取出目的用户C3的IP地址,并根据路由表计算出发往用户C3的最佳路径。因为从分析得知到C3的网络ID号与路由器的C5网络ID号相同,所以由路由器的A5端口直接发向路由器的C5端口应是信号传递的最佳途经。
第3步:路由器的C5端口再次取出目的用户C3的IP地址,找出C3的IP地址中的主机ID号,如果在网络中有交换机则可先发给交换机,由交换机根据MAC地址表找出具体的网络节点位置;如果没有交换机设备则根据其IP地址中的主机ID直接把数据帧发送给用户C3,这样一个完整的数据通信转发过程也完成了。
从上面可以看出,不管网络有多么复杂,路由器其实所作的工作就是这么几步,所以整个路由器的工作原理基本都差不多。当然在实际的网络中还远比上图所示的要复杂许多,实际的步骤也不会像上述那么简单,但总的过程是这样的.