㈠ VSAT卫星通信网的拓扑组网形式
网络拓扑结构、特点及应用环境
VSAT卫星通信网的网络结构可分为星状网、网状网和混合网(星状+网状)等三种。
采用星状结构的VSAT网最适合于广播、收集等进行点到多点间通信的应用环境,例如具有众多分支机构的全国性或全球性单位作为专用数据网,以改善其自动化管理、发布或收集信息等。
采用网状结构VSAT网(在进行信道分配、网络监控管理等时一般仍要用星形结构)较适合于点到点之间进行实时性通信的应用环境,比如建立单位内的VSAT专用电话网等。
采用混合结构的VSAT网最适合于点到点或点到多点之间进行综合业务传输的应用环境。此种结构的VSAT网在进行点到点间传输或实时性业务传输时采用网状结构,而进行点到多点间传输或数据传输时采用星状结构;在星状和网状结构时可采用不同的多址方式。此种结构的VSAT网综合了前两种结构的优点,允许两种差别较大的VSAT站(即小用户用小站,大用户用大站)在同一个网内较好地共存,能进行综合业务传输,能择优选择最合适的多址方式,估计会有较大的发展。
VSAT的组网
VSAT组网非常灵活,可根据用户要求单独组成一个专用网,也可与其它用户一起组成一个共用网(多个专用网共用同一个主站)。 一个VSAT网实际上包括业务子网和控制子网两部分,业务子网负责交换、传输数据或话音业务,控制子网负责对业务子网的管理和控制。传输数据或话音业务的信道可称为业务信道,传输管理或控制信息的信道称为控制信道。
目前,典型VSAT网的控制子网都是星状网,而业务子网的组网则视业务的要求而定,通常数据网为星状网而话音网为网状网。
(1) 数据VSAT网的组网
在数据VSAT卫星通信网中,小站和主站通过卫星转发器构成星状网,主站是VSAT网的中心结点。星状网充分体现了VSAT系统的特点,即小站要尽可能小。其主站的有效全向辐射功率(EIRP)高,接收品质因数(G/T)大,故所有小站均可同主站互通。由于小站天线口径小、发射EIRP低、接收G/T小,而此小站之间不能直接通信,必须经主站转发。
数据VSAT网通常是分组交换网,数据业务采用分组传输方式,其工作过程是这样的:任何进入VSAT网的数据在发送之前先进行格式化,即把较长的数据报文分解成若干固定长度的信息段,加上地址和控制信息后构成一个分组,传输和交换时以一个分组作为整体来进行,到达接收点后,再把各分组按原来的顺序装配起来,恢复成原来的报文。
以星状网的主站为参考点,数据VSAT网使用的卫星信道可以分为外向(Outbound)信道和内向(Inbound)信道。在数据VSAT网中,业务信道和控制信道是一致的,即业务子网和控制子网具有相同的星状结构。
主站通过卫星转发器向小站发数据的过程叫外向传输。用于外向传输的信道(外向信道)一般采用时分复用方式(TDM)。从主站向各小站发送的数据,由主计算机进行分组化,组成TDM帧,通过卫星以广播方式发向网中所有小站。每个TDM帧中都有进行同步所需的同步码,帧中每个分组都包含有一个接收小站的地址。小站根据每个分组中携带的地址进行接收。
小站通过卫星转发器向主站发数据的过程叫内向传输。用于内向传输的信道(内向信道)一般采用随机争用方式(ALOHA一类),也有采用SCPC和TDMA的。由小站向主站发送的数据,由小站进行格式化,组成信道帧(其中包括起始标记、地址字段、控制字段、数据字段、CRC和终止标记),通过卫星按照采用的信道共享协议发向主站。
业务信道和控制信道通常使用同一外向信道或内向信道。
(2) 话音VSAT网的组网
对于使用同步卫星转发器的话音VSAT网来说,用户的要求通常是希望网内任意两个VSAT小站能够直接通话而不是经过主站转发(双跳使响应时间超过1s,用户不易习惯)。这个要求决定了话音VSAT网应该是网状网。即话音VSAT网的业务子网是网状网而控制子网是星状网,网控中心所在的站称为中心站。
1) 业务信道
话音VSAT网通常采用线路交换方式,这是由电话业务的实时性决定的。
话音VSAT网的业务子网中,业务信道(话音信道)较多采用简单易行的SCPC方式(也可以采用TDMA等多址方式)。对以话音业务为主、采用线路交换的话音VSAT网来说,显然采用按申请分配信道资源方式是比较合适的,同时在少数大业务量站间可分配一定数量的预分配信道。
2) 控制信道
话音VSAT网的控制子网相当于一个数据网。在控制子网中,小站与主站之间一般采用TDM/ALOHA体制,即外向传输采用TDM,内向传输采用ALOHA、S-ALOHA或其它改进型。此种方式技术简单,造价低廉,因此在实用系统中应用较多(例如TES系统)。
㈡ 按照网络的拓扑结构,计算机网络可以划分为哪几类
按照网络的拓扑结构,计算机网络可以划分为总线型拓扑、星型拓扑、环型拓扑、树型拓扑、网状拓扑和混合型拓扑。
1、星型拓扑
星型拓扑结构的优点
(1)结构简单,连接方便,管理和维护都相对容易,而且扩展性强。
(2)网络延迟时间较小,传输误差低。
(3)在同一网段内支持多种传输介质,除非中央节点故障,否则网络不会轻易瘫痪。
(4)每个节点直接连到中央节点,故障容易检测和隔离,可以很方便地排除有故障的节点。
2、总线拓扑
总线拓扑结构的优点
(1)总线结构所需要的电缆数量少,线缆长度短,易于布线和维护。
(2)总线结构简单,又是元源工作,有较高的可靠性。传输速率高,可达1~100Mbps。
(3)易于扩充,增加或减少用户比较方便,结构简单,组网容易,网络扩展方便
(4)多个节点共用一条传输信道,信道利用率高。
3、环型拓扑
环型拓扑的优点
(1)电缆长度短。
(2)增加或减少工作站时,仅需简单的连接操作。
(3)可使用光纤。
4、树型拓扑
树型拓扑的优点
(1)易于扩展。
(2)故障隔离较容易。
5、混合型拓扑
混合型拓扑的优点
(1)故障诊断和隔离较为方便。
(2)易于扩展。
(3)安装方便。
6、网型拓扑
网型拓扑的优点
(1)节点间路径多,碰撞和阻塞减少。
(2)局部故障不影响整个网络,可靠性高。
7、开关电源拓扑
树型拓扑的缺点:
各个节点对根的依赖性太大。
(2)点到点网状结构的网络信道共享扩展阅读
发展历程
1、诞生阶段
20世纪60年代中期之前的第一代计算机网络是以单个计算机为中心的远程联机系统,典型应用是由一台计算机和全美范围内2000多个终端组成的飞机订票系统,终端是一台计算机的外围设备,包括显示器和键盘,无CPU和内存
2、形成阶段
20世纪60年代中期至70年代的第二代计算机网络是以多个主机通过通信线路互联起来,为用户提供服务,兴起于60年代后期,典型代表是美国国防部高级研究计划局协助开发的ARPANET。
3、互联互通阶段
20世纪70年代末至90年代的第三代计算机网络是具有统一的网络体系结构并遵守国际标准的开放式和标准化的网络。ARPANET兴起后,计算机网络发展迅猛,各大计算机公司相继推出自己的网络体系结构及实现这些结构的软硬件产品。
4、高速网络技术阶段
20世纪90年代至今的第四代计算机网络,由于局域网技术发展成熟,出现光纤及高速网络技术,整个网络就像一个对用户透明的大的计算机系统,发展为以因特网( Internet)为代表的互联网。
㈢ 什么是广播式传输与点到点传输
广播式传输网络中,所有联网计算机都共享一个公共通信信道
点对点传输网络
每条物理线路连接一对计算机
采用分组存储转发与路由选择机制是点对点传输网络与广播式传输网络的重要区别之一。
采用点对点传输网络拓扑构型主要有4种:总线型、树型、环型、无线通信与卫星通信型。
采用广播式传输网络拓扑构型主要有4类:星型、环型、树型与网状型拓扑。
㈣ 点到点网络和广播式网络有什么区别
按传输技术划分有广播式网络和点到点网络两种。广播式网络仅有一条通信信道,由网络上的所有机器共享。向某台主机发送信息就如在公共场所喊人:“老王,有你的信!”在场的人都会听到,而只有老王本人会答应,其余的人仍旧做自己的事情。发往指定地点的信息(报文)将按一定的原则分成组或包(packet),分组中的地址字段指明本分组该由哪台主机接收,如同生活中的人称“老王”。一旦收到分组,各机器都要检查地址字段,如果是发给它的,即处理该分组,否则就丢弃。
与之相反,点到点网络由一对对机器之间的多条连接构成。为了能从源到达目的地,这种网络上的分组必须通过一台或多台中间机器,通常是多条路径,长度一般都不一样。因此,选择合理的路径十分重要。一般来说,小的、处于本地的网络采用广播方式,大的网络采用点到点方式。
㈤ 简答题:列举局域网的拓扑结构并作简要描述
总线型
使用一条总线连接多台计算机,对总线的依赖性过大,总线损坏,则整个网络瘫痪,优点是易于扩展
星型
将多台计算机通过传输介质连接到一个中心节点上,对中心节点的依赖性过大,中心节点故障导致整个网络瘫痪,优点是一台终端损坏,对其他网络其他部分没有影响
树型
使用类似倒树叉结构构建局域网,优点是易于划分多个子网,一个分支损坏对其他分支没有影响,对根结点的依赖性过大。
环型
使用一个闭合环路,将多台计算机连接。按照固定的方向传输信息。缺点是:一个节点损坏整个网络瘫痪。令牌环网就是典型的环形网络。
还有网状型 即把多种类型的网络连接到一起,互联网就是典型的网状型网络。
纯手打 希望能帮助到你,有疑问可以追问 望采纳
㈥ 局域网常用的几种网络拓扑结构及其特点。
网络的拓扑结构有很多种,主要有星型结构、环型结构、总线结构、分布式结构、树型结构、网状结构、蜂窝状结构等。
1、星形网络拓扑结构:
以一台中心处理机(通信设备)为主而构成的网络,其它入网机器仅与该中心处理机之间有直接的物理链路,中心处理机采用分时或轮询的方法为入网机器服务,所有的数据必须经过中心处理机。星形网的特点:
(1)网络结构简单,便于管理(集中式);
(2)每台入网机均需物理线路与处理机互连,线路利用率低;
(3)处理机负载重(需处理所有的服务),因为任何两台入网机之间交换信息,都必须通过中心处理机;
(4)入网主机故障不影响整个网络的正常工作,中心处理机的故障将导致网络的瘫痪。
适用场合:局域网、广域网。
2、环形网络拓扑结构:
入网设备通过转发器接入网络,每个转发器仅与两个相邻的转发器有直接的物理线路。环形网的数据传输具有单向性,一个转发器发出的数据只能被另一个转发器接收并转发。所有的转发器及其物理线路构成了一个环状的网络系统。环形网特点:
(1)实时性较好(信息在网中传输的最大时间固定);
(2)每个结点只与相邻两个结点有物理链路;
(3)传输控制机制比较简单;
(4)某个结点的故障将导致物理瘫痪;
(5)单个环网的结点数有限。
适用场合:局域网,实时性要求较高的环境。
3、总线形网络拓扑结构:
所有入网设备共用一条物理传输线路,所有的数据发往同一条线路,并能够由附接在线路上的所有设备感知。入网设备通过专用的分接头接入线路。总线网拓扑是局域网的一种组成形式。总线网的特点:
(1)多台机器共用一条传输信道,信道利用率较高;
(2)同一时刻只能由两台计算机通信;
(3)某个结点的故障不影响网络的工作;
(4)网络的延伸距离有限,结点数有限。
适用场合:局域网,对实时性要求不高的环境。
4、分布式结构
分布式结构的网络是将分布在不同地点的计算机通过线路互连起来的一种网络形式。分布式结构的网络具有如下特点:
(1)由于采用分散控制,即使整个网络中的某个局部出现故障,也不会影响全网的操作,因而具有很高的可靠性;
(2)网中的路径选择最短路径算法,故网上延迟时间少,传输速率高,但控制复杂;各个结点间均可以直接建立数据链路,信息流程最短;
(3)便于全网范围内的资源共享。缺点为连接线路用电缆长,造价高;网络管理软件复杂;报文分组交换、路径选择、流向控制复杂;在一般局域网中不采用这种结构。
5、树型结构
树型结构是分级的集中控制式网络,与星型相比它的特点如下:
(1)它的通信线路总长度短,成本较低,节点易于扩充,寻找路径比较方便,
(2)除了叶节点及其相连的线路外,任意节点或其相连的线路故障都会使系统受到影响。
6、网状网络拓扑结构:
利用专门负责数据通信和传输的结点机构成的网状网络,入网设备直接接入结点机进行通信。网状网络通常利用冗余的设备和线路来提高网络的可靠性,因此,结点机可以根据当前的网络信息流量有选择地将数据发往不同的线路。
适用场合:
主要用于地域范围大、入网主机多(机型多)的环境,常用于构造广域网络。
7、蜂窝
蜂窝拓扑结构是无线局域网中常用的结构,它以无线传输介质(微波、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。
㈦ 常见的局域网的拓扑结构是什么有何优缺点
常见的分为星型网,环形网,总线网,以及他们的混合型
总线拓扑结构 是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。
优点:结构简单、布线容易、可靠性较高,易于扩充,节点的故障不会殃及系统,是局域网常采用的拓扑结构。
缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。另外,由于信道共享,连接的节点不宜过多,总线自身的故障可以导致系统的崩溃。最着名的总线拓扑结构是以太网(Ethernet)。
2. 星型拓扑结构 是一种以中央节点为中心,把若干外围节点连接起来的辐射式互联结构。这种结构适用于局域网,特别是近年来连接的局域网大都采用这种连接方式。这种连接方式以双绞线或同轴电缆作连接线路。
优点:结构简单、容易实现、便于管理,通常以集线器(Hub)作为中央节点,便于维护和管理。
缺点:中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。
3. 环形拓扑结构 各结点通过通信线路组成闭合回路,环中数据只能单向传输,信息在每台设备上的延时时间是固定的。特别适合实时控制的局域网系统。
优点:结构简单,适合使用光纤,传输距离远,传输延迟确定。
缺点:环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。最着名的环形拓扑结构网络是令牌环网(Token Ring)
4. 树型拓扑结构 是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。
优点:连结简单,维护方便,适用于汇集信息的应用要求。
缺点:资源共享能力较低,可靠性不高,任何一个工作站或链路的故障都会影响整个网络的运行。
5. 网状拓扑结构 又称作无规则结构,结点之间的联结是任意的,没有规律。
优点:系统可靠性高,比较容易扩展,但是结构复杂,每一结点都与多点进行连结,因此必须采用路由算法和流量控制方法。目前广域网基本上采用网状拓扑结构。
6.混合型拓扑结构 就是两种或两种以上的拓扑结构同时使用。
优点:可以对网络的基本拓扑取长补短。
缺点:网络配置挂包那里难度大。
7.蜂窝拓扑结构 蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波、a卫星、红外线、无线发射台等)点到点和点到多点传输为特征,是一种无线网,适用于城市网、校园网、企业网,更适合于移动通信。
在计算机网络中还有其他类型的拓扑结构,如总线型与星型混合、总线型与环型混合连接的网络。在局域网中,使用最多的是星型结构。
8.卫星通信拓扑结构
㈧ 什么是广播式网络,什么是点到点式网络
广播式网络就是某太计算机发送的消息,网络内所有计算机都可以收到。
点对点网络就是通过中间设备直接发到需要接收的计算机。其他计算机收不到这个消息。
㈨ 计算机网络的拓扑结构有哪些它们各有什么优缺点
计算机连接的方式叫做“网络拓扑结构”(Topology)。网络拓扑是指用传输媒体互连各种设备的物理布局,特别是计算机分布的位置以及电缆如何通过它们。设计一个网络的时候,应根据自己的实际情况选择正确的拓扑方式。每种拓扑都有它自己的优点和缺点。
网络的拓扑的分类:网络拓扑可以根据通信子网的通信信道分为两类,广播通信信道子网的拓扑与点到点通信子网的拓扑。
采用广播通信信道子网的基本拓扑结构主要有4种:总线型,树型,环型,无线通信与卫星通信型,
采用点到点的通信子网的基本拓扑结构主要有4种:星型,环型,树型与网状型拓扑。
网络的拓扑结构:分为逻辑拓扑和物理拓扑结构这里讲物理拓扑结构。
总线型拓扑:是一种基于多点连接的拓扑结构,所有的设备连接在共同的传输介质上。总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可但是它的缺点是所有的PC不得不共享线缆,优点是不会因为一条线路发生故障而使整个网络瘫痪。
环行拓扑:把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,在环行结构中每台PC都与另两台PC相连每台PC的接口适配器必须接收数据再传往另一台一台出错,整个网络会崩溃因为两台PC之间都有电缆,所以能获得好的性能。
树型拓扑结构:把整个电缆连接成树型,树枝分层每个分至点都有一台计算机,数据依次往下传优点是布局灵活但是故障检测较为复杂,PC环不会影响全局。
星型拓扑结构:在中心放一台中心计算机,每个臂的端点放置一台PC,所有的数据包及报文通过中心计算机来通讯,除了中心机外每台PC仅有一条连接,这种结构需要大量的电缆,星型拓扑可以看成一层的树型结构不需要多层PC的访问权争用。星型拓扑结构在网络布线中较为常见。
菊花链拓扑:类似于环行拓扑结构,但是中间有一对断点。
以上几种拓扑结构可以混合使用,并且星型拓扑较为常见。
注意要区分开网络物理拓扑结构和逻辑拓扑物理拓扑是连接的PC的真实路径。
逻辑拓扑是数据由一台PC传输到另台PC的实际流向而构成的路径
㈩ 计算机网络分为哪几种
计算机按通用网络划分标准。按这种标准可以把各种网络类型划分为局域网、城域网、广域网和互联网四种。
一、局域网:
1、通常我们常见的“LAN”就是指局域网,这是我们最常见、应用最广的一种网络。局域网随着整个计算机网络技术的发展和提高得到充分的应用和普及,几乎每个单位都有自己的局域网,有的甚至家庭中都有自己的小型局域网。
二、城域网:
2、 这种网络一般来说是在一个城市,但不在同一地理小区范围内的计算机互联。这种网络的连接距离可以在10 ̄100公里,它采用的是IEEE802.6标准。MAN与LAN相比扩展的距离更长,连接的计算机数量更多,在地理范围上可以说是LAN网络的延伸。
三、广域网:
这种网络也称为远程网,所覆盖的范围比城域网(MAN)更广,它一般是在不同城市之间的LAN或者MAN网络互联,地理范围可从几百公里到几千公里。因为距离较远,信息衰减比较严重,所以这种网络一般是要租用专线,通过IMP(接口信息处理)协议和线路连接起来,构成网状结构,解决循径问题。
四、无线网:
随着笔记本电脑和个人数字助理等便携式计算机的日益普及和发展,人们经常要在路途中接听电话、发送传真和电子邮件阅读网上信息以及登录到远程机器等。
(10)点到点网状结构的网络信道共享扩展阅读:
无线局域网(WLAN);
1、无线局域网提供了移动接入的功能,这就给许多需要发送数据但又不能坐在办公室的工作人员提供了方便。当大量持有便携式电脑的用户都在同一个地方同时要求上网时,若用电缆连网,那么布线就是个很大的问题。这时若采用无线局域网则比较容易。
2、无线局域网可分为两大类,第一类是有固定基础设施的,第二类是无固定基础设施的。所谓“固定基础设施”是预先建立起来的、能够覆盖一定地理范围的一批固定基础。大家经常使用的蜂窝移动电话就是利用电信公司预先建立的、覆盖全国的大量固定基站来接通用户手机拨打的电话。
3、另一类无线局域网是无固定基础设施的无线局域网,它又叫做自组网络。这种自组网络没有上述基本服务集中的接入点(AP),而是由一些处于平等状态的移动站之间相互通信组成的临时网络。